
A Simple Additive Neural Network Algorithm for

Point Classification

Patrick Mcdowell, Kuo-Pao Yang, Paulo Regis, John Burris
Department of Computer Science

Southeastern Louisiana University

Hammond, LA 70402 USA

Abstract— This paper describes a method to generate and

run a Radial Basis Function network designed to classify

unstructured/unknown data. The growR3 algorithm is

introduced and described along with results of testing on two

data sets; a proof on concept and a more complex spiral data set

using x and y inputs – versus more dimensions. The work here

is preliminary but shows promise because of the algorithm’s

self-organizing, deterministic nature, and relatively low training

time requirements.

Keywords- Neural Network Algorithm, Radial Basis Function

I. INTRODUCTION

This paper describes a deterministic approach for

classifying points for arbitrary patterns of data. The work is in

its early stages, yet it has shown good results in classifying

non-linearly separable patterns using a single layer of radial

basis neurons. This paper shows results for basic low neuron

count clustering and high neuron count swirl pattern data. The

algorithm can be characterized as a self-organizing radial basis

network because it “grows” in order to accommodate the

complexity of the presented classification problem.

The motivation of this work lies in the desire to classify

data points in complex patterns, such as the swirl pattern, with

simple networks. As a general rule, simple networks require

less training iterations, and the networks presented here follow

this rule. Furthermore, it was felt that an ideal solution would

be deterministic so the generated network that solved the

problem at hand could easily be replicated, as long as the data

set was the same. Another goal was that the solution should

be analysis friendly; that is, it should be possible to select a

point that the network accepted and know which neuron in the

network made the decision to accept it. The work presented in

this paper fulfills these goals because the generated solution is

a single layer network, thus making it possible to pair

accepted points with the neuron that accepted them.

This paper is arranged as follows. The Background

section provides some basic information on the perceptron and

uses that as a build up to the radial basis neuron. It also

provides some information on other methods of classification,

most notably the multi-layer feed forward network. The

Approach section describes the growR3 algorithm that was

developed for this work. In the Results section two examples

are discussed, the first being a basic test of the system, the

second being the swirl pattern. The takeaway from this

section is that the growR3 algorithm can generate a radial

basis network that will classify simple or complex data.

Simpler problems require fewer neurons, complex requires

more, but the programmer does not have to specify the size of

the network, the growR3 algorithm builds it accordingly. The

Conclusion and Future Work sections provides a summary of

the work, and highlights areas in which the growR3 algorithm

can be enhanced.

II. BACKGROUND

In this section we discuss the basics of two basic neural

units, the perceptron and the radial basis function. We provide

detail on the perceptron in order to bolster understanding of

the radial basis function, and the need for the radial basis

function in order to realize the goals of this research. The

treatment of these subjects is an overview at best; an

abundance of information is available in textbooks and

literature.

A. The Perceptron

The basic perceptron provides the ability to classify

linearly separable data in a supervised manner. It creates a

hyperplane between the desired data points (the ones deemed

as acceptable) and the undesired points; remember in

supervised learning, each point is labeled as desired (value 1)

or not desired (value -1). We say hyperplane to indicate

multi-dimensional input, but put more plainly, for data with

two components, x and y, the perceptron creates a line

between the two classes of data. Detailed information is

available from multiple sources including [1]. Here we

present the basics:

w – weights

x – input vector

v = ∑ wixi

 i = 1 to n, where n is the number of inputs and weights.

The v parameter is the dot product of the input vector and

the weights.

The perceptron uses a hard limiting function that behaves

as follows:

if (v ≥ 0)

 y = 1

else

 y = -1

The diagram in Fig. 1 below illustrates the data flow

through the perceptron.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020011
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

108

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 1. The x values are the input vector. It is multiplied by the weights, w,

resulting in v. The v parameter is passed through the hard limit function

resulting in y. If y is 1 the perceptron classifies the input vector x as
accepted, otherwise it is rejected.

The updating of the weights is handled by the following

process:

Initially all weights are set to 0. At the presentation of

each input vector, desired value pair, the weights are updated.

We include an extra input, x0 which is always -1, and an

extra weight w0. This is referred to as the bias. Its purpose is

the shift the hyperplane (line in 2 dimensions) away from the

origin. It is the y intercept if using inputs with 2 dimensions.

