

A Review on SQL Injection

Vidushi1, Prof. S. Niranjan2
1,2 Department of Computer Science &Engineering,

Ganga Institute of Technology and Management,

Kablana, Jhajjar, Haryana, India

Abstract—SQL Injection is a technique of introducing

malicious code into entry fields. This is one of the attacking

methods used by hackers to steal the information of

organizations. Security of databases is still an open challenge.

SQL injection is a major threat to our web application which

gives the unauthorized access to sensitive information of the

database to the attackers. Researchers and practitioners have

proposed various methods to address the SQL injection

problem, current approaches either fail to address the full

scope of the problem or have limitations that prevent their use

and adoption. Many researchers and practitioners are

familiar with only a subset of the wide range of techniques

available to attackers who are trying to take advantage of

SQL injection vulnerabilities. As a consequence, many

solutions proposed in the literature address only some of the

issues related to SQL injection.

Index Terms—Introduction, History, SQL Injection,Attack

Intent, Sources, Types, Detection Techniques, References.

1.INTRODUCTION

SQL injection comes with a bang and caused revolution in

database attacking . In recent years, with the explosion in

web-based commerce and information systems, databases

have been drawing ever closer to the network and it is

critical part of network security. Database is the storage

brain of the website. A hacked database is the source of

password and sensitive information like credit card

number, bank account number and every important thing

that is forbidden. SQL injection can cause severe damage

to our database. Importance should be given for preventing

database exploitation by SQL injection. The aim of this

paper is to create awareness among web developers or

database

administrators about the urgent need for database security.

Our ultimate objective is to totally eradicate the whole

concept of SQL injection and to avoid this technique

becoming a plaything in hands of exploiters.[1] A successful

SQL injection exploit can read sensitive data from the

database, modify database data (Insert/Update/Delete),

execute administration operations on the database (such as

shutdown the DBMS), recover the content of a given file

present on the DBMS file system and in some cases issue

commands to the operating system. SQL injection attacks

are a type of injection attack, in which SQL commands are

injected into data-plane input in order to effect the

execution of predefined SQL commands.[2]

II. . HISTORY OF SQL INJECTION-

Ever since the advent of the computer, there have always

been people trying to hack them. William D. Mathews of

MIT discovered a flaw in the Multics CTSS password

file on the IBM 7094 in 1965;

John T. Draper ("Captain Crunch") discovered a cereal toy

whistle could provide free phone calls around 1971; The

Chaos Computer Club, the Cult of the Dead Cow, 2600, the

infamous Kevin Mitnick, even computing godfather Alan

Turing and his World War II German Enigma-cipher

bustingBombe, all and more have participated in hacking

computers for as long as computers have existed.

Through the 1980s and 1990s, the world began to see the

advent of the personal computer, the internet, and the world

wide web. Telephone lines in millions of homes began

screaming with the ear-piercing tones of dial up

connections. AOL, CompuServe, Juno, and more began

providing home users with information portals and

gateways to the web. The information age was born; as

was the age of information security (and,

indeed, insecurity).

As websites began to form by the thousands per day, so did

the technology behind them. Websites went from merely

being static pages of text and images to dynamic web

applications of custom-tailored content. HTML, CSS, and

JavaScript grew into bigger and better systems for stitching

content together in the browser, and the browser itself

evolved, through Internet Explorer, Netscape, Firefox,

Chrome, and more. PHP and Perl CGI, among others,

became the languages of choice for backend website

scripting to real-time generate the HTML and other

elements browsers would render. Database systems came

and went, but MySQL became the most popular. In fact, a

lot of things came and went -- Dot-Com bubble, anyone? --

but one thing always remained: web application

security.[3]

Here is a small sampling by Mavituna Security:

 In 2012, 97% of all data breaches world wide were

SQL injection attacks.

 In one month, from the end of 2011 to early 2012, over

1,000,000 sites were successfully attacked with SQL

injection.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

1

 SQL injection has remained in the top 10 list of

vulnerabilities compiled by the Open Web Application

Security Project.

