
A Semantic Search Engine Based On Lexical Frequency Pattern Clustering

For Measuring Similarities Between Data Files

Snehika Datla

Department of computer science and engineering,

MVGR college of engineering,

Vizianagaram,

India.

 Abstract

Validly measuring linguistic similarities between

two entities or words is a difficult task. On a web in

various tasks the linguistic affinity between words

is a vital component. Relation expulsion,

compatriot mining, document clustering, and

analogue metadata expulsion are various tasks

which performs some affinity between words. An

empirical method to estimate linguistic affinity is

proposed by page counts and text snippets. By

using page counts we can able to get various co-

occurrences of word measures and integrate those

with lexical patterns extracted from text snippets.

To spot the various linguistic relations and its

frequency between two given words, we tend to

propose a lexical pattern extraction and lexical

frequency pattern clustering algorithm. We can

determine the page counts co-occurrence measures

and lexical frequency pattern clustering using

support vector machine. The proposed technique

states varied baselines and previously planned

web-based linguistic affinity measures on three

benchmark knowledge sets showing a high

correlation with human ratings and it improves

community mining accuracy. The proposed

technique shows lexical pattern frequency

techniques to measure similarity between words in

a data files.

Key words – Web mining, frequency pattern

clustering, lexical pattern,

1. Introduction
In any web mining, information retrieval,

and natural language processing are the two vital

concepts to measure the linguistic affinity between

words in a data files. The web mining applications

such as, compatriot expulsion, relation detection,

and entity clarification require the ability to

accurately measure the semantic similarity between

concepts. In information retrieval, the disadvantage

is to extract a collection of documents that is

linguistically interconnected to a user query.

In language process the approximation of

linguistics affinity between words is extremely

tough. A user is sorting out a word apple that is of

times found within the internet that isn't conferred

in most well liked thesauri or dictionaries. New

words square measure often being created and new

senses also are being allotted to the present one. To

take care of these new words and senses is

extremely overpriced. By mistreatment internet

program associate analogue methodology will be

projected to estimate the linguistics identity

between words or entities. It will increase the time

whereas analyzing every document on an

individual basis as a result of the high accretion

rate of the online. In internet program there square

measure two helpful information sources. They are:

a. Page Counts, and

b. Snippets.

We can calculate the quantity of pages that contain

the query words through the page count. The

queried word seems many times on one page,

therefore there is no necessary to the page count to

be equal to the word frequency. Page count of a

query will be considered as a global measure of co-

occurrence of words. The page count of the query

“apple” AND “computer” in Google is

288,000,000, and for “banana” AND “computer” is

only 3,590,000. This shows that apple has more

additional frequency with computer when

compared to banana. Rather the simplicity of page

counts, using this alone as a measure of co-

occurrence of two words may cause several

drawbacks. Firstly, the position of a word in a very

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

page is analyzed by a page count. Secondly page

count of a word with multiple senses may contain a

combination of all senses. We can say that page

count of apple may contain as a fruit and as a

company. Some words may co-occur in the web

without any relation [1]. Page counts are inaccurate

when measuring linguistic similarities. A search

engine extracting a text in a document query term

is known as snippets. It provides the helpful

information regarding the context of the query

term. The linguistic affinity measures outlined over

snippets are employed in question enlargement [2],

personal Disambiguation [3], and community

mining [4]. Snippets process is been useful for

time consuming and downloading WebPages. One

of the common drawbacks in snippets is that,

because of wide range of searching results in web

and huge documents it shows only the top-ranking

results. Therefore whatever information we need to

measure between a given pair of words has no

guaranty that it is in top most snippets. We tend to

propose a technique that considers both page

counts and lexical syntactic patterns extracted from

snippets and lexical frequency pattern clustering

method that we show experimentally to overcome

the above mentioned problems.