η - the learning rate

x0 = -1

if (y == desired)

 do not update

else if (y == 1) and (desired == -1) {

 for each j from 0 to n {

 weights[j] = weights[j] - (η * x[j])

 }

}

else if (y == -1) and (desired == 1) {

 for each j from 0 to n {

 weights[j] = weights[j] + (η * x[j])

 }

}

To get an intuitive feel for how a perceptron works

consider a 2 input (x1, x2) system that has been trained. Fig. 2

below illustrates the situation. The shaded portion shows the

area in which the perceptron has been trained to accept inputs;

in the non-shaded portion the vectors are not accepted.

For two inputs (x1, x2) we get:

x1w1 + x2w2 + x0w0 = 0

Remembering that x0 is always -1, we get:

x1w1 + x2w2 – w0 = 0

Now, let’s rename our variables:

 x = x1

 y = x2

 b = w0

Our equation is now:

xw1 + yw2 – b = 0

Rearranging, we get:

y = (-w1/w2)*x + b

The (-w1/w2) term can be thought of as the slope of the

line, and the b term is the y intercept, resulting in:

y = mx + b

Notice that this is for the decision boundary line. This line

is perpendicular to the ideal value of the weights, so the slope

of the line is the negative reciprocal of the weights.

Fig. 2. Illustration of the decision boundary for a perceptron. In general, a

perceptron creates a hyperplane between the desired (desired = 1) and not
desired (desired = -1) input vectors. In data that uses 2 inputs (2 dimensions)

the hyperplane is a line.

This makes intuitive sense when you consider the inputs as

unit vectors and the weights as a unit vector. In this case, if

the best input would be parallel to the weights, resulting in an

output of 1, the worst would be the total opposite of the

weights, resulting in an output of -1 (and putting the vector

firmly into the area of the undesired values), and an input

vector right on the decision boundary would result in a value

of 0, perpendicular to the weights.

The perceptron with its learning rule works with only

linearly separable data, which is fine, as long as the person

using the perceptron as a decision tool knows that their data is

linearly separable. This is a serious limitation. Much has

been written about this, most notably by Minsky and Papert as

indicated by Haykin [1].

B. The Radial Basis Function

The Radial Basis Function (RBF) [2] is similar to a

perceptron in that it is a single neural unit. However, they are

very different in operation. The learning process of a

perceptron finds the location of the hyperplane that divides the

desired inputs from the undesired inputs. The RBF learning

process finds the center of the zone of acceptance for the

inputs. If using two dimensions (x, y), the zone is a circle or

ellipse depending on the calculation of the v parameter.

Because of these differences, the calculation of the v

parameter, the limiting function, and the update function are

all changed somewhat. The general expression for the v

parameter is shown below:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020011
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

109

www.ijert.org
www.ijert.org
www.ijert.org

v = (x – w)T * A * (x – w)

This equation is calculating the square of the distance of

the input vector x from the weight vector w. The A quantity

can be thought of as a shape modifier, meaning that if it is left

as 1 when using a 2-dimensional system, v describes the

square of the radial distance from the center identified as w,

i.e., a circle.

The limiting function actuates if v is less than some

threshold. So, if an input is within the distance described by

the threshold, an input is accepted, otherwise it is rejected.

The area within the threshold, centered at the value of the

weights is a circle (if the A parameter is set to 1) The logic of

the limiting function is shown below.

if (v <= threshold)

 y = 1

else:

 y = -1

If we want to think of the limiting function as accepting all

inputs within the circle centered at the weights, then the

threshold is set to the radius of the acceptance circle squared

(because v is the square of the distance from the tip of the

vector w).

The weight update function is shown below:

η - the learning rate

error = desired - y

for each j from 0 to n-1 {

 weights[j] = weights[j] + (2* η *error)*(xInput[j] -

weights[j])

}

Notice that there is no bias used in the radial basis

function. Fig. 3 below illustrates the radial basis function

situation. This update function’s logic is slightly different

than that of perceptron, but functionally similar. Notice that

error will be 0 when desired and y are the same, resulting in

no update to the weights; this is functionally similar to what

happens in the perceptron.

Fig. 3. This figure shows the acceptance zone of a radial basis function.

The weight vector w points to the center of the acceptance zone.

Of particular importance for the purposes of this paper is

that the RBF defines a finite zone of acceptance that can be

arbitrarily placed within a solution space.