III. A SIMPLE SQL INJECTION

The injection process works by prematurely terminating a

text string and appending a new command.[3] Because the

inserted command may have additional strings appended to

it before it is executed, the malefactor terminates the

injected string with a comment mark "--". Subsequent text

is ignored at execution time.

A simple SQL injection is shown through the following

script

The script builds an SQL query by concatenating hard-

coded strings together with a string entered by the user:

var Shipcity;

ShipCity = Request.form ("ShipCity");

var sql = "select * from OrdersTable where ShipCity = '" +

ShipCity + "'";

The user is prompted to enter the name of a city. If she

enters Redmond, the query assembled by the script looks

similar to the following:

SELECT * FROM OrdersTable WHERE ShipCity =

'Redmond'

However, assume that the user enters the following:

Redmond'; drop table OrdersTable--

In this case, the following query is assembled by the script:

SELECT * FROM OrdersTable WHERE ShipCity =

'Redmond';drop table OrdersTable--'

The semicolon (;) denotes the end of one query and the

start of another. The double hyphen (--) indicates that the

rest of the current line is a comment and should be ignored.

If the modified code is syntactically correct, it will be

executed by the server. When SQL Server processes this

statement, SQL Server will first select all records

in OrdersTable where ShipCity is Redmond. Then, SQL

Server will drop Orders Table.

As long as injected SQL code is syntactically correct,

tampering cannot be detected programmatically. Therefore,

you must validate all user input and carefully review code

that executes constructed SQL commands in the server that

you are using. Coding best practices are described in the

following sections in this topic.[2]

IV. ATTACK INTENT

Attacks can also be characterized based on the goal, or

intent,of the attacker. Therefore, we can define[4] several

intents as follows:

Identifying injectable parameters: The attacker wants to

probe a Web application to discover which parameters and

user-input fields are vulnerable to SQLIA.

Performing database finger-printing: The attacker wants to

discover the type and version of database that a Web

application is using. Certain types of databases respond

differently to different queries and attacks, and this

information can be used to “fingerprint” the database.

Knowing the type and version of the database used by a

Web application allows an attacker to craft

databasespecific attacks.

Determining database schema: To correctly extract data

froma database, the attacker often needs to know database

schema information, such as table names, column names,

and column data types. Attacks with this intent are created

to collect or infer this kind of information.

Extracting data: These types of attacks employ techniques

thatwill extract data values from the database. Depending

on the type of the Web application, this information could

be sensitive and highly desirable to the attacker. Attacks

with this intent are the most common type of SQLIA.

Adding or modifying data: The goal of these attacks is to

add or change information in a database.

Performing denial of service: These attacks are performed

to shut down the database of a Web application, thus

denying service to other users. Attacks involving locking or

dropping database tables also fall under this category.

Evading detection: This category refers to certain attack

techniques that are employed to avoid auditing and

detection by system protection mechanisms.

Bypassing authentication: The goal of these types of

attacks isto allow the attacker to bypass database and

application authentication mechanisms. Bypassing such

mechanisms could allow the attacker to assume the rights

and privileges associated with another application user.

Executing remote commands: These types of attacks

attempt to execute arbitrary commands on the database.

These commands can be stored procedures or functions

available to database users.

Performing privilege escalation: These attacks take

advantageof implementation errors or logical flaws in the

database in order to escalate the privileges of the attacker.

As opposed to bypassing authentication attacks, these

attacks focus on exploiting the database user privileges.

5. Sources[5] of SQL Injection Attack

 Injection through user input

 Malicious strings are introduced in web forms through

user inputs.

 Injection through cookies

 Modified cookie fields contain attack strings.

 Injection through server variables

Headers are manipulated to c ontain attack strings.

5.1 Second-order injection

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

2

• Trojan horse input seems fine until used in a certain

situation.

Attack does not occur when it first reaches the database,

but when used later on.

