A Review on the Abnormalities of Diabetic Retinal Images

E . Dhiravidachelvi Research scholor, Electronics and communication Engineering Sathyabama University Chennai,Tamilnadu

Abstract: In recent biomedical field, ophthalmology has a significant role. In order to identify and detect the pathologies in diabetic retinopathy accurately, and correctly converge on time, it requires computer aided techniques. This paper focuses the various abnormalities of the retinal images and its procedure of the automated techniques involved in it. And also it provides performance analysis in terms of sensitivity and specificity calculations for the various techniques behind the micro aneurysms, exudates and hemorrhages.

Keywords: Diabetic retinopathy, abnormalities, micro aneurysms, exudates, hemorrhages

1. INTRODUCTION

Diabetic Retinopathy (damage to retina)

The main cause of vision loss is the diabetic retinopathy and its prevalence is set to continue rising. The early detection may be used to encourage improvement in diabetic control. When the small blood vessel in the retina has a high level of glucose, the vision will be blurred. Over a period of time the retina has some abnormalities like microanesysms, exudates and hemorrhages. For the diagnosis, ophthalmologists use color retinal images of a patient acquired from digital fundus camera. Prolonged diabetes causes micro vascular leakage and micro vascular blockage within the retinal blood vessels.

Fig1: retinal image

Dr. V. Rajamani professor Electronics and Communication Engineering veltech-multi tech engineering college chennai, Tamil nadu.

The literature on the automatic retinal image diagnosing algorithms are classified to the following steps

1. Preprocessing

2. Feature Extraction/segmentation

3. Classification

2. LITERATURE

A. EXUDATES:

One of the visible signs. These are extends into the macula area, vision loss can occur. The exudates can be classified as Hard, Soft Exudates; hard exudates (intra retinal lipid exudates) are yellow deposits of lipid and protein within the sensory retina. Soft exudates (cotton wool spots) they are white, fluffy lesions in the nerve fiber layer.

Fig2: Soft Exudates

Hard Exudates

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 4, April - 2014

TABLE 1

s. no	Title	Author	Preproc essing	Method	Result
1	Automatic udates tection from abetic tinopathy tinal image ing Fuzzy. C- cans and prphological thods.	Akara Sophara k, Bunyarit Uyyanon vara.	RGB to HSI Media filtering CLAHE	FCM clustering: 2.Coarse segmentation FCM 3.Fine segmentation Morphologic al reconstructio	Time taken for running 6 minutes Sensitivity 86% Specificity 99%
2	Hybrid Approach for Detection of Hard Exudates	Dr. H.B. Kekre, Dr. Tanuja, K. Sarode, Ms. Tarannu m Parker	Resizing / Green Channel	n Clustering: Linde-Buzo- Gray Algorithms	Morphology based approach: sensitivity 91% specificity 39% accuracy 67%, LGB: sensitivity 80% specificity 57% accuracy 68%, K means: sensitivity 77% specificity 76% accuracy 76%,
3	Detection of Exudates for the diagnosis of diabetic Retinopath v	Anitha Somasun daram, and Janardha na Prabhu	RGB - HSV/Me dium filtering/ Enhance ment	Score computation technique	Not mentioned
4	Localizatio n of Hard Exudates in Retinal Fundus Image by Mathematic al Morpholog y operation.	Mehdi Ghafouri an Fakhar, Hamidre za Pourreza	Green channel	morphologic al/Top operation	Sensitivity 78.28%
5	Detection of Exudates on Diabetic Retinopath y images based on morphologi cal operation and connected component	M. Ponnibal a, S. Mohana Priya	Green channel,/ HE	Morphologic al connected component	Not mentioned

