Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

A Review on SQL Injection

Vidushi?, Prof. S. Niranjan?
12 Department of Computer Science &Engineering,
Ganga Institute of Technology and Management,
Kablana, Jhajjar, Haryana, India

Abstract—SQL Injection is a technique of introducing
malicious code into entry fields. This is one of the attacking
methods used by hackers to steal the information of
organizations. Security of databases is still an open challenge.
SQL injection is a major threat to our web application which
gives the unauthorized access to sensitive information of the
database to the attackers. Researchers and practitioners have
proposed various methods to address the SQL injection
problem, current approaches either fail to address the full
scope of the problem or have limitations that prevent their use
and adoption. Many researchers and practitioners are
familiar with only a subset of the wide range of techniques
available to attackers who are trying to take advantage of
SQL injection vulnerabilities. As a consequence, many
solutions proposed in the literature address only some of the
issues related to SQL injection.

Index Terms—Introduction, History, SQL Injection,Attack
Intent, Sources, Types, Detection Techniques, References.

1.INTRODUCTION

SQL injection comes with a bang and caused revolution in
database attacking . In recent years, with the explosion in
web-based commerce and information systems, databases
have been drawing ever closer to the network and it is
critical part of network security. Database is the storage
brain of the website. A hacked database is the source of
password and sensitive information like credit card
number, bank account number and every important thing
that is forbidden. SQL injection can cause severe damage
to our database. Importance should be given for preventing
database exploitation by SQL injection. The aim of this
paper is to create awareness among web developers or
database

administrators about the urgent need for database security.
Our ultimate objective is to totally eradicate the whole
concept of SQL injection and to avoid this technique
becoming a plaything in hands of exploiters. A successful
SQL injection exploit can read sensitive data from the
database, modify database data (Insert/Update/Delete),
execute administration operations on the database (such as
shutdown the DBMS), recover the content of a given file
present on the DBMS file system and in some cases issue
commands to the operating system. SQL injection attacks
are a type of injection attack, in which SQL commands are
injected into data-plane input in order to effect the
execution of predefined SQL commands.?

I. . HISTORY OF SQL INJECTION-

Ever since the advent of the computer, there have always
been people trying to hack them. William D. Mathews of
MIT discovered a flaw in the Multics CTSS password
file on the IBM 7094 in 1965;

John T. Draper ("Captain Crunch") discovered a cereal toy
whistle could provide free phone calls around 1971; The
Chaos Computer Club, the Cult of the Dead Cow, 2600, the
infamous Kevin Mitnick, even computing godfather Alan
Turing and his World War 1l German Enigma-cipher
bustingBombe, all and more have participated in hacking
computers for as long as computers have existed.

Through the 1980s and 1990s, the world began to see the
advent of the personal computer, the internet, and the world
wide web. Telephone lines in millions of homes began
screaming with the ear-piercing tones of dial up
connections. AOL, CompusServe, Juno, and more began
providing home users with information portals and
gateways to the web. The information age was born; as
was the age of information security (and,
indeed, insecurity).

As websites began to form by the thousands per day, so did
the technology behind them. Websites went from merely
being static pages of text and images to dynamic web
applications of custom-tailored content. HTML, CSS, and
JavaScript grew into bigger and better systems for stitching
content together in the browser, and the browser itself
evolved, through Internet Explorer, Netscape, Firefox,
Chrome, and more. PHP and Perl CGI, among others,
became the languages of choice for backend website
scripting to real-time generate the HTML and other
elements browsers would render. Database systems came
and went, but MySQL became the most popular. In fact, a
lot of things came and went -- Dot-Com bubble, anyone? --
but one thing always remained: web application
security.[3]

Here is a small sampling by Mavituna Security:

= |n 2012, 97% of all data breaches world wide were
SQL injection attacks.

= Inone month, from the end of 2011 to early 2012, over
1,000,000 sites were successfully attacked with SQL
injection.

Volume 3, I ssue 10

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

= SQL injection has remained in the top 10 list of
vulnerabilities compiled by the Open Web Application
Security Project.

I11. A SIMPLE SQL INJECTION

The injection process works by prematurely terminating a
text string and appending a new command.[! Because the
inserted command may have additional strings appended to
it before it is executed, the malefactor terminates the
injected string with a comment mark "--". Subsequent text
is ignored at execution time.