Input: admin’-- ===> admin\’--

queryString ="UPDATE users SET pin=" + newPin +

" WHERE userNa me=’" + userName + "’ AND pin=" +

oldPin;

queryString =“UPDATE users SET pin=’0’

WHERE userName= ’admin’--’ AND pin=1”;

6. Types of SQL Injection

 Piggy-backed Queries

Attack Intent: Extraction, modify datasets, execute

remote commands, DoS

Different than other attacks not only because hacker

attempts to execute two commands at once but also due to

the first query not intended to modify or cause damage.

First query is valid and runs normally but when delimiter is

recognized DBMS executes second malicious query

System that is vulnerable to piggy-backed queries is

generally due to misconfiguartion which allows for

multiple statements in one query

• Tautologies

This attack works by inserting an “always true” fragment

into a WHERE clause of the SQL statement[7]. This is often

used in combination with the insertion of a double dash --

to cause the remainder of a statement to be ignored,

ensuring extraction of largest amount of data. Tautological

injections can include techniques to further mask SQL

expression fragments, such as the following:

' or 'simple' like 'sim%' --

' or 'simple' like 'sim' || 'ple' --

The || in the example is used to concatenate strings, when

evaluated the text 'sim' || 'ple'becomes 'simple'.

• Alternate Encodings

In this case, text is encoded to avoid detection by defensive

coding practices. It can also be very difficult to generate

rules for a WAF to detect encoded input. Encodings, in

fact, can be used in combination with other attack

classifications. Since databases parse comments out of an

SQL statement prior to processing it, comments are often

used in the middle of an attack to hide the attack’s pattern.

Scanning and detection techniques, including those used in

WAFs, have not been effective against alternate encodings

or comment based obfuscation because all possible

encodings must be considered.

• Stored Procedure Attacks: These attacks attempt to

execute database stored procedures. The attacker initially

determines the database type (typically through

illegal/logically incorrect queries) and then uses that

knowledge to determine what stored procedures might

exist. Contrary to popular belief, using stored procedures

does not make the database invulnerable to SQL injection

attacks. Stored procedures can be vulnerable to privilege

escalation, buffer overflows, and even provide

administrative access to the operating system.

• Illegal/Logically Incorrect Queries : Attackers use this

approach to gather important information about the type of

database and its structure. Attacks of this nature are often

used in the initial reconnaissance phase of the attack to

gather critical knowledge used in subsequent attacks.

Returned error pages that are not filtered can be very

instructive. Even if the application sanitizes error

messages, the fact that an error is returned or not returned

can reveal vulnerable or injectable parameters. Syntax

errors identify injectable parameters; type errors help

decipher data types of certain columns; logical errors, if

returned to the user, can reveal table or column names.

The specific attacks within this class are largely the same

as those used in a Tautological attack. The difference is

that these are intended to determine how the system

responds to different attacks by looking at the response to a

normal input, an input with a logically true statement

appended (typical

tautological attack), an input with a logically false

statement appended (to catch the response to failure) and

an invalid statement to see how the system responds to bad

SQL. This will often allow the attacker to see if an attack

got through to the database even if the application does not

allow the output from that statement to be displayed.

• Union Query: This attack exploits a vulnerable parameter

by injecting a statement of the form:

foo'UNION SELECT <rest of injected query>

The attacker can insert any appropriate query to retrieve

information from a table different from the one that was the

target of the original statement.The database returns a

dataset that is the union of the results of the original first

query and the results of the injected second query.

V. PREVENTION TECHNIQUES

• Defensive Coding Best Practices

The root cause of SQL injection vulnerabilities is

insufficient input validation.

Encoding of inputs: Injection into a string parameter is

often accomplished through the use of meta-characters that

trick the SQL parser into interpreting user input as SQL

tokens. While it is possible to prohibit any usage of these

meta-characters, doing so would restrict a non-malicious

user’s ability to specify legal inputs that contain such

characters. A better solution is to use functions that encode

a string in such a way that all meta-characters are specially

encoded and interpreted by the database as normal

characters.

Positive pattern matching: Developers should establish

input validation routines that identify good input as

opposed to bad input. This approach is generally called

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

3

positive validation, as opposed to negative validation,

which searches input for forbidden patterns or SQL tokens.

