Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

A Simple Additive Neural Network Algorithm for
Point Classification

Patrick Mcdowell, Kuo-Pao Yang, Paulo Regis, John Burris
Department of Computer Science
Southeastern Louisiana University
Hammond, LA 70402 USA

Abstract— This paper describes a method to generate and
run a Radial Basis Function network designed to classify
unstructured/unknown data. The growR3 algorithm is
introduced and described along with results of testing on two
data sets; a proof on concept and a more complex spiral data set
using x and y inputs — versus more dimensions. The work here
is preliminary but shows promise because of the algorithm’s
self-organizing, deterministic nature, and relatively low training
time requirements.

Keywords- Neural Network Algorithm, Radial Basis Function

I. INTRODUCTION

This paper describes a deterministic approach for
classifying points for arbitrary patterns of data. The work is in
its early stages, yet it has shown good results in classifying
non-linearly separable patterns using a single layer of radial
basis neurons. This paper shows results for basic low neuron
count clustering and high neuron count swirl pattern data. The
algorithm can be characterized as a self-organizing radial basis
network because it “grows” in order to accommodate the
complexity of the presented classification problem.

The motivation of this work lies in the desire to classify
data points in complex patterns, such as the swirl pattern, with
simple networks. As a general rule, simple networks require
less training iterations, and the networks presented here follow
this rule. Furthermore, it was felt that an ideal solution would
be deterministic so the generated network that solved the
problem at hand could easily be replicated, as long as the data
set was the same. Another goal was that the solution should
be analysis friendly; that is, it should be possible to select a
point that the network accepted and know which neuron in the
network made the decision to accept it. The work presented in
this paper fulfills these goals because the generated solution is
a single layer network, thus making it possible to pair
accepted points with the neuron that accepted them.

This paper is arranged as follows. The Background
section provides some basic information on the perceptron and
uses that as a build up to the radial basis neuron. It also
provides some information on other methods of classification,
most notably the multi-layer feed forward network. The
Approach section describes the growR3 algorithm that was
developed for this work. In the Results section two examples
are discussed, the first being a basic test of the system, the
second being the swirl pattern. The takeaway from this
section is that the growR3 algorithm can generate a radial
basis network that will classify simple or complex data.
Simpler problems require fewer neurons, complex requires
more, but the programmer does not have to specify the size of

the network, the growR3 algorithm builds it accordingly. The
Conclusion and Future Work sections provides a summary of
the work, and highlights areas in which the growR3 algorithm
can be enhanced.

II. BACKGROUND

In this section we discuss the basics of two basic neural
units, the perceptron and the radial basis function. We provide
detail on the perceptron in order to bolster understanding of
the radial basis function, and the need for the radial basis
function in order to realize the goals of this research. The
treatment of these subjects is an overview at best; an
abundance of information is available in textbooks and
literature.

A. The Perceptron

The basic perceptron provides the ability to classify
linearly separable data in a supervised manner. It creates a
hyperplane between the desired data points (the ones deemed
as acceptable) and the undesired points; remember in
supervised learning, each point is labeled as desired (value 1)
or not desired (value -1). We say hyperplane to indicate
multi-dimensional input, but put more plainly, for data with
two components, X and y, the perceptron creates a line
between the two classes of data. Detailed information is
available from multiple sources including [1]. Here we
present the basics:

w — weights
X — input vector

V= z WiXi

i =1 to n, where n is the number of inputs and weights.
The v parameter is the dot product of the input vector and
the weights.

The perceptron uses a hard limiting function that behaves
as follows:

if (v>0)
y=1
else

y=-1

The diagram in Fig. 1 below illustrates the data flow
through the perceptron.

IJERTV111S020011

www.ijert.org 108

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

Perceptron
Xo W,
X
x1 " 7
2 w v Hard
4 > wx T Limit
X w i
Function
wn

Fig. 1. The x values are the input vector. It is multiplied by the weights, w,
resulting in v. The v parameter is passed through the hard limit function
resulting iny. Ify is 1 the perceptron classifies the input vector x as
accepted, otherwise it is rejected.

The updating of the weights is handled by the following
process:

Initially all weights are set to 0. At the presentation of
each input vector, desired value pair, the weights are updated.

