
A Review on VHDL Implementation of 32-BIT 

Interlock Collapsing ALU 

 
Pratibha Pandey 
M. Tech Student 

Department of Electronics & Communication Engineering  
Dr. C.V. Raman University Kota, Bilaspur 

C.G., India 
 

Akanksha Awasthi 
Assistant Professor 

Department of Electronics & Communication Engineering 
Dr. C.V. Raman University Kota, Bilaspur 

C.G., India

Abstract - An important area in computer architecture is 

parallel processing. Machines employing parallel processing 

are called parallel machines. A parallel machine executes 

multiple instructions in one cycle. However, parallel machines 

have a limitation, they cannot execute interlocked 

instructions. They are executed in serial like any serial 

machine. It takes more than one cycle to execute multiple 

instructions causing performance degradation. In addition 

there is hardware underutilization as a result of serial 

execution in parallel machine. The solution requires a special 

kind of device called “Interlock collapsing ALU”. The 

Interlock Collapsing ALU, unlike conventional 2-1 ALU’s is a 

3-1 ALU. The proposed device executes the interlocked 

instructions in a single instruction cycle, unlike other parallel 

machines, resulting in high performance. The resulting 

implementation demonstrates that the proposed 3-1 Interlock 

Collapsing ALU can be designed to outperform existing 

schemes for ICALU, by a factor of at least two. The ICALU is 

implemented in VHDL. Its functionality is verified through 

simulation. 

 

Keyword- ALU, ICALU, VHDL, logic device, carry adder, 

arithmetic, instruction set, interlock etc. 
 

INTRODUCTION:- 

• Background: 

Parallel machines cannot execute interlocked instruction 

concurrently. Interlocked instructions or instruction with 

dependencies cannot be executed concurrently in a 

parallel machine, thus degrading the performance of the 

machine. The thesis investigates a solution, called, 

“interlock collapsing”, to execute these interlocks 

concurrently. The solution requires a special kind of a 

device called the Interlock collapsing ALU. The 

Interlock collapsing ALU, unlike conventional 2-1 

ALU’s, is a 3-1 ALU. 

The proposed ALU, in addition to collapsing these 

interlocks also should be implemented in identical stages 

as the conventional ALU’s. A functional model of the 

ICALU is assumed initially. The functional model is 

optimized by optimizing the model’s individual blocks. 

The design and optimization of each block is discussed 

in separate chapters. 

  

Finally, two parallel machines with and without the 

ICALU are compared with regard to their execution 

times. The effect of variation of percentage interlocks in 

a given code on the execution times and the percentage 

speed ratio of the parallel machines are studied. 

The ICALU is implemented in VHDL. Its functionality 

is verified through simulation. 

 
2 PRELIMINARY DESIGN ISSUES OF ICALU 

2.1 INTRODUCTION 

Computers have markedly changed over the last decade. 

Features, performance, and memory sizes representing a 

computer that filled a room with equipment and cost 

millions of dollars a decade ago now sit on top of a desk. 

High performance computers are increasingly in demand 

in the areas of industrial automation, medical diagnosis, 

aerodynamics simulation, military defense, signal 

processing, artificial intelligence, expert systems and 

socioeconomic, among many other scientific and 

engineering applications. This revolution has been 

brought about by major improvements in computer 

architecture and processing techniques and the enabling 

technology of Very Large Scale Integration (VLSI). 

This thesis involved developing a novel technique to 

speed up instruction execution in parallel computers. 

Before moving any further, an overview of basic 

computer components and its many related terms is 

necessary. 

 

2.1.1 COMPUTER ARCHITECTURE 

WHAT IS COMPUTER ARCHITECTURE ? 

Computer architecture involves the design of various 

aspects of computer design such as memory design, bus 

structure, internal Central Processing Unit, instruction 

set and the hardware implementation of the machine. 

The aim of a computer architect is to design a computer 

that meets the functional requirements as well as price 

and performance goals. 