2. Existing Systems:

For a given taxonomy of words, there is a blunt

method to calculate the affinity between the two

words i.e. to find the length of the shortest path

connecting two words. When multiple paths exist

between the two words there is only one way for

calculating affinity i.e., finding the shortest path

between two senses. But here the drawback is that

the frequency acknowledged with this approach

represents the same distance for multiple paths

proposed a new measure of linguistic affinity using

information content. He defined the maximum of

the information content. The concept C includes

both the concepts C1 and C2, in taxonomy here the

affinity between the two words can be measured as

the maximum affinity between two concepts that

words belong to. Information content is calculated

by using Brown corpus and uses Word Net as

taxonomy to combined structural linguistics

information from a lexical taxonomy and

knowledge content from a corpus during a

nonlinear model. They projected a similarity live

that uses shortest path length, depth, and native

density in taxonomy. Their experiments according

a high Pearson coefficient of correlation of 0.8914

on the Miller and Charles [7] benchmark

information set. They failed to judge their

methodology in terms of similarities among named

entities. Sculptor [8] outlined the affinity between

two ideas because the info that is in common to

each idea and also the information contained in

every individual thought. Cilibrasi and Vitanyi [9]

projected a distance metric between words using

page counts retrieved from an internet programmer.

The projected metric is known as Normalized

Google Distance (NGD) and is given by

𝑁𝐺𝐷(𝑃, 𝑄) =
max⁡{logH P , logH Q } − logH(P, Q)

log𝑁 − min⁡{𝐻 𝑃 , log𝐻(𝑄)}

P and Q: the two words;

NGD (P, Q): the gap between P and Q;

H (P), H (Q): the page count for the word P and Q;

H (P, Q): the page count for the question “P and

Q”.

3. Proposed System:

Let us assume that P and Q are two words by which

we can perform the linguistic affinity measures by

building a function sim(P, Q) that has a value in

range [0,1]. If the range is 1 then it says that A and

B are similar to each other, If the range is 0 then it

states that P and Q are dissimilar. By using page

counts and snippets taken from web we can define

affinity between P and Q. By using this we can

classify the synonymous and disaffinity by training

a support vector machine for the word pairs. The

function sim(P, Q) is approximation of the trained

SVM.

Figure 1: Shows an example of using the

semantic similarity between two words, gem and

jewel.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

This shows associate example to work out the

similarity engine and retrieve page counts for the

two words is "gem," "jewel," and for his or her

conjunctions is "gem AND jewel". Page counts-

based similarity scores consider the global co-

occurrences of two words on the web. The local

context is not considered in which two words are

co-occur. Snippets taken by a search engine

represent the native context within which two

words co-occur on the web. For the conjunctive

query of the two words the snippets give the

frequency of various lexical patterns. It is that by

using more than one lexical pattern a linguistic

relation may be expressed. Clustering different

lexical pattern that shows the relation enables us to

represent a linguistic relation between two words

accurately. For this, we propose a sequential

pattern clustering algorithm that each page counts-

based co-occurrence measures and lexical pattern

extraction are used to define various features that

represent the relation between two words. In this

paper we tend to propose a lexical frequency

pattern clustering algorithm through which we are

able to calculate the frequency of co-occurrence of

a word in a data file.

 3.1 Page Count-Based Co-occurrence

Measures:

Page counts for the question P AND Q could also

be thought of as associate approximation of co-

occurrence of two words P and Q on the web.

However, page counts for the query P AND Q

alone do not accurately express linguistics

similarity. As a result of the page count for "car"

AND "automobile," is 11,300,000 and where as for

"car" AND "apple is 49,000,000." Although,

automobile is more similar to car than apple, page

counts for the query "car" AND "apple" are more

than four times greater than those for the query

“car” AND “automobile.” One must consider the

page counts not just for the query P AND Q, but in

addition for the individual words P and Q to assess

linguistics affinity between P and Q. we tend to

calculate four modern co-occurrence measures;

Jaccard, Overlap Simpson, Dice, and point wise

mutual information (PMI), to calculate linguistics

similarity using page counts. For the remainder of

this paper, we use the notation H (P) to denote the

page counts for the query P in a search engine. The

WebJaccard coefficient between words P and Q,

WebJaccard (P, Q), is defined as

Therein, P∩Q denotes the conjunction query P

AND Q. Given the size and noise in internet

information, it is possible that two words may

appear on some pages even though they are not

connected. So as to scale back the adverse effects

because of such co-occurrences, we tend to set the

WebJaccard coefficient to zero if the page count for

the query P∩Q is a less than a threshold 𝑐2 .