We include an extra input, xo which is always -1, and an
extra weight wo. This is referred to as the bias. Its purpose is
the shift the hyperplane (line in 2 dimensions) away from the
origin. Itisthey intercept if using inputs with 2 dimensions.

n - the learning rate
x0=-1

if (y == desired)
do not update
else if (y == 1) and (desired ==-1) {
for each jfrom O ton {
weights[j] = weights[j] - (n * x[j])
}
}
else if (y == -1) and (desired == 1) {
for each j fromOton {
weights[j] = weights[j] + (n * x[j])

}

To get an intuitive feel for how a perceptron works
consider a 2 input (x1, x2) system that has been trained. Fig. 2
below illustrates the situation. The shaded portion shows the
area in which the perceptron has been trained to accept inputs;
in the non-shaded portion the vectors are not accepted.

For two inputs (X1, X2) we get:

X1W1 + XoWo + XoWg = 0
Remembering that xo is always -1, we get:
X1W1 + XoWo —Wp =0
Now, let’s rename our variables:
X = X1
y=X2

b:Wo

Our equation is now:

Xwi +yw,—b =0
Rearranging, we get:
y = (-Wilwz)*x + b

The (-wa/wy) term can be thought of as the slope of the
line, and the b term is the y intercept, resulting in:

y=mx+b
Notice that this is for the decision boundary line. This line

is perpendicular to the ideal value of the weights, so the slope
of the line is the negative reciprocal of the weights.

Decision Boundary

Desired = 1

Desired|=-1

Fig. 2. Illustration of the decision boundary for a perceptron. In general, a
perceptron creates a hyperplane between the desired (desired = 1) and not
desired (desired = -1) input vectors. In data that uses 2 inputs (2 dimensions)
the hyperplane is a line.

This makes intuitive sense when you consider the inputs as
unit vectors and the weights as a unit vector. In this case, if
the best input would be parallel to the weights, resulting in an
output of 1, the worst would be the total opposite of the
weights, resulting in an output of -1 (and putting the vector
firmly into the area of the undesired values), and an input
vector right on the decision boundary would result in a value
of 0, perpendicular to the weights.

The perceptron with its learning rule works with only
linearly separable data, which is fine, as long as the person
using the perceptron as a decision tool knows that their data is
linearly separable. This is a serious limitation. Much has
been written about this, most notably by Minsky and Papert as
indicated by Haykin [1].

B. The Radial Basis Function

The Radial Basis Function (RBF) [2] is similar to a
perceptron in that it is a single neural unit. However, they are
very different in operation. The learning process of a
perceptron finds the location of the hyperplane that divides the
desired inputs from the undesired inputs. The RBF learning
process finds the center of the zone of acceptance for the
inputs. If using two dimensions (X, y), the zone is a circle or
ellipse depending on the calculation of the v parameter.
Because of these differences, the calculation of the v
parameter, the limiting function, and the update function are
all changed somewhat. The general expression for the v
parameter is shown below:

IJERTV111S020011

www.ijert.org 109

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

Vv (X-W)T*A*(X-w)

This equation is calculating the square of the distance of
the input vector x from the weight vector w. The A quantity
can be thought of as a shape modifier, meaning that if it is left
as 1 when using a 2-dimensional system, v describes the
square of the radial distance from the center identified as w,
i.e., acircle.

The limiting function actuates if v is less than some
threshold. So, if an input is within the distance described by
the threshold, an input is accepted, otherwise it is rejected.
The area within the threshold, centered at the value of the
weights is a circle (if the A parameter is set to 1) The logic of
the limiting function is shown below.

if (v <= threshold)

y=1
else:
y=-1

If we want to think of the limiting function as accepting all
inputs within the circle centered at the weights, then the
threshold is set to the radius of the acceptance circle squared
(because v is the square of the distance from the tip of the
vector w).

The weight update function is shown below:

n - the learning rate
error = desired - y

for each j from 0 to n-1 {
weights[j] = weights[j] + (2* n *error)*(xInputj] -
weights[j])
}

Notice that there is no bias used in the radial basis
function. Fig. 3 below illustrates the radial basis function
situation. This update function’s logic is slightly different
than that of perceptron, but functionally similar. Notice that
error will be 0 when desired and y are the same, resulting in
no update to the weights; this is functionally similar to what
happens in the perceptron.

Radial Basis Function

Desired = 1

w “\Threshold

Desired = -1

Fig. 3. This figure shows the acceptance zone of a radial basis function.
The weight vector w points to the center of the acceptance zone.

Of particular importance for the purposes of this paper is
that the RBF defines a finite zone of acceptance that can be
arbitrarily placed within a solution space.