2.1.2 BASIC COMPUTER COMPONENTS  

Computer architecture has changed incredibly over the 

years. One element has remained constant throughout 

the years, and that is the Von Neumann concept of 

computer design. Von Neumann architecture is 

composed of three distinct components(or subsystems ) : 

a central processing unit (CPU), memory and 

input/output (I/O) interfaces. Fig 2.1 represents one of 

the several possible ways of connecting these 

components together. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

173



• THE CPU  

• CONTROL UNIT  

• ALU  

• REGISTER ARRAY  

• PC  

• MAR AND MDR 

• MEMORY 

• INPUT/OUTPUT INTERFACES 
 
2.1.3 INSTRUCTION FORMAT 

An instruction is a group of binary bits that tell the 

computer what has to be done. Any computer instruction 

has two parts :: 

i) Opcode Opcode ( stands for operation code ) field 

determines the function of the instruction, i.e. it contains 

the operation that is to be performed by the CPU. 

ii) Operand Operand is the data on which the intended 

operation is performed. 
 
2.1.4 PARALLEL MACHINES  

An important area in computer architecture is parallel 

processing. Machines (computers) employing parallel 

processing are called parallel machines. A parallel 

machine executes multiple instructions in parallel, in one 

cycle, compared to a serial machine (discussed so far) 

that can execute only one instruction. Thus a parallel 

machine is faster than a serial machine. 

In a parallel machine, a number of execution units 

(ALU’s) are connected in parallel, so that each unit is 

able to handle an instruction. But for practical reasons 

the number is limited to two. For example, if two such 

units are present in the processor, two instructions can be 

handled concurrently resulting in faster execution. Fig 

2.5 shows a simple block diagram of a parallel machine 

unit. 

Fig 2.5 ( A parallel unit ) 
 

 

 
 

 

 
 

 

 

 

However, parallel machines have a limitation, they 

cannot execute interlocked instructions (instructions with 

dependencies) in parallel [5, 6]. They are executed in 

serial like any serial machine. It takes more than one 

cycle to execute multiple instructions causing 

performance degradation in the machine. In addition, 

there is hardware underutilization as a result of serial 

execution in the parallel machine. 

To improve performance it would be necessary to be 

able to execute these interlocked instructions in one 

cycle. Thus, interlock collapsing execution units in the 

form of multi-operand ALU’s have to be employed. 

 

2.1.5 OBJECTIVE  

The thesis proposes design and simulation of a 32-bit 3-1 

Interlock Collapsing ALU (ICALU), to allow the 

execution of two interlocked instructions in a single 

instruction cycle. This will improve the performance 

when it is degraded by data hazards. The device will be 

studied to find out if it meets it’s objective which is to 

execute two interlocked instruction in one instruction 

cycle. The collapsing of interlocks will be confined to 

arithmetic and logical operations, on fixed point two’s 

complement numbers. 

2.1.6 INTERLOCKING IN PARALLEL COMPUTERS 

WHAT ARE INTERLOCKED INSTRUCTIONS? 

Instructions are said to be interlocked if an instruction 

depends on a previous instruction for its data so that they 

cannot be executed simultaneously. Consider the 

instruction pair of Fig. 2.6a. 
 

i) ADD R2, R1 ; [R2]  [R2] +  [R1] 

ii) ADD R3, R2 ; [R3]  [R3] +  [R2] 

 
Fig 2.6a ( An interlocked instruction pair ) 

 
Instruction 2 required the result of instruction 1 (stored 

in R2). Instruction 2 can be executed only after 

instruction 1 has been executed. Thus, instruction 2 is 

said to be dependent on instruction 1. The dependency 

prevents the simultaneous execution of the instructions. 
 

i) ADD R1, R2 ; [R1]  [R1] +  [R2] 

ii) ADD R4, R3 ; [R4]  [R4] +  [R3] 

 
 

 

 
 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

174



 

Fig 2.6b (A non-interlocked instruction pair) 

 

Fig 2.6b is an example of a non-interlocked instruction 

pair. Instruction 2 does not require that instruction 1 be 

executed before it (instruction 2) is executed. Thus they 

can be executed simultaneously. Before moving on to 

the ICALU, consider the data flow of a parallel 

machine , which can execute two instructions 

concurrently Fig 2.7 shows the ALU unit for a parallel 

machine which consists of two 2-1 ALU’s. The notation 

‘2-1’ stands for two input operands an d a single output 

(result). A 2-1 ALU has one 2-1 CLA ( Carry Look 

Adder) to perform arithmetic operations and one logic 

stage to perform logical operations. The following 

explains the operation of the unit for both types of 

instructions. 

I) NON-INTERLOCKED 

ALU1  executes  the  first  instruction  and  ALU2  

executes  the  second  simultaneously. 

Thus, the total execution time is one cycle. 

 

II) INTERLOCKED  

Since, an interlocked instruction cannot be executed 

simultaneously, ALU1 executes both the instructions one 

after the other requiring two cycles. 