As part of this work, the Tensorflow Playground

application [3] was used to solve/classify the points in their

spiral points set. An ad-hoc solution, striving for minimal

network architecture complexity, resulted in a solution with 4

input nodes, 8 nodes in the first hidden layer, 6 nodes in the

second hidden layer, and 2 output nodes. As for the input

nodes, they were the x, y coordinates, and the coordinates

squared. The transfer function was the hyperbolic tangent

function, and number of epochs was in the upper 300’s.

As powerful as the feedforward network is, as stated

earlier, one of the goals of this work was to minimize network

complexity/number of layers, and autogenerate the number of

neurons needed to solve a given problem. The growR3

algorithm described in the next section of this paper relies on

being able to programmatically place multiple RBFs in a

solution space in order to “cover” a given pattern of

acceptance. This work relies on circular zones of acceptance;

it is recognized that tuning of the A parameter and threshold,

would sharpen/enhance the boundary condition accuracy.

III. APPROACH

The general idea behind the growR3 algorithm is to use a

patchwork of RBF neurons in order to “cover” a solution

space. In Fig. 4 below we see some examples of decision

boundaries. This is different than the traditional approach

used by RBF networks [2] in which the number of nodes and

layers is fixed from the beginning. Others [3] use K means or

Kohonen networks to find the centers of the RBF functions.

In this work, the network grows to the size needed by the data,

so no number of clusters or hidden node count is selected.

The two smaller diagrams on the left of the figure illustrate

classic examples that lend themselves to a perceptron and an

RBF function. However, the larger figure on the right is more

complex, with curved and concave surfaces. For the data

points that lie within this spiral-like figure, usually a multi-

layered feed forward network /tool is used. Examples of

problems being solved by networks with 1 or more hidden

layers can be explored using available tools such as tensorflow

[4] and tensorflow playground [5].

Fig. 4. The two smaller diagrams to the left illustrate problems that a basic

perceptron or RBF neuron can easily solve. However, neither of these can
solve a more complex problem such as the one depicted in the diagram on

the right. For problems of this nature, a multilayer network is commonly

used.

The growR3 algorithm approaches the problem by

locating multiple RBF neurons in the area of the desired data.

Fig. 5 below illustrates how the growR3 algorithm would

tackle the spiral diagram from Fig. 3 above.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020011
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

110

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 5. This figure shows how the growR3 algorithm tries to solve problems

in which the desired data points form complex shapes. Each of the dark
circles represents an area of acceptance of an RBF neuron. In Fig. 5 it can be

seen that some of the circles are too big for the blue area, some overlap, etc.

These phenomena can be tuned by the threshold and associated multipliers in

the algorithm and are addressed in a later section.

The pseudo code for the growR3 algorithm is presented

below:

growR3(n, inputs, desired, threshold, nEpochs) {

 // Initialize parameters.

 myRadials = {}

 nRadials = 0

 η = 0.01

 # Run and Train on inputs

 for (j = 0; j < nEpochs; j++) {

 for(k = 0; k < n; k++) {

 x = inputs[k]

 d = desired[k]

closeOne, v = find the closest radial in myRadials to the

input x. Return its index and the distance v from x to the

center of the selected radial. If the myRadials set is empty,

return -1

if (closeOne == -1) {

// We only create a new radial for the desired data class.

if (d == 1) {

rNew = radialBasis with the desired number of inputs

Initialize the weights in rNew to the value of the

current input x

Add rNew to myRadials

nRadials = nRadials + 1

}

}

else {

// If the input is within the range of the closest radial,

 // update that radials weights.

 if (v < threshold*spacing multiplier) {

 y = myRadials[closeOne].hardLimitRadial(v,

threshold)

 myRadials[closeOne].updateMe(d, y, η, x)

 }

 else if (d == 1) {

 // We only create a new radial for the desired data class.

rNew = radialBasis with the desired number of inputs

Initialize the weights in rNew to the value of the

current input x

Add rNew to myRadials

nRadials = nRadials + 1

}

 }

 } // End k

} // End j

return nRadials, myRadials

} // End growR3

Using the RBF network contained in the myRadials array

is done using the runR function. It works by presenting each

radial with an input. If any single RBF neuron accepts the

point, it is classified as desired. The logic of the runR

function is shown in the pseudo code below.

