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Abstract— This paper describes a method to generate and 

run a Radial Basis Function network designed to classify 

unstructured/unknown data.  The growR3 algorithm is 

introduced and described along with results of testing on two 

data sets; a proof on concept and a more complex spiral data set 

using x and y inputs – versus more dimensions.  The work here 

is preliminary but shows promise because of the algorithm’s 

self-organizing, deterministic nature, and relatively low training 

time requirements.   
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I. INTRODUCTION 

This paper describes a deterministic approach for 

classifying points for arbitrary patterns of data.  The work is in 

its early stages, yet it has shown good results in classifying 

non-linearly separable patterns using a single layer of radial 

basis neurons.  This paper shows results for basic low neuron 

count clustering and high neuron count swirl pattern data.  The 

algorithm can be characterized as a self-organizing radial basis 

network because it “grows” in order to accommodate the 

complexity of the presented classification problem. 

The motivation of this work lies in the desire to classify 

data points in complex patterns, such as the swirl pattern, with 

simple networks.  As a general rule, simple networks require 

less training iterations, and the networks presented here follow 

this rule.  Furthermore, it was felt that an ideal solution would 

be deterministic so the generated network that solved the 

problem at hand could easily be replicated, as long as the data 

set was the same.  Another goal was that the solution should 

be analysis friendly; that is, it should be possible to select a 

point that the network accepted and know which neuron in the 

network made the decision to accept it.  The work presented in 

this paper fulfills these goals because the generated solution is 

a single layer network, thus making it possible to pair 

accepted points with the neuron that accepted them. 

This paper is arranged as follows.  The Background 

section provides some basic information on the perceptron and 

uses that as a build up to the radial basis neuron.  It also 

provides some information on other methods of classification, 

most notably the multi-layer feed forward network.  The 

Approach section describes the growR3 algorithm that was 

developed for this work.  In the Results section two examples 

are discussed, the first being a basic test of the system, the 

second being the swirl pattern.  The takeaway from this 

section is that the growR3 algorithm can generate a radial 

basis network that will classify simple or complex data.  

Simpler problems require fewer neurons, complex requires 

more, but the programmer does not have to specify the size of 

the network, the growR3 algorithm builds it accordingly.  The 

Conclusion and Future Work sections provides a summary of 

the work, and highlights areas in which the growR3 algorithm 

can be enhanced. 

II. BACKGROUND 

In this section we discuss the basics of two basic neural 

units, the perceptron and the radial basis function.  We provide 

detail on the perceptron in order to bolster understanding of 

the radial basis function, and the need for the radial basis 

function in order to realize the goals of this research.  The 

treatment of these subjects is an overview at best; an 

abundance of information is available in textbooks and 

literature.  

A. The Perceptron 

The basic perceptron provides the ability to classify 

linearly separable data in a supervised manner.  It creates a 

hyperplane between the desired data points (the ones deemed 

as acceptable) and the undesired points; remember in 

supervised learning, each point is labeled as desired (value 1) 

or not desired (value -1).  We say hyperplane to indicate 

multi-dimensional input, but put more plainly, for data with 

two components, x and y, the perceptron creates a line 

between the two classes of data.  Detailed information is 

available from multiple sources including [1].  Here we 

present the basics: 

 

w – weights 

x – input vector 

 

v = ∑ wixi   

 

 i = 1 to n, where n is the number of inputs and weights.  

The v parameter is the dot product of the input vector and 

the weights. 

 

The perceptron uses a hard limiting function that behaves 

as follows: 

 

if (v ≥ 0) 

   y = 1 

else 

   y = -1 

 

The diagram in Fig. 1 below illustrates the data flow 

through the perceptron. 
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Fig. 1. The x values are the input vector.  It is multiplied by the weights, w, 

resulting in v.  The v parameter is passed through the hard limit function 

resulting in y.  If y is 1 the perceptron classifies the input vector x as 
accepted, otherwise it is rejected.   

The updating of the weights is handled by the following 

process: 

Initially all weights are set to 0.  At the presentation of 

each input vector, desired value pair, the weights are updated. 

We include an extra input, x0 which is always -1, and an 

extra weight w0.  This is referred to as the bias.  Its purpose is 

the shift the hyperplane (line in 2 dimensions) away from the 

origin.  It is the y intercept if using inputs with 2 dimensions.   