To resolve these interlocks a solution had been proposed 

previously. This can be shown in Fig 2.8 in which the 

proposed dataflow of a implementation for relieving 

fixed point data dependency interlocks is shown. 

Fig 2.7 (Simplified view of the ALU unit for an ordinary parallel 
machine) 

 

Two ALU’s are concatenated as shown. It can result in 

the execution of a multi-operation instruction, however, 

it requires twice the execution time of a single ALU 

operation. An attempt to execute the interlock in a cycle 

could result in an increase in the cycle time of the 

machine and unnecessarily penalize all instruction 

executions, resulting in practically no performance gain. 

2.1.7 THE ICALU  

In order for an implementation to eliminate interlocks 

between instructions and to execute such instructions in

 parallel (in addition to execution

 of non-interlocking instructions in parallel), it is 

required to collapse the interlocks with the incorporation 

of 

➢ Multiple execution units, and 

➢ Multi-operand execution units. 
 

Multiple execution units are required because 

more than one instruction is being executed at a time. 

The number of instructions that can be executed is 

assumed to be two here and hence the number of 

execution units (ALU’s) is two. 

Multi-operand execution units are required, 

since there are two interlocked sequential instructions. 

The first instruction is execute by a traditional ALU. 

Since the second instruction may be dependent on the 

first, the second ALU must be capable of performing the 

collapsed instruction of both the instructions, in parallel 

to the first ALU. The second ALU has three input 

operands, one in addition to that of first ALU. 

1) DESCRIPTION AND WORKING  

 

The ICALU is basically a 3-1 ALU. It has 3-1 CSA 

(Carry Save Adder) in addition to the 2-1 CLA to 

achieve the desired 3-1 arithmetic operation. The 

ICALU also has an extra logic when compared to the 2-1 

ALU. The ICALU is implemented in the parallel 

machine by replacing ALU2 with the ICALU. The 

operation of the parallel machine employing the ICALU 

is explained as 

FIG 2.8 (WM’S APPROACH TO COLLAPSING 

INTERLOCKS 

i) NON-INTERLOCKED  

The operation is the same as that for the parallel machine 

when the sequence is non-interlocked. 

ii) INTERLOCKED 

Consider the interlocked sequence of Fig2.6a.  ALU1 

executes the first instruction as usual.  The ICALU 

collapses the two instructions into a single 3-operand 

instruction as shown in Fig 2.9 : 

 

ADD R3, R2, R1 ; [R3] [R3]  +  [R2]  +  [R1] 

 
Fig 2.9 ( The Collapsed Instruction) 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

175



Thus, the above instruction is executed in a single cycle 

by the ICALU. In short, the ICALU operates on both the 

instructions when there is interlock and on the second 

when there is no interlock. 

 

The design of ICALU is described and simulated in 

VHDL. VHDL is a language to describe or model 

hardware systems. The next section of this chapter gives 

a brief explanation on the same. 

iii) LIMITATIONS: 

At percentage of interlocked instructions(X) ≈ 3%, the 

gain of the machine with ICALU is zero. Below this 

point the gain is negative, that is the machine with 

ICALU is slower than the machine Non-ICALU 

machine. 

 

3PRELIMINARY DESIGN ISSUES OF ICALU  

3.1) PRELIMINARY DESIGN ISSUES OF ICALU 

As discussed earlier, the ICALU performs a 3-1 

operation in case of an interlocked sequence and a 

normal 2-1 operation in case of non-interlocked 

sequence. To design the ICALU we start with its 

functional requirements. 

 

3.1.1) FUNCTIONAL REQUIREMENTS OF THE 

ICALU : 

 

The functional requirements of the ICALU is divided 

into 2 modes : 

 

1) Interlocked mode. 

2) Non-interlocked mode. 

 

1) MODE 1 ( INTERLOCKED MODE) : 

 

In Mode 1, the ICALU is in the Interlock mode, where it 

performs a three operand operation. Now, consider again 

an interlocked pair. 

i) ADD 

 

ii) ADD 

A, B ; A, C ; 

[A] [A] + [B] 

[A] [A]+ [C] 

 

Fig. 3.1a ( An interlocked instruction pair) 

 

In Fig 2.10a an arithmetic operation follows an 

arithmetic operation. Similarly, there are other ways by 

which instruction can combine. The possible ways are 

categorized as follows: 

 

i) Arithmetic followed by Arithmetic. 

