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                       Abstract  
 

Validly measuring linguistic similarities between 

two entities or words is a difficult task. On a web in 

various tasks the linguistic affinity between words 

is a vital component. Relation expulsion, 

compatriot mining, document clustering, and 

analogue metadata expulsion are various tasks 

which performs some affinity between words. An 

empirical method to estimate linguistic affinity is 

proposed by page counts and text snippets.  By 

using page counts we can able to get various co-

occurrences of word measures and integrate those 

with lexical patterns extracted from text snippets. 

To spot the various linguistic relations and its 

frequency between two given words, we tend to 

propose a lexical pattern extraction and lexical 

frequency pattern clustering algorithm. We can 

determine the page counts co-occurrence measures 

and lexical frequency pattern clustering using 

support vector machine. The proposed technique 

states varied baselines and previously planned 

web-based linguistic affinity measures on three 

benchmark knowledge sets showing a high 

correlation with human ratings and it improves 

community mining accuracy. The proposed 

technique shows lexical pattern frequency 

techniques to measure similarity between words in 

a data files. 

Key words – Web mining, frequency pattern 

clustering, lexical pattern, 

 

1. Introduction  
In any web mining, information retrieval, 

and natural language processing are the two vital 

concepts to measure the linguistic affinity between 

words in a data files. The web mining applications 

such as, compatriot expulsion, relation detection, 

and entity clarification require the ability to 

accurately measure the semantic similarity between 

concepts. In information retrieval, the disadvantage 

is to extract a collection of documents that is 

linguistically interconnected to a user query.          

In language process the approximation of 

linguistics affinity between words is extremely 

tough. A user is sorting out a word apple that is of 

times found within the internet that isn't conferred 

in most well liked thesauri or dictionaries. New 

words square measure often being created and new 

senses also are being allotted to the present one. To 

take care of these new words and senses is 

extremely overpriced. By mistreatment internet 

program associate analogue methodology will be 

projected to estimate the linguistics identity 

between words or entities. It will increase the time 

whereas analyzing every document on an 

individual basis as a result of the high accretion 

rate of the online. In internet program there square 

measure two helpful information sources. They are: 

a. Page Counts, and 

b. Snippets. 

We can calculate the quantity of pages that contain 

the query words through the page count. The 

queried word seems many times on one page, 

therefore there is no necessary to the page count to 

be equal to the word frequency. Page count of a 

query will be considered as a global measure of co-

occurrence of words. The page count of the query 

“apple” AND “computer” in Google is 

288,000,000, and for “banana” AND “computer” is 

only 3,590,000. This shows that apple has more 

additional frequency with computer when 

compared to banana. Rather the simplicity of page 

counts, using this alone as a measure of co-

occurrence of two words may cause several 

drawbacks. Firstly, the position of a word in a very 
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page is analyzed by a page count. Secondly page 

count of a word with multiple senses may contain a 

combination of all senses. We can say that page 

count of apple may contain as a fruit and as a 

company. Some words may co-occur in the web 

without any relation [1]. Page counts are inaccurate 

when measuring linguistic similarities. A search 

engine extracting a text in a document query term 

is known as snippets. It provides the helpful 

information regarding the context of the query 

term. The linguistic affinity measures outlined over 

snippets are employed in question enlargement [2], 

personal Disambiguation [3], and community 

mining [4].  Snippets process is been useful for 

time consuming and downloading WebPages. One 

of the common drawbacks in snippets is that, 

because of wide range of searching results in web 

and huge documents it shows only the top-ranking 

results. Therefore whatever information we need to 

measure between a given pair of words has no 

guaranty that it is in top most snippets. We tend to 

propose a technique that considers both page 

counts and lexical syntactic patterns extracted from 

snippets and lexical frequency pattern clustering 

method that we show experimentally to overcome 

the above mentioned problems. 