A simple SQL injection is shown through the following
script

The script builds an SQL query by concatenating hard-
coded strings together with a string entered by the user:

var Shipcity;
ShipCity = Request.form ("ShipCity");

var sql = "select * from OrdersTable where ShipCity =" +
ShipCity +""";

The user is prompted to enter the name of a city. If she
enters Redmond, the query assembled by the script looks
similar to the following:

SELECT * FROM OrdersTable WHERE ShipCity =
'Redmond’

However, assume that the user enters the following:
Redmond'; drop table OrdersTable--
In this case, the following query is assembled by the script:

SELECT * FROM OrdersTable WHERE ShipCity =
'Redmond';drop table OrdersTable--'

The semicolon (;) denotes the end of one query and the
start of another. The double hyphen (--) indicates that the
rest of the current line is a comment and should be ignored.
If the modified code is syntactically correct, it will be
executed by the server. When SQL Server processes this
statement, SQL Server will first select all records
in OrdersTable where ShipCity is Redmond. Then, SQL
Server will drop Orders Table.

As long as injected SQL code is syntactically correct,
tampering cannot be detected programmatically. Therefore,
you must validate all user input and carefully review code
that executes constructed SQL commands in the server that
you are using. Coding best practices are described in the
following sections in this topic./!

IV. ATTACK INTENT

Attacks can also be characterized based on the goal, or
intent,of the attacker. Therefore, we can definel several
intents as follows:

Identifying injectable parameters: The attacker wants to
probe a Web application to discover which parameters and
user-input fields are vulnerable to SQLIA.

Performing database finger-printing: The attacker wants to
discover the type and version of database that a Web
application is using. Certain types of databases respond
differently to different queries and attacks, and this
information can be used to “fingerprint” the database.
Knowing the type and version of the database used by a
Web application allows an attacker to craft
databasespecific attacks.

Determining database schema: To correctly extract data
froma database, the attacker often needs to know database
schema information, such as table names, column names,
and column data types. Attacks with this intent are created
to collect or infer this kind of information.

Extracting data: These types of attacks employ techniques
thatwill extract data values from the database. Depending
on the type of the Web application, this information could
be sensitive and highly desirable to the attacker. Attacks
with this intent are the most common type of SQLIA.

Adding or modifying data: The goal of these attacks is to
add or change information in a database.

Performing denial of service: These attacks are performed
to shut down the database of a Web application, thus
denying service to other users. Attacks involving locking or
dropping database tables also fall under this category.

Evading detection: This category refers to certain attack
techniques that are employed to avoid auditing and
detection by system protection mechanisms.

Bypassing authentication: The goal of these types of
attacks isto allow the attacker to bypass database and
application authentication mechanisms. Bypassing such
mechanisms could allow the attacker to assume the rights
and privileges associated with another application user.

Executing remote commands: These types of attacks
attempt to execute arbitrary commands on the database.
These commands can be stored procedures or functions
available to database users.

Performing privilege escalation: These attacks take
advantageof implementation errors or logical flaws in the
database in order to escalate the privileges of the attacker.
As opposed to bypassing authentication attacks, these
attacks focus on exploiting the database user privileges.

5. Sources® of SQL Injection Attack
e Injection through user input

Malicious strings are introduced in web forms through
user inputs.

e Injection through cookies
Modified cookie fields contain attack strings.

e Injection through server variables
Headers are manipulated to ¢ ontain attack strings.

5.1 Second-order injection

Volume 3, I ssue 10

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

e Trojan horse input seems fine until used in a certain
situation.

Attack does not occur when it first reaches the database,
but when used later on.

Input: admin’-- ===> admin\’--
queryString ="UPDATE users SET pin=" + newPin +

" WHERE userNa me="" + userName + "> AND pin=" +
oldPin;

queryString =“UPDATE users SET pin="0"
WHERE userName= "admin’--> AND pin=1";
6. Types of SQL Injection

e Piggy-backed Queries

Attack Intent: Extraction, modify datasets, execute
remote commands, DoS

Different than other attacks not only because hacker
attempts to execute two commands at once but also due to
the first query not intended to modify or cause damage.
First query is valid and runs normally but when delimiter is
recognized DBMS executes second malicious query
System that is vulnerable to piggy-backed queries is
generally due to misconfiguartion which allows for
multiple statements in one query

* Tautologies

This attack works by inserting an “always true” fragment
into a WHERE clause of the SQL statement[’l, This is often
used in combination with the insertion of a double dash --
to cause the remainder of a statement to be ignored,
ensuring extraction of largest amount of data. Tautological
injections can include techniques to further mask SQL
expression fragments, such as the following:

"or 'simple’ like 'sim%’ --
"or 'simple’ like 'sim' || 'ple’ --

The || in the example is used to concatenate strings, when
evaluated the text 'sim' || ‘ple’becomes 'simple’.

* Alternate Encodings

In this case, text is encoded to avoid detection by defensive
coding practices. It can also be very difficult to generate
rules for a WAF to detect encoded input. Encodings, in
fact, can be used in combination with other attack
classifications. Since databases parse comments out of an
SQL statement prior to processing it, comments are often
used in the middle of an attack to hide the attack’s pattern.
Scanning and detection techniques, including those used in
WAFs, have not been effective against alternate encodings
or comment based obfuscation because all possible
encodings must be considered.