 

ii) Logical followed by Arithmetic. 

 

iii) Arithmetic followed by Logical. 

 

iv) Logical followed by Logical. 

 

I) CATEGORY 1 : ( ARITHMETIC FOLLOWED BY 

ARITHMETIC ) 

 

This category is represented by : 

 

(  A  ± B ± C  ) 

 

‘±’  addition or subtraction operation. 

 

A – Operand 1 

 

B – Operand 2 

 

C – Operand 3 

 

e.g., ADD A,B 

 

SUB A,C 

 

II) CATEGORY 2 :  ( LOGICAL FOLLOWED BY 

ARITHMETIC ) 
 

This category is represented by : 

 

(  ALOPB  )±C 

 

( ‘LOP’ – Logical Operation ) 

 

e.g., ANDA, B 

 

ADDA, C 

 

III) CATEGORY 3 : ( ARITHMETIC FOLLOWED BY 

LOGICAL ) 

This category is represented by : 

 

(  A  ± B  )  LOP  C 

 

e.g., ADDA, B 

 

ANDA, C 

 

IV) CATEGORY 4 : ( LOGICAL FOLLOWED BY 

LOGICAL ) 

 

This category is represented by : 

 

(  A LOP B ) LOP C 

 

e.g., ANDA, B 

 

XORA, C 

 

2) MODE 2 ( NON-INTERLOCK MODE ) : 

 

In Mode 2 the ICALU is in the ‘Non-Interlocked’ mod e. 

It performs a two operand operation. Consider a Non-

Interlocked pair. 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

176



i) ADD 

 

ii) ADD 

A, B 

D, C 

[A][D] 

[A]+[B] 

[D]+[C] 

 
Fig 3.1b ( An non-interlocked instruction pair) 

 

Since no interlock exists between the two instructions, 

no collapsing is required. Thus ICALU executes only 

instruction 2. The categories in this mode are 

 

i) Arithmetic. 

 

ii) Logical 

 

I) CATEGORY 1 ( ARITHMETIC )  

This category is represented by : A±B 

This category can be executed as a Mode 1 – Categor y 1 

instruction if the third operand is forced to zero. It can be 

illustrated as : 

(  A±B±C  )  =  (  A ± B  ),  when C = 0. 

 

e.g., ADD A, B / Executed by 

ALU1/ 

 

SUB C, D 

 

II) CATEGORY 2 ( LOGICAL ) : 

 

This category is represented by : 

 

A LOP B 

 

Similarly this category can be executed as Mode 1 – 

Category 2 instruction, by forcing the third operand, C, 

to zero, as illustrated below : 

 

( A LOP B ) ± C = ( A LOP B ) ; when C = 0 e.g., ADD 

A, B / Executed by ALU1 / AND C, D 

From the above discussion it follow that : 

➢ Category 1 is a 3-1 arithmetic operation, which 

requires a 3-1 adder. This can be achieved by 

cascading a 3-1 CSA followed by a 2-1 CLA. 

 

➢ Category 2 & 4 require a logic stage before the 

adder stage. This is the Pre-CLA Logic Block. 

 

➢ Categories 3 & 4 require a logic stage after adder 

stage. This is the Post-CLA Logic Block. 

 

➢ The Mode 2, Non-interlocked operations is just a 

subset of Mode 1, Interlocked operations. They are 

executed as Mode 1 operations by setting the third 

operand to zero and hence do not require any 

additional circuitry within the ICALU. 

Taking into consideration, all the above 

requirements, a logical dataflow model of the 

ICALU is developed. It is shown in Fig 2.11. 

 
Fig 3.2 ( Data flow form of ICALU) 

 

3.6 Binary Adders And Arithmetic 

The arithmetic unit of the ICALU is implemented by 

binary adders. An introduction to binary adders is 

necessary. Binary subtraction and two’s complement 

numbers are also explained in this chapter. 

3.6.1 BINARY ADDERS: 

 

1) FULL ADDER : 
 

A B CIN S COUT 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 
Table 3.7 : Truth table of a Full Adder 

 

The expressions for full adder are : 

S = a ٧ b ٧ c (3.10) 

Cout = a b + b Cin + a Cin (3.11) 
 

 
Fig 3.8 : A Full Adder 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

177



2) RIPPLE CARRY ADDER: 

One of the most basic adders is the ripple carry adders. 