  

 

2. Existing Systems: 

For a given taxonomy of words, there is a blunt 

method to calculate the affinity between the two 

words i.e. to find the length of the shortest path 

connecting two words. When multiple paths exist 

between the two words there is only one way for 

calculating affinity i.e., finding the shortest path 

between two senses. But here the drawback is that 

the frequency acknowledged with this approach 

represents the same distance for multiple paths 

proposed a new measure of linguistic affinity using 

information content. He defined the maximum of 

the information content.  The concept C includes 

both the concepts C1 and C2, in taxonomy here the 

affinity between the two words can be measured as 

the maximum affinity between two concepts that 

words belong to. Information content is calculated 

by using Brown corpus and uses Word Net as 

taxonomy to combined structural linguistics 

information from a lexical taxonomy and 

knowledge content from a corpus during a 

nonlinear model. They projected a similarity live 

that uses shortest path length, depth, and native 

density in taxonomy. Their experiments according 

a high Pearson coefficient of correlation of 0.8914 

on the Miller and Charles [7] benchmark 

information set. They failed to judge their 

methodology in terms of similarities among named 

entities. Sculptor [8] outlined the affinity between 

two ideas because the info that is in common to 

each idea and also the information contained in 

every individual thought. Cilibrasi and Vitanyi [9] 

projected a distance metric between words using 

page counts retrieved from an internet programmer. 

The projected metric is known as Normalized 

Google Distance (NGD) and is given by 

                                                                        

                    

𝑁𝐺𝐷(𝑃, 𝑄) =
max⁡{logH P , logH Q } − logH(P, Q)

log𝑁 − min⁡{𝐻 𝑃 , log𝐻(𝑄)}
 

 

P and Q: the two words; 

NGD (P, Q): the gap between P and Q; 

H (P), H (Q): the page count for the word P and Q; 

H (P, Q): the page count for the question “P and 

Q”.                                                 

 

3. Proposed System: 

Let us assume that P and Q are two words by which 

we can perform the linguistic affinity measures by 

building a function sim(P, Q) that has a value in 

range [0,1]. If the range is 1 then it says that A and 

B are similar to each other, If the range is 0 then it 

states that P and Q are dissimilar. By using page 

counts and snippets taken from web we can define 

affinity between P and Q. By using this we can 

classify the synonymous and disaffinity by training 

a support vector machine for the word pairs. The 

function sim(P, Q) is approximation of the trained 

SVM.  

 

Figure 1: Shows an example of using the 

semantic similarity between two words, gem and 

jewel. 
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This shows associate example to work out the 

similarity engine and retrieve page counts for the 

two words is "gem," "jewel," and for his or her 

conjunctions is "gem AND jewel". Page counts-

based similarity scores consider the global co-

occurrences of two words on the web. The local 

context is not considered in which two words are 

co-occur. Snippets taken by a search engine 

represent the native context within which two 

words co-occur on the web. For the conjunctive 

query of the two words the snippets give the 

frequency of various lexical patterns. It is that by 

using more than one lexical pattern a linguistic 

relation may be expressed. Clustering different 

lexical pattern that shows the relation enables us to 

represent a linguistic relation between two words 

accurately. For this, we propose a sequential 

pattern clustering algorithm that each page counts-

based co-occurrence measures and lexical pattern 

extraction are used to define various features that 

represent the relation between two words. In this 

paper we tend to propose a lexical frequency 

pattern clustering algorithm through which we are 

able to calculate the frequency of co-occurrence of 

a word in a data file. 

 

 3.1 Page Count-Based Co-occurrence 

Measures:  

Page counts for the question P AND Q could also 

be thought of as associate approximation of co-

occurrence of two words P and Q on the web. 

However, page counts for the query P AND Q 

alone do not accurately express linguistics 

similarity. As a result of the page count for "car" 

AND "automobile," is 11,300,000 and where as for 

"car" AND "apple is 49,000,000." Although, 

automobile is more similar to car than apple, page 

counts for the query "car" AND "apple" are more 

than four times greater than those for the query 

“car” AND “automobile.”  One must consider the 

page counts not just for the query P AND Q, but in 

addition for the individual words P and Q to assess 

linguistics affinity between P and Q. we tend to 

calculate four modern co-occurrence measures; 

Jaccard, Overlap Simpson, Dice, and point wise 

mutual information (PMI), to calculate linguistics 

similarity using page counts. For the remainder of 

this paper, we use the notation H ( P) to denote the 

page counts for the query P in a search engine. The 

WebJaccard coefficient between words P and Q, 

WebJaccard (P, Q), is defined as  

 

 

  

 

 

 

Therein, P∩Q denotes the conjunction query P 

AND Q. Given the size and noise in internet 

information, it is possible that two words may 

appear on some pages even though they are not 

connected. So as to scale back the adverse effects 

because of such co-occurrences, we tend to set the 

WebJaccard coefficient to zero if the page count for 

the query P∩Q is a less than a threshold  𝑐2 .  