Similarly, we tend to outline Web Overlap,

WebOverlap (P,Q), as

WebOverlap could be a natural modification to the

Overlap (Simpson) coefficient. We tend to outline

the WebDice coefficient as a variant of the Dice

coefficient. WebDice(P,Q) is outlined as

Point wise mutual information [10] is a measure

that is motivated by information theory; it is meant

to mirror the dependence between two probabilistic

events. We tend to outline WebPMI as variant form

of point wise mutual information using page counts

as

Here, N is that the number of documents indexed

by the search engine. To calculate PMI accurately,

we tend to understand N, the amount of documents

indexed by the programmer. Though estimating the

amount of documents indexed by a search engine

[11] is a remarkable task itself, it is beyond the

scope of this work. In the present work, we tend to

set N ¼ 1010 in step with the amount of indexed

0, () ,

(,) ()
, .

() () ()

if H P Q c

WebJaccard P Q H P Q
otherwise

H P H Q H P Q

 


 
   

0, () ,

()
, .

min{ (), ()}

if H P Q c

WebOverlap H P Q
otherwise

H P H Q

 


 



0, () ,

(,) 2 ()
, .

() _ ()

if H P Q c

WebDice P Q H P Q
otherwise

H P H Q

 


 



2

0, () ,

()
(,)

log , .
() ()

if H P Q c

H P Q
WebPMI P Q N otherwise

H P H Q

N N

 


 
  
 
 
 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

pages reported by Google. As previously

mentioned, page counts are mere approximations to

actual word co-occurrences within the web.

However, it has been shown by trial and error that

there exists a high correlation between word counts

obtained from a web programmer which from a

corpus [12]. Moreover, the approximated page

counts have been successfully used to improve a

variety of language modelling tasks.

3.2 Lexical Pattern Extraction:

Page counts-based co-occurrence measures do not

take into account the local context during which

those words co-occur. This could be problematic if

one or each words area unit ambiguous, or once

page counts area unit unreliable. On the opposite

hand, the snippets came by a search engine for the

conjunctive query of two words give helpful clues

associated with the linguistics relations that exist

between two words. A snipping contains a window

of text hand-picked from a document that features

the queried words. Snippets area unit helpful for

search as a result of, most of the time, a user will

browse the snipping and judge whether or not a

selected search result is relevant, while not even

gap the computer address. Using snippets, contexts

are additionally computationally economical as a

result of it obviates the necessity to transfer the

supply documents from the online, which might be

time overwhelming if a document is giant. Here,

the phrase could indicate a linguistics relationship

between cricket and sport. Several such phrases

indicate linguistics relationships. As an example,

additionally called, is a, part of, is associate degree

example of all indicating linguistics relations of

various varieties. Within the example given on top

of, words indicating the linguistic relation between

cricket and sport seem between the query words.

Exchange the query words by variables X and Y,

we will type the pattern X could be a Y from the

instance given on top of. Despite the potency of

using snippets, they cause two main challenges:

1st, a snipping may be a fragmented sentence;

second, a search engine would possibly turn out a

snipping by choosing multiple text fragments from

completely different parts in a very document. As a

result of most syntactical or dependency parsers

assume complete sentences because the input, deep

parsing of snippets produces incorrect results.