The addition is similar to that of paper and pencil 

addition. A block diagram to add two 4-bit binary 

numbers is shown in Fig2.2. The carry is allowed to 

ripple from one stage to another. However the ripple 

carry is the slowest, because the carry has to propagate 

from the least significant bit(LSB) to the most 

significant bit(MSB). Hence it is not used for larger 

adders. 

 
Fig 3.9: A 4-Bit Ripple Carry Adder. 

 
 

4 )CARRY SAVE ADDER (CSA): 

 

The CSA is used when more than two numbers are to be 

added. 

 

For example, Consider addition on three numbers 

(X,Y,Z). 

 

 0101 X 

 0011 Y 

+ 0100 Z 

 ________  

 0010 Partial sum 

 1010 Saved Carry 

 

In the next step, the sum and saved carry are added with 

each other. 

 

 0010 Partial Sum 

+ 1010 Saved carry 

 _________  

                                   1010 Final sum 

 

In the last step the CLA is used to add the partial sum 

with saved carry. 

 

Fig 3.4 shows the block diagram of the addition process. 

The first stage is the CSA. The carry consists of a chain 

of full adders. A full adder is present for each significant 

bit position. Unlike the ripple adders, in carry look ahead 

adders carry is saved for the next stage. 

 

y3 x3 z3 y2 x2

 z2 y1 x1 z1

 y0 x0 z0 

 
Fig 3.11 : A 4-Bit Carry Save Adder 

 

3.7 Design of Csa Stage 

In the previous chapters various adders were discussed. 

The CSA was also explained. The CSA stage for the 

ICALU not only has to generate the sum and carry for 

the next stage, but also the inputs for INPUT 2 of CLA. 

This is designed and implemented in this chapter. 

 

3.7.1 DESIGN: 

In the last chapter we saw the block diagram for three 4-

bit inputs using a CSA . It can be extended to 32 bits. 

The equation for sum and carry are: 

SUM = Si = Ai ٧ Bi ٧ Ci CARRY = λi+1 = Ai Bi + Bi 

 

for  (0≤ i ≤ 31) (3.13a) 

Ci  + Ai Ci,for (1 ≤ i ≤ 31) (3.13b) 

Ai, Bi, Ci  are the i th  bits of operands A, B & C 

respectively. 

 

As explained in chapter 3 the carry out of CSA is 

designed to provide all inputs for INPUT 2 of CLA. It is 

given as: 

 

λi+1 = K2 Ai Bi  + K1 Bi Ci + K1 Ai Ci + K3 Ci+1,for(1<= i 

<= 31)(3.14) 

3.7.3 IMPLEMENTATION: 

 

The (3.13a) and (3.14) are bit-wise expressions. They are 

the basic building blocks of the CSA. First, they are 

implemented as individual components (blocks). Later, 

they are instantiated the required number times to obtain 

the CSA. 

 

3) IMPLEMENTATION OF CSA : 

The entities SUM3_1 and CSA-CARY are the basic 

building blocks of the CSA. The sum is generated for bit 

positions 0 to 31 where as the carry is from 0 to 30. 

Since, the additions considered are in 2’s complement 

the final carry (i.e., bit-position 31) is discarded. Thus, 

carry spans one bit positions lesser when compared to 

sum. The component SUM3_1 is instantiated 16 times 

for each bit position to obtain sum. The ‘for generate’ 

statement is used to repeat the instantiations for the 

desired number of times.  

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

178



3.8) Design Of CLA Stage 

The basic of a CLA was explained in chapter 5. using 

the same principle, it is extended to 32 bits in this 

chapter. 

 

3.8.2) Implementation: 

The 32-bit CLA can be implemented by creating an 8-bit 

CLA first. Later, the 8-bit CLA’ are connected together 

to obtain the 32-bit CLA. 

 

1) Implementation of 8-bit CLA: 

The 8-bit CLA is obtained using the preceding 

expressions. The sum block for the CLA are obtained by 

instantiating the component SUM3_1. It has already 

been discussed in chapter 6. There are eight sum and 

carry blocks for each of the 8-bit positions. Two CLA’s 

have been implemented here, CLA_1 and, CLA_2. 

Though, both are 8-bit, CLA_1 is slightly different from 

the other CLA’s, since it does not have an input carry. It 

has been created as a separate component.  