Similarly, we tend to outline Web Overlap, 

WebOverlap (P,Q), as 

 

 

     

 

 

 

 

WebOverlap could be a natural modification to the 

Overlap (Simpson) coefficient. We tend to outline 

the WebDice coefficient as a variant of the Dice 

coefficient. WebDice(P,Q) is outlined as 

 

 

     

 

 

 

 

Point wise mutual information [10] is a measure 

that is motivated by information theory; it is meant 

to mirror the dependence between two probabilistic 

events. We tend to outline WebPMI as variant form 

of point wise mutual information using page counts 

as  

 

        

 

 

 

Here, N is that the number of documents indexed 

by the search engine. To calculate PMI accurately, 

we tend to understand N, the amount of documents 

indexed by the programmer. Though estimating the 

amount of documents indexed by a search engine 

[11] is a remarkable task itself, it is beyond the 

scope of this work. In the present work, we tend to 

set N ¼ 1010 in step with the amount of indexed 
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pages reported by Google. As previously 

mentioned, page counts are mere approximations to 

actual word co-occurrences within the web. 

However, it has been shown by trial and error that 

there exists a high correlation between word counts 

obtained from a web programmer which from a 

corpus [12]. Moreover, the approximated page 

counts have been successfully used to improve a 

variety of language modelling tasks. 

 

3.2 Lexical Pattern Extraction: 

Page counts-based co-occurrence measures do not 

take into account the local context during which 

those words co-occur. This could be problematic if 

one or each words area unit ambiguous, or once 

page counts area unit unreliable. On the opposite 

hand, the snippets came by a search engine for the 

conjunctive query of two words give helpful clues 

associated with the linguistics relations that exist 

between two words. A snipping contains a window 

of text hand-picked from a document that features 

the queried words. Snippets area unit helpful for 

search as a result of, most of the time, a user will 

browse the snipping and judge whether or not a 

selected search result is relevant, while not even 

gap the computer address. Using snippets, contexts 

are additionally computationally economical as a 

result of it obviates the necessity to transfer the 

supply documents from the online, which might be 

time overwhelming if a document is giant. Here, 

the phrase could indicate a linguistics relationship 

between cricket and sport. Several such phrases 

indicate linguistics relationships. As an example, 

additionally called, is a, part of, is associate degree 

example of all indicating linguistics relations of 

various varieties. Within the example given on top 

of, words indicating the linguistic relation between 

cricket and sport seem between the query words. 

Exchange the query words by variables X and Y, 

we will type the pattern X could be a Y from the 

instance given on top of. Despite the potency of 

using snippets, they cause two main challenges: 

1st, a snipping may be a fragmented sentence; 

second, a search engine would possibly turn out a 

snipping by choosing multiple text fragments from 

completely different parts in a very document. As a 

result of most syntactical or dependency parsers 

assume complete sentences because the input, deep 

parsing of snippets produces incorrect results. 

Consequently, we tend to propose a shallow lexical 

pattern extraction rule using web snippets, to 

acknowledge the linguistics relations that exist 

between two words. Lexical syntactical patterns are 

employed in varied linguistic communication 

process tasks like extracting hypernyms [13], [14], 

or meronyms[15], query answering[16], and 

paraphrase extraction[17]. Though a search engine 

would possibly turn out a snipping by choosing 

multiple text fragments from completely different 

parts in a very document, a predefined delimiter is 

employed to separate the various fragments. As an 

example, in Google, the delimiter “...” is employed 

to separate completely different fragments in a very 

snipping. We tend to use such delimiters to 

separate a snipping before we tend to run the 

projected lexical pattern extraction rule on every 

fragment. Given two words P and Q, we tend to 

query an online programmer using the wildcard 

query “P***** Q” and transfer snippets. The “_” 