Because developers might not be able to envision every

type of attack that could be launched against their

application, but should be able to specify all the forms of

legal input, positive validation is a safer way to check

inputs.

Identification of all input sources: Developers must check

all input to their application. As we outlined , there

• Penetration Testing

• Static Analysis of Code

• Safe Development Libraries

Are many possible sources of input to an application. If

used to construct a query, these input sources can be a way

for an attacker to introduce an SQLIA. Simply put, all

input sources must be checked.

Although defensive coding practices remain the best way

to prevent SQL injection vulnerabilities, their application is

problematic in practice. Defensive coding is prone to

human error and is not as rigorously and completely

applied as automated techniques. While most developers

do make an effort to code safely, it is extremely difficult to

apply defensive coding practices rigorously and correctly

to all sources of input. In fact, many of the SQL injection

vulnerabilities discovered in real applications are due to

human errors: developers forgot to add checks or did not

perform adequate input validation [10, 11,12]. In other words,

in these applications, developers were making an effort to

detect and prevent SQLIAs, but failed to do so adequately

and in every needed location. These examples provide

further evidence of the problems associated with depending

on developer’s use of defensive coding.

Moreover, approaches based on defensive coding are

weakened by the widespread promotion and acceptance of

so-called “pseudoremedies” [9]. We discuss two of the

most commonly-proposed pseudo-remedies. The first of

such remedies consists of checking user input for SQL

keywords, such as “FROM,” “WHERE,” and “SELECT,”

and SQL operators, such as the single quote or comment

operator. The rationale behind this suggestion is that the

presence of such keywords and operators may indicate an

attempted SQLIA. This approach clearly results in a high

rate of false positives because, in many applications, SQL

keywords can be part of a normal text entry, and SQL

operators can be used to express formulas or even names

(e.g., O’Brian). The second commonly suggested pseudo-

remedy is to use stored procedures or prepared statements

to prevent SQLIAs. Unfortunately, stored procedures and

prepared statements can also be vulnerable to SQLIAs

unless developers rigorously apply defensive coding

guidelines. Interested readers mayrefer to [30,31,29,16] for

examples of how these pseudo-remedies can be subverted.

VIII. DETECTION AND PREVENTION TECHNIQUES

Researchers have proposed a range of techniques to assist

developers and compensate for the shortcomings in the

application of defensive coding.

Black Box Testing. Huang and colleagues [8] propose

WAVES, a black-box technique for testing Web

applications for SQL injection vulnerabilities. The

technique uses a Web crawler to identify all points in a

Web application that can be used to inject SQLIAs.

It then builds attacks that target such points based on a

specified list of patterns and attack techniques. WAVES

then monitors the application’s response to the attacks and

uses machine learning techniques to improve its attack

methodology. This technique improves over most

penetration-testing techniques by using machine learning

approaches to guide its testing. However, like all black-box

and penetration testing techniques, it cannot provide

guarantees of completeness.

Static Code Checkers. JDBC-Checker is a technique for

statically checking the type correctness of dynamically-

generated SQL queries [28,29]. This technique was not

developed with the intent of detecting and preventing

general SQLIAs, but can nevertheless be used to prevent

attacks that take advantage of type mismatches in a

dynamically-generated query string. JDBC-Checker is able

to detect one of the root causes of SQLIA vulnerabilities in

code improper type checking of input. However, this

technique would not catch more general forms of SQLIAs

because most of these attacks consist of syntactically and

type correct queries. Wassermann and Su propose an

approach that uses static analysis combined with automated

reasoning to verify that the SQL queries generated in the

application layer cannot contain a tautology [27]. The

primary drawback of this technique is that its scope is

limited to detecting and preventing tautologies and cannot

detect other types of attacks.

Combined Static and Dynamic Analysis. AMNESIA is a

model-based technique that combines static analysis and

runtime monitoring [26,25]. In its static phase, AMNESIA

uses static analysis to build models of the different types of

queries an application can legally generate at each point of

access to the database. In its dynamic phase, AMNESIA

intercepts all queries before they are sent to the database

and checks each query against the staticallybuilt models.