	analysis				
6	Fine Exudates Detection using morphologi cal Reconstruct ion Enhanceme nt	Akara Sophara k, Bunyarit Uyyanon vara.	Resizing /RGB to HIS/CL AHE	Morphologic al Reconstructi on	Morphology: Sensitivity 88.1% Specificity 99.2% Accuracy 99%, Fem: Sensitivity 97.2% Specificity 85.4% Accuracy 85.6%
7	Exudates Dynamic Detection in Retinal Fundus images based on the Noise map distribution	Ivo Soares, Miguel castelo Branco	Green channel	Morphologic al operators and adaptive thresholding	Sensitivity 97.49% Specificity 99.95% Accuracy 99.91%
8	Automatic optic Disc Detection and Removal of false Exudates for Improving Retinopath y classificatio n Accuracy	G.Ferdic Mashak Ponnaia h, Capt.Dr. S.Santho sh Baboo	Genetic Algorith m	Baseline method	Not mentioned
9	An Effective Frame work for Automatic Segmentati on of Hard Exudates in Fundus Images	Nan Yang, Hu Chaun Lu	Green channel/ CLAHE	Boosted soft Segmentatio n/Backgroun d Subtraction	Sensitivity 99.64% Specificity 87.86% Accuracy 93.78%
10	Detection of Hard Exudates using Simulated Annealing based Thresholdin g Mechanism in digital retinal fundus image	Diptonee 1 Kayal and Sreeparn a Banerjee	Grayscal e/Media n filter/Im age Subtratio n	Simulated Anealing/Thr esholding	Sensitivity 98.66% Predictivity 98.12%
11	Computeriz ed Exudates Detection in Fundus Images using statistical	Sidra Rashid	CLAHE Clusterin g	Fuzzy clustering (FCM)	Not mentioned

12	feature based Fuzzy c- mean clustering Comparativ e Exudates classificatio n using Support vector machines and Neural	Alireza Osareh, Majid Mirmeh di	Green channel	SVM/NN	SVM: Sensitivity 83.3% Specificity 95.5%
13	networks A Segment based Technique for detecting Exudates from Retinal fundus image	Atul Kumar, Manish Srivasta va, A.K. Sinha	Resizing /Color normaliz ation green channel/ noise removal/ AHE	Morphologic al/Matched filter/SVM	Sensitivity 97.1% Specificity 98.3%
14	Neural Network based detection of hard exudates in retinal images	Maria Garcia, Clara I. Sanchez	Green channel contrast enhance ment	Neural network MLP RBF SVM	MLP: Sensitivity 100% Specificity 92.59% RBF: Sensitivity 100% Specificity 81.48% SVM: Sensitivity 100% Specificity 77.78%
15	Automatic detection of Exudates in diabetic Retinopath y Images	Kittipol Wisaing, Nualswa t	HIS/cont rast enhance ment	Binary segmentation FCM clustering	Sensitivity 96.7% Specificity 71.4% Accuracy 79%
16	Automated Detection of Exudates in retinal Images using Split And Merge Algorithm	Hussain F.Jaafer, Asoke .Nandi	green channel	Split and merge	Sensitivity 89.3% Specificity 99.3% Accuracy 99.4%

Fig3: microaneurysns

TABLE II

s. no	Title	Author	Preproc essing	Method	Result
1	Automatic Microaneurs ysm Quantificatio n for Diabetic Retinopathy screening	A. Saphar ak, B. Uyyan onvara and S. Barma n	Green channel/ CLAHE	Feature Extraction/N aïve Bayes classifier	Sensitivity 99.99% Specificity 83.34% Accuracy 96.5%
2	Automatic Microaneurs ysm Detection and Characterizat ion through Digital color Fundus image	C.I.O Martins , R.M.S Vesas, G.L.B Ramam hi	Green channel/ BG Subtracti on/MA	Detection segmentation feature extraction classification	Accuracy 84%
3	Detection and classification of Microaneurs ysm for Diabetic Retinopathy	J. Prakas h, K. Sumath i	CLAHE	Top hat Transform/M ultiple Gaussian Masks	Not mentioned
4	Identification and Classificatio n of Microaneurs ysm for early detection of diabetic retinopathy	M. Usman Akram, Shehza d Khalid, Shoab A. Khan	Green channel. Smoothe ning by morphol ogical opening	Feature extraction/hy brid classifier	Sensitivity 98.64% Specificity 99.69% Accuracy 99.40%
5	Automated Detection of Microaneurs ysm using Robust Blob Descriptors	K. Adal, S. Ali, D. Sidiqe	Green channel/ SVD	Hessian operator	Sensitivity 44.64%
6	An algorithm for identification of retinal Microaneurs ysm	A. Shaeidi	Illuminat ion normaliz ation contrast enhance ment	Feature extraction classification -NN	Sensitivity 98.5% Specificity 96.9% Accuracy 97.7%
7	Detection of Microanesys ms in Retinal Angiography Image using the circular Hough	Sekine h Asadi Amiri, Hamid Hassan pour	Red free image	Hough transform/Ci rcular	Accuracy 88.5%

B MICROANEURYSMS

The diabetes key lesion is microanesysms. These are the focal dilatations of retinal capillaries, the diameters of 10 to 100 microns and appear as red dots.