operator matches one word or none in a very 

webpage. Therefore, our wildcard query retrieves 

snippets during which P and Q seems at intervals a 

window of seven words. as a result of a search 

engine snipping contains ca. twenty words on the 

average, and includes two fragments of texts hand-

picked from a document, we tend to assume that 

the seven word window is decent to hide most 

relations between two words in snippets. In fact, 

over 95 percent of the lexical patterns extracted by 

the projected technique contain but five words. We 

tend to plan to approximate the native context of 

two words using wildcard queries. As an example, 

Fig. four shows a snipping retrieved for the query 

“ostrich***** bird.” For a snipping nine, retrieved 

for a word combine H (P, Q), first, we tend to 

replace the two words P and Q, severally, with two 

variables X and Y. We tend to replace all numeric 

values by D, a marker for digits. A subsequence 

should contain only prevalence of every X and Y. 

The most length of a subsequence is L words. A 

subsequence is allowed to skip one or additional 

words. However, we tend to don't skip over g 

variety of words consecutively. Moreover, the 

whole variety of words skipped in a very 

subsequence shouldn’t exceed G. We tend to 

expand all negation contractions in a very context. 

As an example, didn’t is dilated to failed to. We 

tend to don't skip the word not once generating sub 

sequences. As an example, this condition ensures 

that from the snipping X is not a Y, we tend to do 

not turn out the subsequence X could be a Y. 

Finally, we tend to count the frequency of all 

generated sub sequences and solely use sub 
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sequences that occur over T times as lexical 

patterns. 

 

3.3 Lexical Frequency Pattern Clustering: 

The basic plan of Lexical Frequency Pattern 

agglomeration (LFPC) consists finds all the 

consecutive patterns in a very organization, which 

is made from the document information (DDB). 

The info structure stores all the various pairs of 

contiguous words that seem within the documents, 

while not losing their consecutive order. Given a 

threshold β nominative by the user, LFPC reviews 

if its combine is β-frequent. During this case, LFPC 

grows the sequence so as to see all the attainable 

peak consecutive patterns containing such combine 

as a prefix. An attainable peak consecutive pattern 

(PMSP) is a peak consecutive pattern (MSP) if it is 

not a subsequence of any previous MSP. This 

suggests that each one the keep MSP that area unit 

subsequence of the new PMSP should be deleted. 

The projected rule consists of three steps 

represented as follows: 

In the initiative, for every completely different 

word (item) within the DDB, LFPC assigns 

associate degree number as symbol. Also, for every 

symbol, the frequency is keep, i.e., the amount of 

documents wherever it seems. These identifies area 

unit employed in the rule rather than the words. 

Table one shows associate degree example for a 

DDB containing four documents. 

In the second step (Fig. 1), DIMASP-C builds an 

information structure from the DDB storing all the 

pairs of contiguous words <wi, wi+1>, which seem 

in a very document and a few extra data to preserve 

the consecutive order. the info structure is associate 

degree array that contains in every cell a combine 

of words C=<wi,wi+1>,the frequency of the 

combine (Cf), a mathematician mark and an 

inventory ∆ of nodes δ wherever a node δ stores a 

document symbol (δ.Id), associate degree index 

(δ.Index) of the cell wherever the combine seems 

within the array, a link (δ.NextDoc) to take care of 

the list ∆ and a link (δ.NextNode) to preserve the 

consecutive order of the pairs with relation to the 

document, wherever they seem. Therefore, the 

amount of various documents given within the list 

∆ is Cf. this step works as follows: for every 

combine of words, within the document DJ, if, 

doesn't seem within the array, it is accessorial, and 

its index is gotten. Within the position index of the 

array, add a node δ at the start of the list ∆. The 

accessorial node δ has J as δ.Id, index as δ.index, 

δ.NextDoc is connected to the primary node of the 

list ∆ and δ.NextNode is connected to future node δ 

reminiscent   of the document DJ. If the document 

symbol (δ.Id) is new within the list ∆, then the 

frequency of the cell (Cf) is exaggerated. In Fig. a 

pair of the data structure designed for the document 

information of table one is shown. 

 

Table 1: Example of a document 

database and its identifier representation. 