Queries that violate the model are identified as SQLIAs

and prevented from executing on the database. In their

evaluation,the authors have shown that this technique

performs well against SQLIAs. The primary limitation of

this technique is that this technique performs well against

SQLIAs. The primary limitation of this technique is that its

success is dependent on the accuracy of its static analysis

for building query models. Certain types of code

obfuscation or query development techniques could make

this step less precise and result in both false positives and

false negatives. Similarly, two recent related approaches,

SQLGuard [14] and SQLCheck [15] also check queries at

runtime to see if they conform to a model of expected

queries. In these approaches, the model is expressed as a

grammar that only accepts legal queries. In SQLGuard, the

model is educed at runtime by examining the structure of

the query before and after the addition of user-input. In

SQLCheck, the model is specified independently by the

developer. Both approaches use a secret key to delimit user

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

4

input during parsing by the runtime checker, so security of

the approach is dependent on attacke.rs not being able to

discover the key. Additionally, the use of these two

approaches requires the developer to either rewrite code to

use a special intermediate library or manually insert special

markers into the code where user input is added to a

dynamically generated query.

Taint Based Approaches. WebSSARI detects input-

validationrelated errors using information flow analysis

[10]. In this approach, static analysis is used to check taint

flows against preconditions for sensitive functions. The

analysis detects the points in which preconditions have not

been met and can suggest filters and sanitization functions

that can be automatically added to the application to satisfy

these preconditions. The WebSSARI system works by

considering as sanitized input that has passed through a

predefined set of filters. In their evaluation, the authors

were able to detect security vulnerabilities in a range of

existing applications. The primary drawbacks of this

technique are that it assumes that adequate preconditions

for sensitive functions can be accurately expressed using

their typing system and that having input passing through

certain types of filters is sufficient to consider it not tainted.

For many types of functions and applications, this

assumption is too strong. Livshits and Lam [11] use static

analysis techniques to detect vulnerabilities in software.

The basic approach is to use information flow techniques to

detect when tainted input has been used to construct an

SQL query. These queries are then flagged as SQLIA

vulnerabilities. The authors demonstrate the viability of

their technique by using this approach to find security

vulnerabilities in a benchmark suite. The primary limitation

of this approach is that it can detect only known patterns of

SQLIAs and, because it uses a conservative analysis and

has limited support for untain nting operations, can

generate a relatively high amount of false positives. Several

dynamic taint analysis approaches have been proposed.

Two similar approaches by Nguyen-Tuong and colleagues

[22] and Pietraszek and Berghe [23] modify a PHP

interpreter to track precise per-character taint information.

The techniques use a context sensitive analysis to detect

and reject queries if untrusted input has been used to create

certain types of SQL tokens. A common drawback of these

two approaches is that they require modifications to the

runtime environment, which affects portability. A

technique by Haldar and colleagues [20] and SecuriFly

[21] implement a similar approach for Java. However,

these techniques do not use the context sensitive analysis

employed by the other two approaches and track taint

information on a per-string basis (as opposed to

percharacter).

SecuriFly also attempts to sanitize query strings that have

been generated using tainted input. However, this

sanitization approach does not help if injection is

performed into numeric fields. In general, dynamic taint-

based techniques have shown a lot of promise in their

ability to detect and prevent SQLIAs. The primary

drawback of these approaches is that identifying all sources

of tainted user input in highly-modular Web applications

and accurately propagating taint information is often a

difficult task.

New Query Development Paradigms. Two recent

approaches, SQL DOM [18] and Safe Query Objects [24],

use encapsulation of database queries to provide a safe and

reliable way to access databases. These techniques offer an

effective way to avoid the SQLIA problem by changing the

query-building process from an unregulated one that uses

string concatenation to a systematic one that uses a type-

checked API. Within their API, they are able to

systematically apply coding best practices such as input

filtering and rigorous type checking of user input. By

changing the development paradigm in which SQL queries

are created, these techniques eliminate the coding practices

that make most SQLIAs possible. Although effective, these

techniques have the drawback that they require developers

to learn and use a new programming paradigm or query-

development process. Furthermore, because they focus on

using a new development process, they do not provide any

type of protection or improved security for existing legacy

systems.