» Stored Procedure Attacks: These attacks attempt to
execute database stored procedures. The attacker initially
determines the database type (typically through
illegal/logically incorrect queries) and then uses that
knowledge to determine what stored procedures might

exist. Contrary to popular belief, using stored procedures
does not make the database invulnerable to SQL injection
attacks. Stored procedures can be vulnerable to privilege
escalation, buffer overflows, and even provide
administrative access to the operating system.

* Illegal/Logically Incorrect Queries : Attackers use this
approach to gather important information about the type of
database and its structure. Attacks of this nature are often
used in the initial reconnaissance phase of the attack to
gather critical knowledge used in subsequent attacks.
Returned error pages that are not filtered can be very
instructive. Even if the application sanitizes error
messages, the fact that an error is returned or not returned
can reveal vulnerable or injectable parameters. Syntax
errors identify injectable parameters; type errors help
decipher data types of certain columns; logical errors, if
returned to the user, can reveal table or column names.

The specific attacks within this class are largely the same
as those used in a Tautological attack. The difference is
that these are intended to determine how the system
responds to different attacks by looking at the response to a
normal input, an input with a logically true statement
appended (typical

tautological attack), an input with a logically false
statement appended (to catch the response to failure) and
an invalid statement to see how the system responds to bad
SQL. This will often allow the attacker to see if an attack
got through to the database even if the application does not
allow the output from that statement to be displayed.

« Union Query: This attack exploits a vulnerable parameter
by injecting a statement of the form:

foo'UNION SELECT <rest of injected query>

The attacker can insert any appropriate query to retrieve
information from a table different from the one that was the
target of the original statement.The database returns a
dataset that is the union of the results of the original first
query and the results of the injected second query.

V. PREVENTION TECHNIQUES
* Defensive Coding Best Practices

The root cause of SQL injection vulnerabilities is
insufficient input validation.

Encoding of inputs: Injection into a string parameter is
often accomplished through the use of meta-characters that
trick the SQL parser into interpreting user input as SQL
tokens. While it is possible to prohibit any usage of these
meta-characters, doing so would restrict a non-malicious
user’s ability to specify legal inputs that contain such
characters. A better solution is to use functions that encode
a string in such a way that all meta-characters are specially
encoded and interpreted by the database as normal
characters.

Positive pattern matching: Developers should establish
input validation routines that identify good input as
opposed to bad input. This approach is generally called

Volume 3, I ssue 10

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

positive validation, as opposed to negative validation,
which searches input for forbidden patterns or SQL tokens.
Because developers might not be able to envision every
type of attack that could be launched against their
application, but should be able to specify all the forms of
legal input, positive validation is a safer way to check
inputs.

Identification of all input sources: Developers must check
all input to their application. As we outlined , there

* Penetration Testing
* Static Analysis of Code
* Safe Development Libraries

Are many possible sources of input to an application. If
used to construct a query, these input sources can be a way
for an attacker to introduce an SQLIA. Simply put, all
input sources must be checked.

Although defensive coding practices remain the best way
to prevent SQL injection vulnerabilities, their application is
problematic in practice. Defensive coding is prone to
human error and is not as rigorously and completely
applied as automated techniques. While most developers
do make an effort to code safely, it is extremely difficult to
apply defensive coding practices rigorously and correctly
to all sources of input. In fact, many of the SQL injection
vulnerabilities discovered in real applications are due to
human errors: developers forgot to add checks or did not
perform adequate input validation [0 11121 |n other words,
in these applications, developers were making an effort to
detect and prevent SQLIAs, but failed to do so adequately
and in every needed location. These examples provide
further evidence of the problems associated with depending
on developer’s use of defensive coding.

Moreover, approaches based on defensive coding are
weakened by the widespread promotion and acceptance of
so-called “pseudoremedies” [9]. We discuss two of the
most commonly-proposed pseudo-remedies. The first of
such remedies consists of checking user input for SQL
keywords, such as “FROM,” “WHERE,” and “SELECT,”
and SQL operators, such as the single quote or comment
operator. The rationale behind this suggestion is that the
presence of such keywords and operators may indicate an
attempted SQLIA. This approach clearly results in a high
rate of false positives because, in many applications, SQL
keywords can be part of a normal text entry, and SQL
operators can be used to express formulas or even names
(e.g., O’Brian). The second commonly suggested pseudo-
remedy is to use stored procedures or prepared statements
to prevent SQLIAs. Unfortunately, stored procedures and
prepared statements can also be vulnerable to SQLIAS
unless developers rigorously apply defensive coding
guidelines. Interested readers mayrefer to [30,31,29,16] for
examples of how these pseudo-remedies can be subverted.

VIII. DETECTION AND PREVENTION TECHNIQUES

Researchers have proposed a range of techniques to assist
developers and compensate for the shortcomings in the
application of defensive coding.