8	Transform Automatic detection of Diabetic Retinopathy in Non Dilated RGB Retina; Fundus Images	Sujith kumar S.b., Vipula Singh	Green/G ray scale/Co ntrast	Feature extraction/Cl assification enhancement	Sensitivity 94.44% Specificity 87.5%
9	Automated Microaneurs ysm detection method based on double-ring filter in retinal fundus images	Atsushi Mizuta ni, Chisak o Muram atsu	Green channel/ double ring filter	Feature extraction/cl assificlassifie r	Rule based classification 170/336, ANN 151/336
10	Identification of diabetic retinopathy stages in human retinal images.	A.Alai mahal, Dr. S. Vasuki	Green channel/ CE/Medi an filter	Extended minima transform	Sensitivity 98.89% Specificity 89.70%
11	Automatic Microanesys ms detection from Non- dilated Diabetic Retinopathy Retinal Images	Akara Sophar ak, Bunyar it Uyyan on vara	Green channel/ Median filtering. CLAHE	Extended minima transform	Sensitivity 81.61% Specificity 99.99% Accuracy 99.98%
12	Algorithm for detection Microaneurs ysm in low resolution color retinal images	G. Yang, L. Gagno n, S. Wang	Green channel	Morphologic al filtering/Top hat transform. Thresholding /Classifier	Sensitivity 90%
13	Microaneurs ysm Detection in color fundus images	Lee Streeter and Michae l J. Cree	Green channel/ Shade correctio n	Region growing/Feat ure extraction classifier	Sensitivity 56%
14	Automatic Identification and Classificatio n of Microaneurs ysm for Detection of Diabetic Retinopathy	R. Gowth aman	Denoisin g/Enhan cement	Feature extraction, SVM classification , ELM (extreme learning machine)	Sensitivity 95.74%. Sensitivity: DRIVE SVM is 95.74% ELM is 97.87%. Diaretdbi, SVM is 91.12% ELM is 94.08% Specificity: DRIVE SVM is 95.89% ELM is 97.94%

I.	3	Issue	4,	April	-	20	ŀ

					Diaretdbi, SVM	is
					95.43%	
					ELM	is
					98.34%	
15	Internal	Md.	Grayscal	Circular	Sensitivity	
	Components	Muhid	e/	Hough	88%	
	Combination	Ahmed	CLAHE	Transform		
	to Detect	, Dr. K.				
	Microaneurs	Kumar				
	ysm	avel				
16	Micro	Murug	Green	Extended	Not	
	aneurysms	an.R,R	chennal	minima	mentioned	
	detection	eeba		Transform,T		
	Methods in	Korah		OPHAT,naïv		
	retinal			e Bayes		
	Images using			classifier		
	Mathematica					
	1					
	morphology					

C HEMORRAGHES

When the wall of a capillary is weakened, it may rupture giving rise to an intra retinal hemorrhages. Usually it is round or oval (dot or blot). Dot hemorrhages appear as bright red dots and are same size as large MAs. Blot hemorrhages are larger lesions they are located within the mid retina and often within or surrounding areas of ischemia.

Fig4: hemorrhages

TABLE III

S.	Title	Author	Preproce	Method	Result
No			ssing		
1	Automatic detection of microanuresysm s and the Hemorrhages in digital fundus Images	Giri Babu Kande, T. Satya Savithri	Green channel/R ed channel/hi stogram matching	Morphologi cal top hat /SVM classifier	Sensitivit y 100% Specificit y 91%
2	Automatic detection of microanuresysm s and the Hemorrhages in color eye fundus images	Sergio Bortolin Junior and Danner Welfer	Resizing/ green channel/ contrast enhancem ent CLAHE	Morpholog y generation	Sensitivit y 87.69% Specificit y 92.44%
3	Detection of retinal Hemorrhages	Athira R.V. Ferlin	Mean color Backgrou	Splat feature extraction/	Not mentioned