As part of this work, the Tensorflow Playground
application [3] was used to solve/classify the points in their
spiral points set. An ad-hoc solution, striving for minimal
network architecture complexity, resulted in a solution with 4
input nodes, 8 nodes in the first hidden layer, 6 nodes in the
second hidden layer, and 2 output nodes. As for the input
nodes, they were the x, y coordinates, and the coordinates
squared. The transfer function was the hyperbolic tangent
function, and number of epochs was in the upper 300’s.

As powerful as the feedforward network is, as stated
earlier, one of the goals of this work was to minimize network
complexity/number of layers, and autogenerate the number of
neurons needed to solve a given problem. The growR3
algorithm described in the next section of this paper relies on
being able to programmatically place multiple RBFs in a
solution space in order to ‘“cover” a given pattern of
acceptance. This work relies on circular zones of acceptance;
it is recognized that tuning of the A parameter and threshold,
would sharpen/enhance the boundary condition accuracy.

I1l. APPROACH

The general idea behind the growR3 algorithm is to use a
patchwork of RBF neurons in order to “cover” a solution
space. In Fig. 4 below we see some examples of decision
boundaries. This is different than the traditional approach
used by RBF networks [2] in which the number of nodes and
layers is fixed from the beginning. Others [3] use K means or
Kohonen networks to find the centers of the RBF functions.
In this work, the network grows to the size needed by the data,
so no number of clusters or hidden node count is selected.
The two smaller diagrams on the left of the figure illustrate
classic examples that lend themselves to a perceptron and an
RBF function. However, the larger figure on the right is more
complex, with curved and concave surfaces. For the data
points that lie within this spiral-like figure, usually a multi-
layered feed forward network /tool is used. Examples of
problems being solved by networks with 1 or more hidden
layers can be explored using available tools such as tensorflow
[4] and tensorflow playground [5].

Decision Boundary Examples

Perceptron
Desired Not Desired
_adl ‘t\\
Not Desired / Desired
. 2B)
A \
Radial Basis P | ‘
2 4 y
— y
2 >
B—— _
Desired P L—»'/‘/
o - 4 o
Not Desired| — .[f
’

Fig. 4. The two smaller diagrams to the left illustrate problems that a basic
perceptron or RBF neuron can easily solve. However, neither of these can
solve a more complex problem such as the one depicted in the diagram on
the right. For problems of this nature, a multilayer network is commonly

used.
The growR3 algorithm approaches the problem by
locating multiple RBF neurons in the area of the desired data.

Fig. 5 below illustrates how the growR3 algorithm would

tackle the spiral diagram from Fig. 3 above.

IJERTV111S020011

www.ijert.org 110

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

growR3 Approach to the Spiral Data Set Problem

Not
Desired

Fig. 5. This figure shows how the growR3 algorithm tries to solve problems
in which the desired data points form complex shapes. Each of the dark
circles represents an area of acceptance of an RBF neuron. In Fig. 5 it can be
seen that some of the circles are too big for the blue area, some overlap, etc.
These phenomena can be tuned by the threshold and associated multipliers in
the algorithm and are addressed in a later section.

The pseudo code for the growR3 algorithm is presented
below:

growR3(n, inputs, desired, threshold, nEpochs) {
/I Initialize parameters.
myRadials = {}
nRadials = 0
n=0.01

Run and Train on inputs
for (j = 0; j < nEpochs; j++) {

for(k = 0; k <n; k++) {
X = inputs[K]
d = desired[k]

closeOne, v = find the closest radial in myRadials to the
input X. Return its index and the distance v from x to the
center of the selected radial. If the myRadials set is empty,
return -1

if (closeOne ==-1) {
/I We only create a new radial for the desired data class.
if(d==1){
rNew = radialBasis with the desired number of inputs
Initialize the weights in rNew to the value of the
current input x
Add rNew to myRadials
nRadials = nRadials + 1

¥
¥

else {
/I 1f the input is within the range of the closest radial,
/I update that radials weights.
if (v < threshold*spacing multiplier) {
y = myRadials[closeOne].hardLimitRadial (v,
threshold)
myRadials[closeOne].updateMe(d, y, 1, X)

}
elseif (d==1) {
/l We only create a new radial for the desired data class.
rNew = radialBasis with the desired number of inputs

Initialize the weights in rNew to the value of the
current input x

Add rNew to myRadials

nRadials = nRadials + 1

}

}
}//End k
} //Endj
return nRadials, myRadials
} // End growR3

Using the RBF network contained in the myRadials array
is done using the runR function. It works by presenting each
radial with an input. If any single RBF neuron accepts the
point, it is classified as desired. The logic of the runR
function is shown in the pseudo code below.