 

Dj Document Database 

1 

2 
 

3 

4 

From George Washington to George W. Bush are 43 presidents 

 

Washington is the capital of the United States 

 

George Washington is the first president of the United States 

 

The president of the United States is George W. Bush 

 Document database (words by integer identifiers) 

1 

2 

3 

4 

<1,2,3,4,2,5,6,7,8,9> 

<3,10,11,12,13,11,14,15> 

<2,3,16,11,17,18,13,11,14,15> 

<11,18,13,11,14,15,10,2,5,6> 

 

                   

Step 1: Algorithm to construct the data         

structure for the DBD 

Input: A document data base DBD 

Output: The Array 

               For all the documents 𝐷𝑗 ∈ 𝐷𝐵𝐷 

do 

Array ← Add a document (Dj) to the array 

end-for 

Step 1.1: Algorithm to add a document 

Input: A document Dj 

Output: The Array 

For all pairs <wi, wi+1>∊ Dj do 

δi ← create a new pair δ 

δi.Id ← J //Assign the document identifier 

to the node δ 

index ←Array[<wi, wi+1>] //Get the index 

of the cell 

δi.index ← index  //Assign the index to 

the node δ 

α ← get the first node of the list δ 

If δi.Id ≠ α.Id then the document identifier 

is newer to the list δ 

Increment Cf     //increment the frequency 

δi.NextDoc ← α  //link the node α at the 

beginning of list δ 

List δ←Add δi as the first node  //link it at 

the begining 

δi-1.NextNode ←δi  //do not lose the 

sequential order 
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end-if 

end-for 

 

Given a threshold β, LFPC uses the 

constructed structure for mining all the maximal 

sequential patterns in the collection.  LFPC verifies 

if this pair is β-frequent for each pair of words 

stored in the structure, in such case LFPC, based on 

the structure, grows the pattern while its frequency 

remains greater or equal than β. When a pattern 

cannot grow, it is a possible maximal sequential 

pattern (PMSP), and it is used to update the final 

maximal sequential pattern set.  since LFPC starts 

finding 3-MSP or longer, then at the end, all the β-

frequent pairs that were not used for any PMSP and 

all the β-frequent words that were not used for any 

β-frequent pair are added as maximal sequential 

patterns. 

In order to be efficient, it is needed to 

reduce the number of comparisons when a PMSP is 

added to the MSP set.  K-MSP is stored according 

to its length k in order to reduce the comparisons. 

There is a k-MSP set for each k. In this way, the k-

PMSP must not be in the k-MSP set before adding 

a k-PMSP as a k- MSP. Therefore it must not be 

subsequence of any longer k-MSP.  All its 

subsequences are eliminated when a PMSP is 

added. 

 

 

Figure 2: Data structure built by LFPC for the 

database of the table 1. 

 

For avoiding repeating all the work for 

discovering all the MSP when new documents are 

added to the database, LFPC only preprocesses the 

part corresponding to these new documents. First 

the identifiers of these new documents are defined 

in step 1, and then LFPC would only use the step 

1.1 to add them to the data structure. Finally, the 

step 2.1 is applied on the new documents using the 

old MSP set, to discover the new MSP set, with 

dotted lines the new part of the data structure when 

D4 of table 1 is added as a new document. This 

strategy works only if the same â is used, however 

for a different â only the discovery step (step 2) 

must be applied, without rebuilding the data 

structure.  

 

 

Step 2: Algorithm to find all MSP 

Input: Structure from step 1 and β threshold 

Output: MSP set 

For all the documents Dj…(β-1) ϵ DDB do 

          MSP set ← Find all MSP w.r.t. the 

document (Dj) 

Step 2.1: Algorithn to find all MSP with respect 

to the document Dj 

Input: A Dj from the data structure and a β 

threshold 

Output: The MSP ser w.r.t. to Dj 

For all the nodes  δi-1….n ϵ Dj   i.e. <wi, wi+1> ϵ 

Dj do 

   If Array [δi.index].frequency ≥β then 

       PMSP←Array[δi.index]. <wi, wi+1>  //the 

initial pair  

       δ´← Copy the rest of the list of δ being from 

δi.NextDoc 

       δ´f← Number of different documents in δ´ 

      δ´i←δi 

      While δ´ f≥β  do the growth tht PMSP 

      δ´´← Array[δ´i+1.index].list 

δ´←δ´&δ´´ i.e. 