 

η - the learning rate 

x0 = -1 

 

if (y == desired)  

   do not update 

else if (y == 1) and (desired == -1) { 

            for each j from 0 to n { 

                weights[j] = weights[j] - (η * x[j]) 

            } 

} 

else if (y == -1) and (desired == 1) { 

             for each j from 0 to n { 

                weights[j] = weights[j] + (η * x[j]) 

             } 

} 

 

To get an intuitive feel for how a perceptron works 

consider a 2 input (x1, x2) system that has been trained.  Fig. 2 

below illustrates the situation.  The shaded portion shows the 

area in which the perceptron has been trained to accept inputs; 

in the non-shaded portion the vectors are not accepted.   

For two inputs (x1, x2) we get: 

 

x1w1 + x2w2 + x0w0 = 0 

 

Remembering that x0 is always -1, we get: 

 

x1w1 + x2w2 – w0 = 0 

 

Now, let’s rename our variables: 

 

 x = x1 

 y = x2 

 b = w0 

 

Our equation is now: 

 

xw1 + yw2 – b = 0 

 

Rearranging, we get: 

 

y = (-w1/w2)*x + b 

 

The (-w1/w2) term can be thought of as the slope of the 

line, and the b term is the y intercept, resulting in: 

 

y = mx + b 

 

Notice that this is for the decision boundary line.  This line 

is perpendicular to the ideal value of the weights, so the slope 

of the line is the negative reciprocal of the weights.   

 

 

Fig. 2.  Illustration of the decision boundary for a perceptron.  In general, a 

perceptron creates a hyperplane between the desired (desired = 1) and not 
desired (desired = -1) input vectors.  In data that uses 2 inputs (2 dimensions) 

the hyperplane is a line. 

This makes intuitive sense when you consider the inputs as 

unit vectors and the weights as a unit vector.  In this case, if 

the best input would be parallel to the weights, resulting in an 

output of 1, the worst would be the total opposite of the 

weights, resulting in an output of -1 (and putting the vector 

firmly into the area of the undesired values), and an input 

vector right on the decision boundary would result in a value 

of 0, perpendicular to the weights.  

The perceptron with its learning rule works with only 

linearly separable data, which is fine, as long as the person 

using the perceptron as a decision tool knows that their data is 

linearly separable.  This is a serious limitation.  Much has 

been written about this, most notably by Minsky and Papert as 

indicated by Haykin [1]. 

B. The Radial Basis Function 

The Radial Basis Function (RBF) [2] is similar to a 

perceptron in that it is a single neural unit.  However, they are 

very different in operation.  The learning process of a 

perceptron finds the location of the hyperplane that divides the 

desired inputs from the undesired inputs.  The RBF learning 

process finds the center of the zone of acceptance for the 

inputs.  If using two dimensions (x, y), the zone is a circle or 

ellipse depending on the calculation of the v parameter.  

Because of these differences, the calculation of the v 

parameter, the limiting function, and the update function are 

all changed somewhat.  The general expression for the v 

parameter is shown below: 
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v = (x – w)T * A * (x – w) 

 

This equation is calculating the square of the distance of 

the input vector x from the weight vector w.  The A quantity 

can be thought of as a shape modifier, meaning that if it is left 

as 1 when using a 2-dimensional system, v describes the 

square of the radial distance from the center identified as w, 

i.e., a circle.   

The limiting function actuates if v is less than some 

threshold.  So, if an input is within the distance described by 

the threshold, an input is accepted, otherwise it is rejected.  

The area within the threshold, centered at the value of the 

weights is a circle (if the A parameter is set to 1) The logic of 

the limiting function is shown below. 

 

if (v <= threshold) 

   y = 1 

else: 

   y = -1 

 

If we want to think of the limiting function as accepting all 

inputs within the circle centered at the weights, then the 

threshold is set to the radius of the acceptance circle squared 

(because v is the square of the distance from the tip of the 

vector w). 

The weight update function is shown below: 

 

η - the learning rate 

error = desired - y 

         

for each j from 0 to n-1 { 

   weights[j] = weights[j] + (2* η *error)*(xInput[j] - 

weights[j]) 

} 

 

Notice that there is no bias used in the radial basis 

function.  Fig. 3 below illustrates the radial basis function 

situation.  This update function’s logic is slightly different 

than that of perceptron, but functionally similar.  Notice that 

error will be 0 when desired and y are the same, resulting in 

no update to the weights; this is functionally similar to what 

happens in the perceptron. 