Consequently, we tend to propose a shallow lexical

pattern extraction rule using web snippets, to

acknowledge the linguistics relations that exist

between two words. Lexical syntactical patterns are

employed in varied linguistic communication

process tasks like extracting hypernyms [13], [14],

or meronyms[15], query answering[16], and

paraphrase extraction[17]. Though a search engine

would possibly turn out a snipping by choosing

multiple text fragments from completely different

parts in a very document, a predefined delimiter is

employed to separate the various fragments. As an

example, in Google, the delimiter “...” is employed

to separate completely different fragments in a very

snipping. We tend to use such delimiters to

separate a snipping before we tend to run the

projected lexical pattern extraction rule on every

fragment. Given two words P and Q, we tend to

query an online programmer using the wildcard

query “P***** Q” and transfer snippets. The “_”

operator matches one word or none in a very

webpage. Therefore, our wildcard query retrieves

snippets during which P and Q seems at intervals a

window of seven words. as a result of a search

engine snipping contains ca. twenty words on the

average, and includes two fragments of texts hand-

picked from a document, we tend to assume that

the seven word window is decent to hide most

relations between two words in snippets. In fact,

over 95 percent of the lexical patterns extracted by

the projected technique contain but five words. We

tend to plan to approximate the native context of

two words using wildcard queries. As an example,

Fig. four shows a snipping retrieved for the query

“ostrich***** bird.” For a snipping nine, retrieved

for a word combine H (P, Q), first, we tend to

replace the two words P and Q, severally, with two

variables X and Y. We tend to replace all numeric

values by D, a marker for digits. A subsequence

should contain only prevalence of every X and Y.

The most length of a subsequence is L words. A

subsequence is allowed to skip one or additional

words. However, we tend to don't skip over g

variety of words consecutively. Moreover, the

whole variety of words skipped in a very

subsequence shouldn’t exceed G. We tend to

expand all negation contractions in a very context.

As an example, didn’t is dilated to failed to. We

tend to don't skip the word not once generating sub

sequences. As an example, this condition ensures

that from the snipping X is not a Y, we tend to do

not turn out the subsequence X could be a Y.

Finally, we tend to count the frequency of all

generated sub sequences and solely use sub

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

sequences that occur over T times as lexical

patterns.

3.3 Lexical Frequency Pattern Clustering:

The basic plan of Lexical Frequency Pattern

agglomeration (LFPC) consists finds all the

consecutive patterns in a very organization, which

is made from the document information (DDB).

The info structure stores all the various pairs of

contiguous words that seem within the documents,

while not losing their consecutive order. Given a

threshold β nominative by the user, LFPC reviews

if its combine is β-frequent. During this case, LFPC

grows the sequence so as to see all the attainable

peak consecutive patterns containing such combine

as a prefix. An attainable peak consecutive pattern

(PMSP) is a peak consecutive pattern (MSP) if it is

not a subsequence of any previous MSP. This

suggests that each one the keep MSP that area unit

subsequence of the new PMSP should be deleted.

The projected rule consists of three steps

represented as follows:

In the initiative, for every completely different

word (item) within the DDB, LFPC assigns

associate degree number as symbol. Also, for every

symbol, the frequency is keep, i.e., the amount of

documents wherever it seems. These identifies area

unit employed in the rule rather than the words.

Table one shows associate degree example for a

DDB containing four documents.

In the second step (Fig. 1), DIMASP-C builds an

information structure from the DDB storing all the

pairs of contiguous words <wi, wi+1>, which seem

in a very document and a few extra data to preserve

the consecutive order. the info structure is associate

degree array that contains in every cell a combine

of words C=<wi,wi+1>,the frequency of the

combine (Cf), a mathematician mark and an

inventory ∆ of nodes δ wherever a node δ stores a

document symbol (δ.Id), associate degree index

(δ.Index) of the cell wherever the combine seems

within the array, a link (δ.NextDoc) to take care of

the list ∆ and a link (δ.NextNode) to preserve the

consecutive order of the pairs with relation to the

document, wherever they seem. Therefore, the

amount of various documents given within the list

∆ is Cf. this step works as follows: for every

combine of words, within the document DJ, if,

doesn't seem within the array, it is accessorial, and

its index is gotten. Within the position index of the

array, add a node δ at the start of the list ∆. The

accessorial node δ has J as δ.Id, index as δ.index,

δ.NextDoc is connected to the primary node of the

list ∆ and δ.NextNode is connected to future node δ

reminiscent of the document DJ. If the document

symbol (δ.Id) is new within the list ∆, then the

frequency of the cell (Cf) is exaggerated. In Fig. a

pair of the data structure designed for the document

information of table one is shown.