{αϵδ´|(α.index=δ´i+1)^(δ´i.NextNodee=α)} 

      δ´f← Number of different documents in δ´ 

       If  δ´f ≥ β then to grow the PMSP 

            Array [δ´i+1.index].mark ← “used” 

            PMSP ← PMSP + Array[δ´i+1.index]. < 

wi+1> 

                    δ´i←δ´i+1  i.e.  δ´i.NextNode 

        end-while 
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        If |PMSP| ≥ 3 then add the PMSP to the MSP 

set 

               MSP set ← add a k-PMSP to the MSP 

set   //step 2.1.1 

End-for 

For all the cells C ϵ Array do the addition of the 2-

MSP 

   If Cf ≥ β and C.mark =”not used” then add it as 

2-MSP 

        2-MSP set ← add C. <wi, wi+1> 

      

 

Step 2.1.1: Algorithm to add a PMSP to the 

MSP set 

Input: A k-PMSP, MSP set 

Output: MSP set 

If (k-PMSP ϵ k-MSP set) or (k-PMSP is 

subsequence of some longer k-MSP) then  //do not 

add anything 

        return MSP set 

else   //add as a MSP 

        k-MSP set  ← add k-PMSP 

         {delete S ϵ MSP set | S ϵ k-PMSP} 

         return MSP set 

 

4.Results: 

To understand how to find the linguistic similarity 

between words in a data file, we present a simple 

example here. As soon as we give the input word in 

the search engine, text snippets will be accepting. 

for example if we take the word “apple” then 

immediately snippets will be loading and it will 

open the snippet file if already exists, if that file 

doesn’t exists in the database we have to retrieve it 

from web. After inputting the word apple we have 

to input the word “computer” then immediately 

snippets will be loading about computer from the 

data base. Now we have to measure the page count 

measures to the words apple and computer.                   

 

 

Table 2: Page Count Measures: 

 

 

The above figure shows that page count co-

occurrence between the words apple and computer. 

The page count co-occurrence of apple and 

computer are measured by WebJaccard, 

WebOverlap, WebDice and WebPMI 

 

 

Table3: Page Count Measures:- 

 

 

The above figure shows that, by entering some 

value we can extract frequency for the patterns of 

that value. 

 

Table 4: Patterns:                                                   

Patterns:                                                   

          PATTERN   FREQUENCY 

Is maximum a 14 

Design and creates ip… 2 

-1. Is a personal 1 

 

  Next 

 

Here it shows the patterns and its frequency by 

using the lexical frequency pattern clustering 

algorithm.  

 

 

Table 5: Shows the Similarity Measure between 

apple and computer: 

 

After Clustering…… 
Sim Measure between Apple and Computer is: 

         0.01124668303747784 
 

  OK 

 

 

Page Count Measures: 

H (Apple): 29.0                                  Enter: C      

H(Computer): 31.0  

Re - Compute 

 H(Appleandcomputer):32.0                                                      

WebOverlap Measure: 1.103448275862069 

WebPMI Measure: 0.035558001114496557 

WebDice Measure: 1.0666666666666667 

   WebJaccardMeasure: 1.1428571428571428 

                                                                                                               

                                                            
Extract Lexical Pattern 

 

Page Count Measures: 

 

H(Apple):29.0    
  

Enter:C                

                                                                                                         
H (Apple and computer):32.0 

Re - Compute                                                                                                                

Extract Lexical 

Pattern 
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This shows the similarity measure between apple 

and computer after clustering. 

 

5.Future Enhancement:  

At present this project is designed to measure 

linguistic affinity between two words and to 

calculate the frequency between the two words in a 

data file. We can additionally enhance this work by 

finding frequency between more words in a data 

file and can also measure more number of similar 

words. We can further enhance the frequency 

lexical pattern clustering algorithm so as to boost 

the efficiency of the system.  

 

6.Conclusion: 

 We tend to plan a linguistic affinity measure using 

page counts and snippets retrieved from a web for 

two words. Using page counts-based co-occurrence 

technique four word co-occurrence measures were 

computed. We proposed a lexical pattern extraction 

algorithm to extract various linguistic relations that 

exist between two words. Each page counts based 

co-occurrence measures and lexical pattern 

extraction was used to define features for a word 

pair. Lexical frequency pattern clustering is 

employed to find the frequency of the two similar 

words in a data file. By the proposed technique we 

can simply calculate the frequency of the two 

words. 
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