2 IMPLEMENTATION OF 32-BIT CLA: 

 

The 32-bit CLA is obtained by installing the four 8-bit 

CLA’s and generating the intermediate carries C16 and 

C24, appropriately. The final carry C32 is discarded, since 

all operations are in two’s complement. The program for 

32-bit CLA is shown in A.4. 

 

3.9 DESIGN OF POST – CLA LOGIC BLOCK 

This chapter deals with the design of the Post-CLA 

Logic Block of the ICALU. The Post-CLA Block 

performs logic operations between the third operand and 

the result of the operation on the first two operands. The 

Post-CLA Logic Block is not similar to the Pre-Block 

because the inverting inputs are not readily available. 
 

Control Signal Description 

FAND2 AND Inputs Ri & Ci 

FOR2 OR Inputs Ri & Ci 

FXOR2 XOR Inputs Ri & Ci 

FINV2 Inverts above operations. 

Table 3.12 : Control signals to Post-CLA Logic Block. 

 

3.9.1 DESIGN 

The control signal format remains the same as that for 

the Pre-CLA Logic Block. But the control unit generates 

a separate set of signals for the Post-CLA Logic Block. 

Now, Li represents the output of the ICALU. 

 

FAD
D 

FAN
D 

FO
R 

FXO
R 

FIN
V 

OUTPUT 
(LI) 

1 0 0 0 0 Ri 

0 1 0 0 0 Ri Ci 

0 0 1 0 0 Ri + Ci 

0 0 0 1 0 Ri ٧ Ci 

0 1 0 0 1 𝑅𝑖 𝐶𝑖̅̅ ̅̅ ̅̅
 

0 0 1 0 1 𝑅𝑖  + 𝐶𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

0 0 0 1 1 𝑅𝑖 𝐶𝑖 ٧
̅̅ ̅̅ ̅̅ ̅̅

 

TABLE 3.13: OUTPUT TABLE OF POST-CLA LOGIC BLOCK. 

 
 

 

 
 

3.9.2 IMPLEMENTATION : 

The implementation of Post-CLA Logic Block is also 

similar to earlier implem entations, that is, CSA, Pre-

CLA Logic Block, etc. First, the bit-wise component is 

implemented and later instantiated to obtain the Logic 

Block. 

 

1) IMPLEMENTATION OF BIT-WISE LOGIC 

COMPONENT : 

The bit-wise logic component, P_CLA_BCMP, is the 

implementation of (3.20). The program is shown in 

A.8.2. 

 

2) IMPLEMENTATION OF POST-CLA LOGIC 

BLOCK : 

The logic block is implemented by instantiating 

P_CLA_BCMP for bit positions 0 to 31. The program is 

shown in A.8.1. The program creates entity 

P_CLA_LOGBLK. 

 

REFERENCE 
[1] J. Phillips, S. Vassiliadis, "High-Performance 3-1 

Interlock Collapsing ALU's," IEEE Transactions on 

Computers, vol. 43, no. 3, pp. 257-268, Mar., 1994 

[2] D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. 

Oxley, and B. W. Sutter, "The multilayer perceptron 

as an approximation to a Bayes optimal discriminant 

function,"IEEE Trans. Neural Networks, vol. 1, no. 4, 

pp. 296-298, Dec. 1990. 

[3] S. Vassiliadis, J. Phillips, and B. Blaner, "Interlock 

collapsing ALU's,"IEEE Trans. Comput., vol. 42, no. 

7, pp. 825-839, July 1992. 

[4] H. Ling, "High speed binary adder,"IBM J. Res. 

Develop., vol. 25, no. 3, pp. 156-166, May 1981. 

[5] M. J. Flynn and S. Waser,Introduction to Arithmetic 

for Digital Systems Designers. CBS College 

Publishing, 1982, pp. 215-222. 

[6] R. M. Keller, “Lookahead Processors,” Computing 

Surveys,Vol. 7, No. 4, pp. 514-537, December 1973. 

[7] R. M. Tomasulo, "An efficient algorithm for 

exploiting multiple arithmetic units," <i>IBM J. Res. 

Develop.</i>, pp. 25-33, Jan. 1967. 

[8] R D Acosta , J Kjelstrup , H C Torng, An instruction 

issuing approach to enhancing performance in 

multiple functinal unit processors, IEEE Transactions 

on Computers, v.35 n.9, p.815-828, Sept. 1986 

[9] JAIN R.P. Digital Electronics , Printice hall 

[10] The Low Carb VHDL Tutorial ,Bryan Mealy 2004 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050025
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05,  May-2018

179