Table 1: Example of a document

database and its identifier representation.

Dj Document Database

1

2

3

4

From George Washington to George W. Bush are 43 presidents

Washington is the capital of the United States

George Washington is the first president of the United States

The president of the United States is George W. Bush

 Document database (words by integer identifiers)

1

2

3

4

<1,2,3,4,2,5,6,7,8,9>

<3,10,11,12,13,11,14,15>

<2,3,16,11,17,18,13,11,14,15>

<11,18,13,11,14,15,10,2,5,6>

Step 1: Algorithm to construct the data

structure for the DBD

Input: A document data base DBD

Output: The Array

 For all the documents 𝐷𝑗 ∈ 𝐷𝐵𝐷

do

Array ← Add a document (Dj) to the array

end-for

Step 1.1: Algorithm to add a document

Input: A document Dj

Output: The Array

For all pairs <wi, wi+1>∊ Dj do

δi ← create a new pair δ

δi.Id ← J //Assign the document identifier

to the node δ

index ←Array[<wi, wi+1>] //Get the index

of the cell

δi.index ← index //Assign the index to

the node δ

α ← get the first node of the list δ

If δi.Id ≠ α.Id then the document identifier

is newer to the list δ

Increment Cf //increment the frequency

δi.NextDoc ← α //link the node α at the

beginning of list δ

List δ←Add δi as the first node //link it at

the begining

δi-1.NextNode ←δi //do not lose the

sequential order

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

end-if

end-for

Given a threshold β, LFPC uses the

constructed structure for mining all the maximal

sequential patterns in the collection. LFPC verifies

if this pair is β-frequent for each pair of words

stored in the structure, in such case LFPC, based on

the structure, grows the pattern while its frequency

remains greater or equal than β. When a pattern

cannot grow, it is a possible maximal sequential

pattern (PMSP), and it is used to update the final

maximal sequential pattern set. since LFPC starts

finding 3-MSP or longer, then at the end, all the β-

frequent pairs that were not used for any PMSP and

all the β-frequent words that were not used for any

β-frequent pair are added as maximal sequential

patterns.

In order to be efficient, it is needed to

reduce the number of comparisons when a PMSP is

added to the MSP set. K-MSP is stored according

to its length k in order to reduce the comparisons.

There is a k-MSP set for each k. In this way, the k-

PMSP must not be in the k-MSP set before adding

a k-PMSP as a k- MSP. Therefore it must not be

subsequence of any longer k-MSP. All its

subsequences are eliminated when a PMSP is

added.

Figure 2: Data structure built by LFPC for the

database of the table 1.

For avoiding repeating all the work for

discovering all the MSP when new documents are

added to the database, LFPC only preprocesses the

part corresponding to these new documents. First

the identifiers of these new documents are defined

in step 1, and then LFPC would only use the step

1.1 to add them to the data structure. Finally, the

step 2.1 is applied on the new documents using the

old MSP set, to discover the new MSP set, with

dotted lines the new part of the data structure when

D4 of table 1 is added as a new document. This

strategy works only if the same â is used, however

for a different â only the discovery step (step 2)

must be applied, without rebuilding the data

structure.

Step 2: Algorithm to find all MSP

Input: Structure from step 1 and β threshold

Output: MSP set

For all the documents Dj…(β-1) ϵ DDB do

 MSP set ← Find all MSP w.r.t. the

document (Dj)

Step 2.1: Algorithn to find all MSP with respect

to the document Dj

Input: A Dj from the data structure and a β

threshold

Output: The MSP ser w.r.t. to Dj

For all the nodes δi-1….n ϵ Dj i.e. <wi, wi+1> ϵ

Dj do

 If Array [δi.index].frequency ≥β then

 PMSP←Array[δi.index]. <wi, wi+1> //the

initial pair

 δ´← Copy the rest of the list of δ being from

δi.NextDoc

 δ´f← Number of different documents in δ´

 δ´i←δi

 While δ´ f≥β do the growth tht PMSP

 δ´´← Array[δ´i+1.index].list

δ´←δ´&δ´´ i.e.