Intrusion Detection Systems. Valeur and colleagues [17]

propose the use of an Intrusion Detection System (IDS) to

detect SQLIAs. Their IDS system is based on a machine

learning technique that is trained using a set of typical

application queries. The technique builds models of the

typical queries and then monitors the application at runtime

to identify queries that do not match the model. In their

evaluation, Valeur and colleagues have shown that their

system is able to detect attacks with a high rate of success.

However, the fundamental limitation of learning based

techniques is that they can provide no guarantees about

their detection abilities because their success is dependent

on the quality of the training set used. A poor training set

would cause the learning technique to generate a large

number of false positives and negatives.

Proxy Filters. Security Gateway [12] is a proxy filtering

system that enforces input validation rules on the data

flowing to a Web application. Using their Security Policy

Descriptor Language (SPDL), developers provide

constraints and specify transformations to be applied to

application parameters as they flow from the Web page to

the application server. Because SPDL is highly expressive,

it allows developers considerable freedom in expressing

their policies. However, this approach is human-based and,

like defensive programming, requires developers to know

not only which data needs to be filtered, but also what

patterns and filters to apply to the data.

Instruction Set Randomization. SQLrand [29] is an

approach based on instruction-set randomization. SQLrand

provides a framework that allows developers to create

queries using randomized instructions instead of normal

SQL keywords. A proxy filter intercepts queries to the

database and de-randomizes the keywords.SQL code

injected by an attacker would not have been constructed

using the randomized instruction set. Therefore, injected

commands would result in a syntactically incorrect query.

While this technique can be very effective, it has several

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

5

practical drawbacks.First, since it uses a secret key to

modify instructions, security of the approach is dependent

on attackers not being able to discover the key. Second, the

approach imposes a significant infrastructure overhead

because it require the integration of a proxy for the

database in the system.

VIII. CONCLUSION

In this paper, I have presented a survey and comparison of

current techniques for detecting and preventing SQLIAs.

To perform this evaluation, I first identified the various

types of SQLIAs known to date. I then evaluated the

considered techniques in terms of their ability to detect

and/or prevent such attacks. I also studied the different

mechanisms through which SQLIAs can be introduced into

an application and identified which techniques were able to

handle which mechanisms. Lastly, I summarized the

deployment requirements of each technique and evaluated

to what extent its detection and prevention mechanisms

could be fully automated .Our evaluation found several

general trends in the results. Many of the techniques have

problems handling attacks that take advantage of poorly-

coded stored procedures and cannot handle attacks that

disguise themselves using alternate encodings. We also

found a general distinction in prevention abilities based on

the difference between prevention-focused and genera al

detection and prevention techniques. Future evaluation

work should focus on evaluating the techniques’s precision

and effectiveness in practice.

REFERENCES

[1] http://www.jiclt.com/index.php/jiclt/article/view/141[2]

[2] https://technet.microsoft.com/en-
us/library/ms161953(v=SQL.105).aspx

[3] https://www.netsparker.com/blog/web-security/sql-injection-

vulnerability-history/
[4] Halfond,viegas,orso “A Classification of SQL, Injection Attacks and

Countermeasures”, ISSSE , 2006

[5] William Halfond – ISSSE 2006 – March 14th, 2006
[6]M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,

Redmond, Washington, second edition, 2003.

[7] http://www.dbnetworks.com/pdf/sql-injection-detection- eb-
environment.pdf

[8] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application Security

Assessment by Fault Injection and Behavior Monitoring. In
Proceedings of the 11th International World Wide Web Conference

(WWW 03), May 2003.
[9] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,

Redmond, Washington, second edition, 2003.

