A Self-Diplexing Antenna Designed using SIW Technique for C-Band Applications

P.V. K Durga Prasad¹, B. Kalyani², P. Dharma Rao³, S K Fazelath⁴, S K Aarif⁵

12345 Depatment of Electronics and Communication Engineering
Raghu Institute of Technology, Visakhapatnam

Abstract: The paper explain how the substrate integrated waveguide can often used to implement a self-diplexing antenna for C-Band applications. The designed antenna exploits two quarter-mode SIW cavity resonators. Quarter-mode SIW cavity resonator is attained from the half-mode SIW cavity resonator by dividing with the assistance of 1 open ended slot. Each quarter-mode SIW cavity resonator is excited separately using microstrip feedlines. The antenna display two resonant frequencies of 6.44 and 7.09 GHz, with the subsequent gain values 4.8 and 6.2 dB respectively. Moreover, the antenna shows unidirectional and stable radiation diagram operating frequencies. The obtained frequencies are ranging between 4-8GHz so the designed antenna can be used for C-Band applications.

Keywords:- Substrate integrated waveguide (SIW), Self-diplexing antenna, quarter-mode SIW (QMSIW).

1. INTRODUCTION:
Nowadays wireless communication systems leading a serious role in communication, especially the software defined radios demand a compact, light weight, high performance dual band or multi band antennas [1-2]. SIW technology already experienced a rapid development over quite one decade. This development allows demonstration and applications of innovative passive and active circuits, antennas and systems at microwave and millimeter wave frequencies [3-5].

Some multilayered structures are wont to improve the isolation between the input ports [4-5]. In [6] and [7] using non-planar configuration the antennas with self-diplexing capability are implemented. Substrate integrated waveguide is implemented to beat the drawbacks of microstrip and DFW (dielectric filled waveguide). Dual T-stubs loaded apertures are developed in [8] using self-diplexing antennas. SIW techniques are often utilized in many antenna designs to urge high performance at very high frequencies. SIW technique can be combined with other SIC’s platforms to create multiformat and multifunction devices and systems. Using SIW cavity-backed self-diplexing antennas are demonstrated [9-10].

1.2 HMSIW and QMSIW:
It occupies large space because of the full wave SIW antenna. A big miniaturization of the SIW antenna is achieved by applying the SIW (HMSIW) and SIW quarter mode (QMSIW) half-wave mode [11-12].

The HMSIW has almost the equivalent distribution of the E-field as the full SIW, although its size is half that. QMSIW is attained by dividing the HMSIW into two parts.

2. DESIGN AND ANALYSIS

2.1 DESIGN: The specification proposed is prototyped using the copper laminated RT / Duroid 5880. Substratum 1.57mm thick, dielectric constant 2.2 and loss tangent 0.0009. In this proposed design, HMSIW resonator operating in dominant mode is split into two unequal parts by etching a 1 open ended slanted rectangular slot. This slot transforms HMSIW into two unequal quarter-modes like cavity resonators.
FIGURE 3: Schematic of antenna configuration

Table 1: Dimensions of antenna configuration

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>32.5</td>
</tr>
<tr>
<td>w_cav</td>
<td>20.2</td>
</tr>
<tr>
<td>l_s</td>
<td>9.9</td>
</tr>
<tr>
<td>g_1</td>
<td>7.1</td>
</tr>
<tr>
<td>d_1</td>
<td>10.7</td>
</tr>
<tr>
<td>w_50</td>
<td>4.1</td>
</tr>
<tr>
<td>g_2</td>
<td>8.2</td>
</tr>
<tr>
<td>l_64</td>
<td>6.0</td>
</tr>
<tr>
<td>l_f</td>
<td>14.5</td>
</tr>
<tr>
<td>w_s</td>
<td>2.0</td>
</tr>
<tr>
<td>d_f</td>
<td>11.58</td>
</tr>
<tr>
<td>H</td>
<td>1.57</td>
</tr>
<tr>
<td>P</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>0.8</td>
</tr>
</tbody>
</table>

2.2 ANALYSIS:

1. **Port 1 only excited**

When the planning is completed the supported measuring configurations, it’s simulated using Ansoft HFSS simulator by exciting only port 1 by microstrip line feeding at a frequency of 6.44GHz and port 2 is terminated employing a terminator, the maximum gain obtained is 4.8dB.

The above figure represents that when port 1 only excited the S Parameter value is -19.0270dB at frequency 6.589GHz.

2. **Port 2 only excited**

When port 2 only excited by microstrip line feeding at a frequency 7.09GHz and terminating the port 1. The utmost gain obtained is 6.2dB.

The above figure represents that when port 2 only excited the S Parameter value is -14.3034dB at frequency 7.00GHz.

3. **Both Port 1 and Port 2 are excited**

When port 1 and port 2 are excited at a time with two different operating frequencies i.e. 6.44 and 7.09 GHz. This exhibits the nature of Self-diplexing antenna as it is working at two different frequencies.
When both port 1 and port 2 are exited simultaneously
there exist four S Parameters present. Those are S(1,1) is
7.0111 dB at frequency -14.17 GHz, S(1,2) has two values
-45.67 dB, -45.49 dB at frequencies 6.34 GHz, 6.95
GHz and S(2,2) is -17.07 dB at frequency 6.611 GHz.

The above figure represents that 3D Gain plot
where it ranges from -9.2 to 3.6dB.

3. CONCLUSION
A self-diplexing antenna using SIW technique for C-Band
applications has been successfully designed and simulated
using HFSS. Two quarter-mode cavity resonators, placed
orthogonally to every other, are used for radiation. The
quarter mode resonators are acquired from half-mode SIW
resonator by inserting a slanted one open-ended rectangular
slot. Each quarter-mode resonator radiates independently,
at the corresponding resonance without affecting other. The
measured and simulated results show a depth agreement
with one another. The obtained resonant frequencies are
often used for C-Band applications.

REFERENCES:
microstrip antenna with L-shape backed cavity for X-band
applications with a broadband proximity. AEU-International
Journal of Telecommunications and Electronics. Sep 30, 2015;
69(9):1226-32
[2] Kumar A, Raghavan, S. The SIW Cavity-Backed Slot Antenna is
self-diplexing. IEEE Antennas and Letters of Wireless
transceiver with self-diplexer for wireless use. International
L. E. Garcia-Munoz and D.Segovia-Vargas, “Antennas focused
on self-diplexer patches,” Trans-IEEE, Microwave. Theory tech.,
[5] Montero-de-paz J, Ugarte-Munoz E, V. Gonzalez-Posados V,
Garcia Monuz and D. Multifrequency self-diplexed single path
antennas loaded with split ring resonators. Progress in
[6] Chang CC, Row JS. Dual –feed dual-polarization and high
isolation. IEEE Transactions on antennas and propagation. 2009
self –diplexing PIFA and RF front–end. IEEE transaction on
antennas and propagation. 2007 Feb; 55(2):373-82.
and self-diplexing antennas using powered aperture double T
stubes. IEEE Antennas and Propagation transactions. December
2012; 60(12):5596–603.
[9] Mukherjee S, Biswas A. Concept of integrated waveguide cavity-
backed slot antenna with self-diplexing substrate. IEEE Antennae
[10] Nandi S, Mohan A. A self-diplexing antenna assisted by the SIW
2017; from 16:2708-11.
M, Ginste DV, Rogier H. A novel 60 GHz wideband integrated
waveguide antenna coupled with half-mode / quarter-mode
2017