{αϵδ´|(α.index=δ´i+1)^(δ´i.NextNodee=α)}

 δ´f← Number of different documents in δ´

 If δ´f ≥ β then to grow the PMSP

 Array [δ´i+1.index].mark ← “used”

 PMSP ← PMSP + Array[δ´i+1.index]. <

wi+1>

 δ´i←δ´i+1 i.e. δ´i.NextNode

 end-while

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

 If |PMSP| ≥ 3 then add the PMSP to the MSP

set

 MSP set ← add a k-PMSP to the MSP

set //step 2.1.1

End-for

For all the cells C ϵ Array do the addition of the 2-

MSP

 If Cf ≥ β and C.mark =”not used” then add it as

2-MSP

 2-MSP set ← add C. <wi, wi+1>

Step 2.1.1: Algorithm to add a PMSP to the

MSP set

Input: A k-PMSP, MSP set

Output: MSP set

If (k-PMSP ϵ k-MSP set) or (k-PMSP is

subsequence of some longer k-MSP) then //do not

add anything

 return MSP set

else //add as a MSP

 k-MSP set ← add k-PMSP

 {delete S ϵ MSP set | S ϵ k-PMSP}

 return MSP set

4.Results:

To understand how to find the linguistic similarity

between words in a data file, we present a simple

example here. As soon as we give the input word in

the search engine, text snippets will be accepting.

for example if we take the word “apple” then

immediately snippets will be loading and it will

open the snippet file if already exists, if that file

doesn’t exists in the database we have to retrieve it

from web. After inputting the word apple we have

to input the word “computer” then immediately

snippets will be loading about computer from the

data base. Now we have to measure the page count

measures to the words apple and computer.

Table 2: Page Count Measures:

The above figure shows that page count co-

occurrence between the words apple and computer.

The page count co-occurrence of apple and

computer are measured by WebJaccard,

WebOverlap, WebDice and WebPMI

Table3: Page Count Measures:-

The above figure shows that, by entering some

value we can extract frequency for the patterns of

that value.

Table 4: Patterns:

Patterns:

 PATTERN FREQUENCY

Is maximum a 14

Design and creates ip… 2

-1. Is a personal 1

 Next

Here it shows the patterns and its frequency by

using the lexical frequency pattern clustering

algorithm.

Table 5: Shows the Similarity Measure between

apple and computer:

After Clustering……
Sim Measure between Apple and Computer is:

 0.01124668303747784

 OK

Page Count Measures:

H (Apple): 29.0 Enter: C

H(Computer): 31.0

Re - Compute

 H(Appleandcomputer):32.0

WebOverlap Measure: 1.103448275862069

WebPMI Measure: 0.035558001114496557

WebDice Measure: 1.0666666666666667

 WebJaccardMeasure: 1.1428571428571428

Extract Lexical Pattern

Page Count Measures:

H(Apple):29.0

Enter:C

H (Apple and computer):32.0

Re - Compute

Extract Lexical

Pattern

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

This shows the similarity measure between apple

and computer after clustering.

5.Future Enhancement:

At present this project is designed to measure

linguistic affinity between two words and to

calculate the frequency between the two words in a

data file. We can additionally enhance this work by

finding frequency between more words in a data

file and can also measure more number of similar

words. We can further enhance the frequency

lexical pattern clustering algorithm so as to boost

the efficiency of the system.

6.Conclusion:

 We tend to plan a linguistic affinity measure using

page counts and snippets retrieved from a web for

two words. Using page counts-based co-occurrence

technique four word co-occurrence measures were

computed. We proposed a lexical pattern extraction

algorithm to extract various linguistic relations that

exist between two words. Each page counts based

co-occurrence measures and lexical pattern

extraction was used to define features for a word

pair. Lexical frequency pattern clustering is

employed to find the frequency of the two similar

words in a data file. By the proposed technique we

can simply calculate the frequency of the two

words.