 [10]Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.
Securing Web Application Code by Static Analysis and Runtime

Protection. In Proceedings of the 12th International World Wide

Web Conference (WWW 04), May 2004.
[11] V. B. Livshits and M. S. Lam. Finding Security Errors in Java

Programs with Static Analysis. In Proceedings of the 14th Usenix

Security Symposium, pages 271–286, Aug. 2005
[12] D. Scott and R. Sharp. Abstracting Application-level Web Security.

In Proceedings of the 11th International Conference on the World

Wide Web (WWW 2002), pages 396–407, 2002.
[13] E. M. Fayo. Advanced SQL Injection in Oracle Databases. Technical

report, Argeniss Information Security, Black Hat Briefings, Black

Hat USA, 2005.
[14]G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree

Validation to Prevent SQL Injection Attacks. In International

Workshop on Software Engineering and Middleware (SEM), 2005
 [15]Z. Su and G. Wassermann. The Essence of Command Injection

Attacks in Web Applications. In The 33rd Annual Symposium on

Principles of Programming Languages (POPL 2006), Jan. 2006.

 [16]S. McDonald. SQL Injection Walkthrough. White paper,

SecuriTeam, May 2002.

http://www.securiteam.com/securityreviews/5DP0N1P76E.html.

[17] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to

the Detection of SQL Attacks. In Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment

(DIMVA), Vienna, Austria, July 2005.

[18] R. McClure and I. Kruger. SQL DOM: Compile Time Checking of ¨
Dynamic SQL Statements. In Proceedings of the 27th International

Conference on Software Engineering (ICSE 05), pages 88–96, 2005

[19]S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Proceedings of the 2nd Applied Cryptography and

Network Security (ACNS) Conference, pages 292–302, June 2004.

 [20]V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for
Java. In Proceedings 21st Annual Computer Security Applications

Conference, Dec. 2005.

[21] M. Martin, B. Livshits, and M. S. Lam. Finding Application Errors
and Security Flaws Using PQL: A Program Query Language. In

Proceedings of the 20th annual ACM SIGPLAN conference on

Object oriented programming systems languages and applications
(OOPSLA 2005), pages 365–383, 2005.

 [22]A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.

Automatically Hardening Web Applications Using Precise Tainting
Information. In Twentieth IFIP International Information Security

Conference (SEC 2005), May 2005.

[23]T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks
through Context-Sensitive String Evaluation. In Proceedings of

Recent Advances in Intrusion Detection (RAID2005), 2005.
[24] W. R. Cook and S. Rai. Safe Query Objects: Statically Typed

Objects as Remotely Executable Queries. In Proceedings of the 27th

International Conference on Software Engineering (ICSE
2005),2005.

[25] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring

for NEutralizing SQL-Injection Attacks. In Proceedings of the IEEE
and ACM International Conference on Automated Software

Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005. To

appear.
 [26]W. G. Halfond and A. Orso. Combining Static Analysis and Runtime

Monitoring to Counter SQL-Injection Attacks. In Proceedings of the

Third International ICSE Workshop on Dynamic Analysis (WODA

2005), pages 22–28, St. Louis, MO, USA, May 2005.

[27] G. Wassermann and Z. Su. An Analysis Framework for Security in

Web Applications. In Proceedings of the FSE Workshop on
Specification and Verification of Component-Based Systems

(SAVCBS 2004), pages 70–78, 2004.

 [28]C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis
Tool for SQL/JDBC Applications. In Proceedings of the 26th

International Conference on Software Engineering (ICSE 04) –

Formal Demos, pages 697–698, 2004.
[29] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically

Generated Queries in Database Applications. In Proceedings of the

26th International Conference on Software Engineering (ICSE 04),
pages 645–654, 2004.

[29] S. McDonald. SQL Injection: Modes of attack, defense, and why it

matters. White paper, Government Security.org, April 2002.
[30] C. Anley. Advanced SQL Injection In SQL Server Applications.

White paper, Next Generation Security Software Ltd., 2002.

[31] O. Maor and A. Shulman. SQL Injection Signatures Evasion. White
paper, Imperva, April 2004. http://www.imperva.com/ application

defense center/white papers/sql injection signatures evasion.html.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

6