runR(numRadials, radials, nPoints, radiusThresh, points{}) {
classification = {}
for (j = 0; j < nPoints; j++) {
inVec = points[j]
accepted = -1
/I Present the input to each radial that was generated.
for (k =0 ; k < numRadials; k++) {
I/l runMe is the method that runs a radial neuron.
y = radials[k].runMe(inVec,
radiusThresh*radiusThresh)

if (y==1):
accepted =1
}
Add accepted to the classification set
} /1 End for

return points, classification
} // End runR

IV. RESULTS

Early tests of growR3 shows promise. For a simple test,
one with desired points randomly centered around (-4, 4) and
(4, -4). The growR3 algorithm finds the centers quickly,
albeit the centers are not precisely at (-4, 4), (4, -4) because of
the random generation of the points favors generating points
more densely around the origin, which slightly shifts the
centers closer to the origin. The results of the test are shown
in Fig. 6 below.

One thing of note is that growR3 generated 3 radials for
this test, instead of 2. This is due to the tuning parameters
used.

The next test was the spiral test. Once again a random
group of 1000 points was generated with a spiral pattern
embedded in it. The spiral itself is the desired data, as denoted
by the blue data points in Fig. 7 below. The diagram on the
left of Fig. 7 shows the training data, the figure to the right
shows the test data.

IJERTV111S020011

www.ijert.org 111

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

Published by :
http://lwww.ijert.org

Desired: blue, Not Desired: red
10.0 oS 0

a.{.‘.

=100 -75 50 =25 00 25 50 75 100

-10.0

Fig. 6. Basic test of the growR3 algorithm. The training data was a random
set of data centered around the points (-4, 4) and (4, -4). There were 1000
points in the data set.

Desired: blue, Not Desired: red Desired: blue, Not Desired: red

Training Data - 1000 points Test Data — 1000 points

Fig. 7. This figure shows spiral training data and spiral test data. It is clear

that the growR3 algorithm is finding the shape of the data, but it is also clear

that some points are being misclassified as evidenced by the thicker spirals in
the test data.

The spiral test shown in the Fig. 7 caused the growR3
algorithm to create an RBF network with 81 radials. As
referred to in the caption, the growR3 algorithm’s placement
of the radials causes errors in acceptance of undesired points
as can be seen in the width of the band of blue dots in the right
figure vs the left. This can be due to placement of the radial

from training, but also due to the non-adaptive nature of the
radius (threshold value) of the radial.

One thing of note is that this result was obtained with a
training regimen of 7 epochs. In the scheme of things, this is
quite low; the earlier referenced tensorflow example required
upwards of 300 epochs. Another point that can be recognized
is that if we were to select one of the points marked by the
RBF network as desired, we can trace that point to the RBF
neuron that accepted it.

V. CONCLUSION AND FUTURE WORK

The RBF network generated by the growR3 algorithm and
used by runR shows promise for being able to learn to classify
points as desirable or not in arbitrary arrangements by virtue
of its self organizing/additive nature. In its current form it can
generate a good but somewhat rough solution in very few
epochs. It also has the benefit of being a very simple single
layer system which allows direct tracing of the path of
acceptance of each point marked as desired. The solution is
repeatable from run to run as long as the data is the same
because the weights are initialized to 0, not to random values.
The algorithm needs to be improved by implementing
adaptive thresholding and possible modification of the A
parameter so that radials can be tuned to the area in which
they are responsible.

REFERENCES

[1] S. Haykin, Neural Networks A Comprehensive Foundation, Macmillan
College Publishing, 1994.

[2] M. Orr, “Introduction to Radial Basis Function Networks,” Centre for
Cognitive Science, University of Edinburgh, April 1996, retrieved from
https://faculty.cc.gatech.edu/~isbell/tutorials/rbf-intro.pdf.

[3] D. Touretzky, “Radial Basis Functions,” 15-486/782 Aurtificial Neural
Networks, Fall 2006, retrieved from
http://www.cs.cmu.edu/afs/cs/academic/class/15883-f19/slides/rbf.pdf.

[4] Tensorflow, January 2022, retrieved from https://www.tensorflow.org.

[5] Tensorflow Playground, January 2022, retrieved from
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dat
aset=spiral®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&noise=0&networkSh
ape=8,6,2&seed=0.84393&showTestData=false&discretize=false&per
cTrainData=50&x=true&y=true&xTimesY =false&xSquared=true&yS
quared=true&cosX=false&sinX=false&cosY=false&sinY=false&colle
ctStats=false&problem=classification&initZero=false&hideText=false
&showTestData_hide=false.

IJERTV111S020011

www.ijert.org 112

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