runR(numRadials, radials, nPoints, radiusThresh, points{}) {

 classification = {}

 for (j = 0; j < nPoints; j++) {

 inVec = points[j]

 accepted = -1

 // Present the input to each radial that was generated.

 for (k = 0 ; k < numRadials; k++) {

 // runMe is the method that runs a radial neuron.

 y = radials[k].runMe(inVec,

radiusThresh*radiusThresh)

 if (y == 1):

 accepted = 1

 }

 Add accepted to the classification set

 } // End for

 return points, classification

} // End runR

IV. RESULTS

Early tests of growR3 shows promise. For a simple test,

one with desired points randomly centered around (-4, 4) and

(4, -4). The growR3 algorithm finds the centers quickly,

albeit the centers are not precisely at (-4, 4), (4, -4) because of

the random generation of the points favors generating points

more densely around the origin, which slightly shifts the

centers closer to the origin. The results of the test are shown

in Fig. 6 below.

One thing of note is that growR3 generated 3 radials for

this test, instead of 2. This is due to the tuning parameters

used.

The next test was the spiral test. Once again a random

group of 1000 points was generated with a spiral pattern

embedded in it. The spiral itself is the desired data, as denoted

by the blue data points in Fig. 7 below. The diagram on the

left of Fig. 7 shows the training data, the figure to the right

shows the test data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020011
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

111

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 6. Basic test of the growR3 algorithm. The training data was a random

set of data centered around the points (-4, 4) and (4, -4). There were 1000

points in the data set.

Fig. 7. This figure shows spiral training data and spiral test data. It is clear

that the growR3 algorithm is finding the shape of the data, but it is also clear
that some points are being misclassified as evidenced by the thicker spirals in

the test data.

The spiral test shown in the Fig. 7 caused the growR3

algorithm to create an RBF network with 81 radials. As

referred to in the caption, the growR3 algorithm’s placement

of the radials causes errors in acceptance of undesired points

as can be seen in the width of the band of blue dots in the right

figure vs the left. This can be due to placement of the radial

from training, but also due to the non-adaptive nature of the

radius (threshold value) of the radial.

One thing of note is that this result was obtained with a

training regimen of 7 epochs. In the scheme of things, this is

quite low; the earlier referenced tensorflow example required

upwards of 300 epochs. Another point that can be recognized

is that if we were to select one of the points marked by the

RBF network as desired, we can trace that point to the RBF

neuron that accepted it.

V. CONCLUSION AND FUTURE WORK

The RBF network generated by the growR3 algorithm and

used by runR shows promise for being able to learn to classify

points as desirable or not in arbitrary arrangements by virtue

of its self organizing/additive nature. In its current form it can

generate a good but somewhat rough solution in very few

epochs. It also has the benefit of being a very simple single

layer system which allows direct tracing of the path of

acceptance of each point marked as desired. The solution is

repeatable from run to run as long as the data is the same

because the weights are initialized to 0, not to random values.

The algorithm needs to be improved by implementing

adaptive thresholding and possible modification of the A

parameter so that radials can be tuned to the area in which

they are responsible.

REFERENCES
[1] S. Haykin, Neural Networks A Comprehensive Foundation, Macmillan

College Publishing, 1994.

[2] M. Orr, “Introduction to Radial Basis Function Networks,” Centre for

Cognitive Science, University of Edinburgh, April 1996, retrieved from
https://faculty.cc.gatech.edu/~isbell/tutorials/rbf-intro.pdf.

[3] D. Touretzky, “Radial Basis Functions,” 15-486/782 Artificial Neural

Networks, Fall 2006, retrieved from

http://www.cs.cmu.edu/afs/cs/academic/class/15883-f19/slides/rbf.pdf.

[4] Tensorflow, January 2022, retrieved from https://www.tensorflow.org.

[5] Tensorflow Playground, January 2022, retrieved from
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dat

aset=spiral®Dataset=reg-

plane&learningRate=0.03®ularizationRate=0&noise=0&networkSh
ape=8,6,2&seed=0.84393&showTestData=false&discretize=false&per

cTrainData=50&x=true&y=true&xTimesY=false&xSquared=true&yS

quared=true&cosX=false&sinX=false&cosY=false&sinY=false&colle
ctStats=false&problem=classification&initZero=false&hideText=false

&showTestData_hide=false.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020011
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

112

www.ijert.org
www.ijert.org
www.ijert.org