	using splat feature classification techniques	Deva Shahila D	nd/ gradient operators	watershed segmentatio n KNN classifier	
4	Improvement of automatic hemorrhage detection methods using brightness correction of fundus images	Yuji Hatanak a, Toshiaki Nakaga wa	RGB to HSV	Bright correction method	Sensitivit y 80% Specificit y 80%
5	Splat feature classification with application to Retinal Hemorrhage Detection in Fundus images	L. Tang M. Niemeije r, J.M. Reinhas dt	RGB	Splat feature extraction wrapper approach	Sensitivit y 96%
6	Detection of Hemorrhages' in retinal images	V. Vijayaku mari	Contrast stretching/ median filtering	Morphologi cal operation/ cellular NN	Sensitivit y 91.7% Specificit y 99.9%
7	Classification of hemorrhages pathologies on digital fundus images using a combination of neural network and tracking algorithms	S.A. Barman, C. Sinthana yothin	RGB image	Multi- perception back propagation / matched filter	Efficiency 100%
8	Improvement of Automatic Hemorrhages Detection methods using shapes recognition	Nidhal Khdhair EI Abbadi	RGB to Gray	Thresholdin g	Sensitivit y 80.37% Specificit y 99.53%
9	Automatic detection of Microaneursys m and Hemorrhage for screening of retinal diseases	Tareq AI Saeed, Doaa Youssef	Gray level/ frequency domain filtering	Morphologi cal reconstructi on	Not mentioned
10	A survey on usage of Data Mining Techniques in the Detection of Hemorrhages in Fundus Images	Deepa D, Sumathi P	Noise removal/c ontrast enhancem ent	Candidate Extraction/ KNN classifier	Not mentioned
11	The role of Hemorrhages and exudates detection in automated grading of diabetic retinopathy	Alan D. Fleming, Keith A. Goatman	-	-	Not mentioned

D. PERFORMANCE ANALYSIS

Fig6.Microaneurysms Analysis

E .CONCLUSION

This Paper will give the idea about the Automatic analysis of Diabetic retinopathy which affects the vision. From this, the new authors can get the understanding about the Automatic Screening and detection of various lesions at the early stage, and it will give the preventive measures to the blindness. The summary will give the performance analysis of the authors of various Universities also.

REFERENCES

EXUDATES

- Akara Sopharak, bunyarit uyyanonvara, 'Automatic Exudates detection from Diabetic Retinopathy Retinal Image using Fuzzy c means and morphological methods', 3rd International conference on Advances in computer science and technology, 2007, 359-364.
- Dr. H. B. Kekre, Dr. Tanuja K. Sarode, Ms. Tarannum Parkar," Hybrid Approach for Detection of Hard Exudates," (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. 3, 2013
- Anitha Somasundaram, and Janardhana Prabhu,"Detection of Exudates for the Diagnosis of Diabetic Retinopathy, "International Journal of Innovation and Applied Studies, Vol. 3 No. 1 May 2013, pp. 116-120.
- Mehdi ghafourian fakhar eadgahi, Hamidreza pourreza," Localization of Hard Exudates in Retinal Fundus Image by Mathematical Morphology Operations" 2012 2nd International conference on Computer and Knowledge Engineering (ICCKE), October 18-19, 2012, 978-1-4673-4476
- M.PonniBala*, S.Mohanapriya, Dr.S Vijayachitra.,"Detection of Exudates on Diabetic Retinopathy images Based on Morphological Operation and Connected Component Analysis ", International Journal of Advanced Engineering Research and Studies IJAERS/Vol. I/ Issue II/January-March, 2012/86-88.
- Akara Sopharak, bunyarit Uyyanonvara, 'Fine Exudates Detection Using Morphological Reconstruction Enhancement', Journal of Applied Biomedical, volume1, No 1, 2010
- Ivo Soares, Miguel Castelo Brance, 'Exudates Dynamic Detection in Retinal Fundus Images based on the Noise Map Ditribution', 19th European signal Processing Conference, Spain, 2011, page 46-50.
- G.Ferdic Mashak Ponnaiah, Capt.Dr.S.Santhosh Baboo, "Automatic optic disc detection and removal of false exudates for improving Retinopathy Classification Accuracy", International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013
- Nan Yang, Hu Chuan Lu, 'An Effective Framework for Automatic Segmentation of Hard Exudates in Fundus images', Journal of circuits, Systems and Computers Vol 2,No 1,2013
- Diptoneel Kayal, Sreeparna Banerjee, 'Detection of hard exudates using Simulated Annealing Based Thresholding mechanism in Digital Fundus Image', Journal of computer science and Information Technology, CSCP-2013, pp 119-124.
- Sidra Rashid and Shagufta, 'Computerised Exudate Detection in Fundus Images Using Statistical Feature Based Fuzzy C mean Clustering', International journal of Computing and Digital System No 3,135-145,2013
- Alireza Osareh, majid Mirmehdi, 'Comparative Exudate Classification using Support Vector Machines and Neural Networks', Journal of Medical Image Computing, springer-verlag 2002, pp413-420
- Atul Kumar, Manish Srivastava, A.K sinha, 'A Segment Based Technique for Detecting Exudate From Retinal Fundus Image', International Journal of Computer science and engineering Technology, vol 3, No 7,2012
- 14. Maria Garcia, clara I.Sanchez, 'Neural network Based detection of Hard Exudates in Retinal Images', An international journal of computing