 

 

Fig. 3. This figure shows the acceptance zone of a radial basis function.  

The weight vector w points to the center of the acceptance zone.   

 

Of particular importance for the purposes of this paper is 

that the RBF defines a finite zone of acceptance that can be 

arbitrarily placed within a solution space.   

As part of this work, the Tensorflow Playground 

application [3] was used to solve/classify the points in their 

spiral points set.  An ad-hoc solution, striving for minimal 

network architecture complexity, resulted in a solution with 4 

input nodes, 8 nodes in the first hidden layer, 6 nodes in the 

second hidden layer, and 2 output nodes.  As for the input 

nodes, they were the x, y coordinates, and the coordinates 

squared.   The transfer function was the hyperbolic tangent 

function, and number of epochs was in the upper 300’s. 

As powerful as the feedforward network is, as stated 

earlier, one of the goals of this work was to minimize network 

complexity/number of layers, and autogenerate the number of 

neurons needed to solve a given problem.  The growR3 

algorithm described in the next section of this paper relies on 

being able to programmatically place multiple RBFs in a 

solution space in order to “cover” a given pattern of 

acceptance.  This work relies on circular zones of acceptance; 

it is recognized that tuning of the A parameter and threshold, 

would sharpen/enhance the boundary condition accuracy.  

III. APPROACH 

The general idea behind the growR3 algorithm is to use a 

patchwork of RBF neurons in order to “cover” a solution 

space.  In Fig. 4 below we see some examples of decision 

boundaries.  This is different than the traditional approach 

used by RBF networks [2] in which the number of nodes and 

layers is fixed from the beginning.  Others [3] use K means or 

Kohonen networks to find the centers of the RBF functions.  

In this work, the network grows to the size needed by the data, 

so no number of clusters or hidden node count is selected.  

The two smaller diagrams on the left of the figure illustrate 

classic examples that lend themselves to a perceptron and an 

RBF function.  However, the larger figure on the right is more 

complex, with curved and concave surfaces. For the data 

points that lie within this spiral-like figure, usually a multi-

layered feed forward network /tool is used.  Examples of 

problems being solved by networks with 1 or more hidden 

layers can be explored using available tools such as tensorflow 

[4] and tensorflow playground [5]. 

 

Fig. 4.  The two smaller diagrams to the left illustrate problems that a basic 

perceptron or RBF neuron can easily solve.  However, neither of these can 
solve a more complex problem such as the one depicted in the diagram on 

the right.  For problems of this nature, a multilayer network is commonly 

used. 

The growR3 algorithm approaches the problem by 

locating multiple RBF neurons in the area of the desired data.  

Fig. 5 below illustrates how the growR3 algorithm would 

tackle the spiral diagram from Fig. 3 above. 
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Fig. 5. This figure shows how the growR3 algorithm tries to solve problems 

in which the desired data points form complex shapes.  Each of the dark 
circles represents an area of acceptance of an RBF neuron. In Fig. 5 it can be 

seen that some of the circles are too big for the blue area, some overlap, etc.  

These phenomena can be tuned by the threshold and associated multipliers in 

the algorithm and are addressed in a later section.   

 

The pseudo code for the growR3 algorithm is presented 

below: 

 

growR3(n, inputs, desired, threshold, nEpochs) { 

    // Initialize parameters.  

    myRadials = {} 

    nRadials = 0 

    η = 0.01 

 

    # Run and Train on inputs 

    for (j = 0; j < nEpochs; j++) { 

         

        for(k = 0; k < n; k++) { 

            x = inputs[k] 

            d = desired[k] 

             

closeOne, v = find the closest radial in myRadials to the 

input x.  Return its index and the distance v from x to the 

center of the selected radial.  If the myRadials set is empty, 

return -1 

             

if (closeOne == -1) { 

// We only create a new radial for the desired data class. 

if (d == 1) { 

rNew = radialBasis with the desired number of inputs 

Initialize the weights in rNew to the value of the 

current input x  

Add rNew to myRadials 

nRadials = nRadials + 1 

} 

} 

else { 

// If the input is within the range of the closest radial,  

      // update that radials weights. 