7.Refrences:
[1]Kilgarriff, “Googleology Is Bad Science,”

Computational Linguistics, vol. 33, pp. 147-151, 2007.

[2]M. Sahami and T. Heilman, “A Web-Based Kernel

Function for Measuring the Similarity of Short Text

Snippets,” Proceedings of the 15th International World

Wide Web Conference, 2006.

[3]D. Bollegala, Y. Matsuo, and M. Ishizuka,

“Disambiguating Personal Names on the Web Using

Automatically Extracted Key Phrases,” Proceedings of

the 17th European Conference on Artificial Intelligence,

pp. 553- 557, 2006.

[4]H. Chen, M. Lin, and Y. Wei, “Novel Association

Measures Using Web Search with Double Checking,”

Proceedings of the 21st International Conference on

Computational Linguistics and 44th Ann. Meeting of the

Assoc. for Computational Linguistics (COLING/ACL

’06), pp. 1009-1016, 2006.

[5]P. Resnik, “Using Information Content to Evaluate

Semantic Similarity in a Taxonomy,” Proceedings of the

14th International Joint Conference on Aritificial

Intelligence, 1995.

[6]D. Mclean, Y. Li, and Z.A. Bandar, “An Approach for

Measuring Semantic Similarity between Words Using

Multiple Information Sources,” IEEE Trans. Knowledge

and Data Eng., vol. 15, no. 4, pp. 871-882, July/Aug.

2003.

[7]G. Miller and W. Charles, “Contextual Correlates of

Semantic Similarity,” Language and Cognitive

Processes, vol. 6, no. 1, pp. 1-28, 1998.

[8]K. Church and P. Hanks, “Word Association Norms,

Mutual Information and Lexicography,” Computational

Linguistics, vol. 16, pp. 22-29, 1991.

[9]D. Lin, “An Information-Theoretic Definition of

Similarity,” Proceedings of the 15th International

Conference on Machine Learning (ICML), pp. 296-304,

1998.

[10]R. Cilibrasi and P. Vitanyi, “The Google Similarity

Distance,” IEEE Trans. Knowledge and Data Eng., vol.

19, no. 3, pp. 370-383, Mar. 2007.

[11]Z. Bar-Yossef and M. Gurevich, “Random Sampling

from a Search Engine’s Index,” Proceedings of the 15th

International World Wide Web Conference, 2006.

[12]F. Keller and M. Lapata, “Using the Web to Obtain

Frequencies for Unseen Bigrams,” Computational

Linguistics, vol. 29, no. 3, pp. 459-484, 2003.

[13]M. Hearst, “Automatic Acquisition of Hyponyms

from Large Text Corpora,” Proceedings of the 14th

Conference on Computational Linguistics (COLING),

pp. 539-545, 1992.

[14]R. Snow, D. Jurafsky, and A. Ng, “Learning

Syntactic Patterns for Automatic Hypernym Discovery,”

Proceedings of the Advances in Neural Information

Processing Systems (NIPS), pp. 1297-1304, 2005.

[15]M. Berland and E. Charniak, “Finding Parts in Very

Large Corpora,” Proc. Ann. Meeting of the Assoc. for

Computational Linguistics on Computational Linguistics

(ACL ’99), pp. 57-64, 1999.

[16]D. Ravichandran and E. Hovy, “Learning Surface

Text Patterns for a Question Answering System,” Proc.

Ann. Meeting on Assoc. for Computational Linguistics

(ACL ’02), pp. 41-47, 2001.

[17]R. Bhagat and D. Ravichandran, “Large Scale

Acquisition of Paraphrases for Learning Surface

Patterns,” Proc. Assoc. for Computational Linguistics:

Human Language Technologies (ACL ’08: HLT), pp.

674-682, 2008.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