Methodology and Software systems in Biomedical Practice, ELSEVIER, 2009, vol 93, page 9-19.

- Kittipol Wisaing ,Nualsawat ,'Automatic Detection of Exudates in diabetic retinopathy images', Journal of Computer Science 8980,1304-1313,2012
- Hussain F.Jaafer, Asoke K.Nandi ,'Automated Detection Of Exudates in Retinal Images Using a Spilt –And- Merge Algorithm', 18th European Signal Processing conference 2010, page 1622-1626.

MICROANEURYSM

- A.Sopharak, B.Uyyanonvara and S.baraman, 'Automatic micro aneurysm Quantification for Diabetic Retinopathy Screening', world Academy of Science, engineering and Technology 2013, page 1735-1738
- C.I.O.Martins ,R.M.S.veras,G.L.B.Ramalho,'Automatic Microaneursysm Detection and Characterization through Digital Color Fundus images', International Joint Conference-Brazilian Symposium on Artificial Intelligence and Brazilian symposium on Neural Networks,2010
- J.praKash, K.Sumathi,'detection and Classification of Microaneursysm for Diabetic retinopathy', International journal of Engineering research and Applications, 2013,page 31-36
- M.usman Akram, Shehzad Khalid, Shoab A.Khan,'Identification and classification of micro aneurysms for Early detection of diabetic retinopathy', Pattern Recognition,ELSEVIER,2012
- 5. K. Adal, S. Ali, D. Sidib, "Automated Detection of Micro aneurysms Using Robust Blob Descriptors", SPIE Medical Imaging - Computer-Aided Diagnosis, Orlando - FL : United States (2013).
- A.Shaeidi, 'An Algorithm for Identification of Retinal Micrianeurysms', Journal of Serbian society for Computational Mechanics ,vol 4, No1, 2010, pp 43-51
- Sekineh Asadi Amiri, Hamid Hassan pour, 'Detection of Micro aneurysms in Retinal Angiography Image using the circular Hough Transform', Journal of Advances in computer Research ,vol 3,No 1,2012,pages 1-12
- Sujith Kumar S.B, Vipula Singh ,'Automatic Detection of Diabetic Retinopathy in Dilated RGB Retinal Fundus Images', international journal of computer Applications ,volume 47,No.9,2012
- Atsushi Mizutani, Chisako Muramatsu,'Automated Microaneursysm Detection Method based on Double Ring Filter in Retinal Fundus Images', medical Imaging 2009 proceedings of SPIE vol 7260,IN-1
- A.Alaimahal,Dr.S.Vasuki,'Identification of Diabetic Retinopathy Stages in Human Retinal Images', International journal of Advanced Research on Computer Engineering and Technology ,Volume 2, issue 2,2013
- Akara Sopharak, Bunyarit uyyanonvara, 'Automatic Microaneursysm Detection From Non –Dilated Diabetic retinopathy retinal Images, proceedings of the world congress on engineering 2011,vol II, page 6-8
- 12. G.Yang, L.Gagnon, S.Wang, 'Algorithm For Detecting Micro aneurysms in Low Resolution Color Retinal images, 2001
- Lee Streeter and Michael J.Cree, 'Microaneurysm Detection in Color Fundus Images', image and Vision Computing NZ, 2003,page 280-283
- R.Gowtham,'Automatic Identification and Classification of Micro aneurysms for Detection of Diabetic Retinopathy', International journal of Research in Engineering and technology, 2014,vol 03,issue 02
- Md.Muhid Ahmed, Dr.K.Kumaravel, Internal Components Combination to Detect Microaneurysm, IJAIR,2013,vol 2,issue 5, page 155-158