     if (v < threshold*spacing multiplier) { 

           y = myRadials[closeOne].hardLimitRadial(v, 

threshold) 

          myRadials[closeOne].updateMe(d, y, η, x) 

     } 

     else if (d == 1) { 

         // We only create a new radial for the desired data class. 

rNew = radialBasis with the desired number of inputs 

Initialize the weights in rNew to the value of the 

current input x 

Add rNew to myRadials 

nRadials = nRadials + 1 

} 

      } 

  } // End k 

}   // End j              

return nRadials, myRadials 

}  // End growR3 

 

Using the RBF network contained in the myRadials array 

is done using the runR function.  It works by presenting each 

radial with an input.  If any single RBF neuron accepts the 

point, it is classified as desired.  The logic of the runR 

function is shown in the pseudo code below. 

 

runR(numRadials, radials, nPoints, radiusThresh, points{}) { 

    classification = {}         

    for (j = 0; j < nPoints; j++ ) {         

        inVec = points[j] 

        accepted = -1 

        // Present the input to each radial that was generated. 

        for (k = 0 ; k < numRadials; k++) { 

            // runMe is the method that runs a radial neuron. 

            y = radials[k].runMe(inVec, 

radiusThresh*radiusThresh) 

            if (y == 1): 

                accepted = 1 

        }                

        Add accepted to the classification set 

    }  // End for 

    return points, classification 

} // End runR 

IV. RESULTS 

Early tests of growR3 shows promise.  For a simple test, 

one with desired points randomly centered around (-4, 4) and 

(4, -4).  The growR3 algorithm finds the centers quickly, 

albeit the centers are not precisely at (-4, 4), (4, -4) because of 

the random generation of the points favors generating points 

more densely around the origin, which slightly shifts the 

centers closer to the origin.  The results of the test are shown 

in Fig. 6 below.   

One thing of note is that growR3 generated 3 radials for 

this test, instead of 2.  This is due to the tuning parameters 

used.   

The next test was the spiral test.  Once again a random 

group of 1000 points was generated with a spiral pattern 

embedded in it.  The spiral itself is the desired data, as denoted 

by the blue data points in Fig. 7 below.  The diagram on the 

left of Fig. 7 shows the training data, the figure to the right 

shows the test data.   
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Fig. 6. Basic test of the growR3 algorithm.  The training data was a random 

set of data centered around the points (-4, 4) and (4, -4).  There were 1000 

points in the data set. 

 

 

Fig. 7. This figure shows spiral training data and spiral test data.  It is clear 

that the growR3 algorithm is finding the shape of the data, but it is also clear 
that some points are being misclassified as evidenced by the thicker spirals in 

the test data. 

 

The spiral test shown in the Fig. 7 caused the growR3 

algorithm to create an RBF network with 81 radials.   As 

referred to in the caption, the growR3 algorithm’s placement 

of the radials causes errors in acceptance of undesired points 

as can be seen in the width of the band of blue dots in the right 

figure vs the left.  This can be due to placement of the radial 

from training, but also due to the non-adaptive nature of the 

radius (threshold value) of the radial. 

One thing of note is that this result was obtained with a 

training regimen of 7 epochs.  In the scheme of things, this is 

quite low; the earlier referenced tensorflow example required 

upwards of 300 epochs.  Another point that can be recognized 

is that if we were to select one of the points marked by the 

RBF network as desired, we can trace that point to the RBF 

neuron that accepted it. 

V. CONCLUSION AND FUTURE WORK 

The RBF network generated by the growR3 algorithm and 

used by runR shows promise for being able to learn to classify 

points as desirable or not in arbitrary arrangements by virtue 

of its self organizing/additive nature.  In its current form it can 

generate a good but somewhat rough solution in very few 

epochs.  It also has the benefit of being a very simple single 

layer system which allows direct tracing of the path of 

acceptance of each point marked as desired.  The solution is 

repeatable from run to run as long as the data is the same 

because the weights are initialized to 0, not to random values.  

The algorithm needs to be improved by implementing 

adaptive thresholding and possible modification of the A 

parameter so that radials can be tuned to the area in which 

they are responsible. 
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