 Murugan.R, Dr. Reeba Koreh, Microaneurysms 'Detection Methods in Retinal Images Mathematical Morphology ', International journal of Advances in Engineering science and technology, 2003

HEMORRHAGES

- Giri Babu Kande, T. Satya Savithri et al, 'Automatic detection of microanuresysms and the Hemorrhages in digital fundus Images', Journal of Digital Imaging 2010, 23(4), 430 – 437.
- Sergio Bortolin Junior and Danner Welfer, 'Automatic detection of microanuresysms and the Hemorrhages in color eye fundus images', International Journal of Computer Science and Information Technology, Vol 5, No 5, 2013.
- Athira R.V. Ferlin Deva Shahila D, 'Detection of retinal Hemorrhages using splat feature classification techniques', Journal of Engineering Research and Applications, Vol 4, Issue 1 (version 3), 2014, pp. 327 – 330.
- Yuji Hatanaka, Toshiaki Nakagawa, 'Improvement of automatic hemorrhage detection methods using brightness correction of fundus images', Journal of Medical Imaging, 2088, Vol 6915.
- L. Tang M. Niemeijer, J.M. Reinhasdt et al, 'Splat feature classification with application to Retinal Hemorrhage Detection in Fundus images', IEEE Transactions, Medical imaging, 2012.
- V. Vijayakumari, 'Detection of Hemorrhages' in retinal images', Indian Journal of Applied Research, Vol 3, Issue 7, 2013.
- S.A. Barman, C. Sinthanayothin, 'Classification of Hemorrhages pathologies on digital fundus images using a combination of neural network and tracking algorithms'.
- Nidhal Khdhair EI Abbadi et al, 'Improvement of Automatic Hemorrhages Detection methods using shapes recognition', Journal of Computing and Applications.
- Tareq AI Saeed, Doaa Youssef et al, 'Automatic detection of Microaneursysm and Hemorrhage for screening of retinal diseases', 3rd International Conference on Intelligent Computational systems, 2013, 39 – 43.
- Deepa D, Sumathi P, 'A survey on usage of Data Mining Techniques in the Detection of Hemorrhages in Fundus Images', International Journal of Advanced Research in Computer Science and Software Engineering, Vol 3, Issue 10, 2013.
- Alan D. Fleming, Keith A. Goatman et al, 'The role of Hemorrhages' and exudates detection in automated grading of diabetic retinopathy', Br. Journal of Opthalmol, 2012,706 – 711.

BIOGRAPHIES

E.Dhiravida selvi, received B.E in Electronics and Communication Engineering from The Indian engineering college, Manonmani Sundaranar University, tirunelvelli, Tamilnadu, India,in the year1996, Post graduate degree in M.E

Communication system from Thiyagarajar College of engineering Madurai, Tamilnadu, India in the year of 1998 and Pursing Ph.D at SathyaBama University with a specialization in Medical Image Processing. She started her academic carrier in the year 1999 as Lecturer. Currently, she is working as a Hod in the Mohamed Sathak A.J college of engineering ,Chennai,tamilnadu,India. He is the life member of IETE,ISTE, New Delhi, India.

V.Rajamani, received B.E in Electronics and Communication Engineering from national Engineering College,Madurai Post graduate degree in M.E. Applied Electronics from Govt. College of Technology, degree from the Institute of Technology, Banaras

Hindu University, Varanasi, Uttar Pradesh, India in 1999 with a specialization in semiconductor device modeling for optical communication receivers.. Currently, he is working as a Principal in the IndraGanesan College of Engineering, Tiruchirappalli, Tamilnadu, India. He has published more than 130 papers in the referred national and international journals and conference proceedings. Under his guidance, 10 research scholars have completed their doctoral degrees. He has also completed 10 PG dissertations also. His area of interest includes Device Modeling, VLSI Design, Image Processing and Optical Networking and Communication. He is the life member of ISTE, New Delhi, India and member in IAENG.