Black Box Testing. Huang and colleagues [8] propose
WAVES, a black-box technique for testing Web
applications for SQL injection vulnerabilities. The
technique uses a Web crawler to identify all points in a
Web application that can be used to inject SQLIAs.

It then builds attacks that target such points based on a
specified list of patterns and attack techniques. WAVES
then monitors the application’s response to the attacks and
uses machine learning techniques to improve its attack
methodology. This technique improves over most
penetration-testing techniques by using machine learning
approaches to guide its testing. However, like all black-box
and penetration testing techniques, it cannot provide
guarantees of completeness.

Static Code Checkers. JDBC-Checker is a technique for
statically checking the type correctness of dynamically-
generated SQL queries [28,29]. This technique was not
developed with the intent of detecting and preventing
general SQLIAS, but can nevertheless be used to prevent
attacks that take advantage of type mismatches in a
dynamically-generated query string. JDBC-Checker is able
to detect one of the root causes of SQLIA vulnerabilities in
code improper type checking of input. However, this
technique would not catch more general forms of SQLIAS
because most of these attacks consist of syntactically and
type correct queries. Wassermann and Su propose an
approach that uses static analysis combined with automated
reasoning to verify that the SQL queries generated in the
application layer cannot contain a tautology [27]. The
primary drawback of this technique is that its scope is
limited to detecting and preventing tautologies and cannot
detect other types of attacks.

Combined Static and Dynamic Analysis. AMNESIA is a
model-based technique that combines static analysis and
runtime monitoring [26,25]. In its static phase, AMNESIA
uses static analysis to build models of the different types of
queries an application can legally generate at each point of
access to the database. In its dynamic phase, AMNESIA
intercepts all queries before they are sent to the database
and checks each query against the staticallybuilt models.
Queries that violate the model are identified as SQLIAs
and prevented from executing on the database. In their
evaluation,the authors have shown that this technique
performs well against SQLIAs. The primary limitation of
this technique is that this technique performs well against
SQLIAs. The primary limitation of this technique is that its
success is dependent on the accuracy of its static analysis
for building query models. Certain types of code
obfuscation or query development techniques could make
this step less precise and result in both false positives and
false negatives. Similarly, two recent related approaches,
SQLGuard [14] and SQLCheck [15] also check queries at
runtime to see if they conform to a model of expected
queries. In these approaches, the model is expressed as a
grammar that only accepts legal queries. In SQLGuard, the
model is educed at runtime by examining the structure of
the query before and after the addition of user-input. In
SQLCheck, the model is specified independently by the
developer. Both approaches use a secret key to delimit user

Volume 3, I ssue 10

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

input during parsing by the runtime checker, so security of
the approach is dependent on attacke.rs not being able to
discover the key. Additionally, the use of these two
approaches requires the developer to either rewrite code to
use a special intermediate library or manually insert special
markers into the code where user input is added to a
dynamically generated query.

Taint Based Approaches. WebSSARI detects input-
validationrelated errors using information flow analysis
[10]. In this approach, static analysis is used to check taint
flows against preconditions for sensitive functions. The
analysis detects the points in which preconditions have not
been met and can suggest filters and sanitization functions
that can be automatically added to the application to satisfy
these preconditions. The WebSSARI system works by
considering as sanitized input that has passed through a
predefined set of filters. In their evaluation, the authors
were able to detect security vulnerabilities in a range of
existing applications. The primary drawbacks of this
technique are that it assumes that adequate preconditions
for sensitive functions can be accurately expressed using
their typing system and that having input passing through
certain types of filters is sufficient to consider it not tainted.

For many types of functions and applications, this
assumption is too strong. Livshits and Lam [11] use static
analysis techniques to detect vulnerabilities in software.
The basic approach is to use information flow techniques to
detect when tainted input has been used to construct an
SQL query. These queries are then flagged as SQLIA
vulnerabilities. The authors demonstrate the viability of
their technique by using this approach to find security
vulnerabilities in a benchmark suite. The primary limitation
of this approach is that it can detect only known patterns of
SQLIAs and, because it uses a conservative analysis and
has limited support for untain nting operations, can
generate a relatively high amount of false positives. Several
dynamic taint analysis approaches have been proposed.
Two similar approaches by Nguyen-Tuong and colleagues
[22] and Pietraszek and Berghe [23] modify a PHP
interpreter to track precise per-character taint information.
The techniques use a context sensitive analysis to detect
and reject queries if untrusted input has been used to create
certain types of SQL tokens. A common drawback of these
two approaches is that they require modifications to the
runtime environment, which affects portability. A
technique by Haldar and colleagues [20] and SecuriFly
[21] implement a similar approach for Java. However,
these techniques do not use the context sensitive analysis
employed by the other two approaches and track taint
information on a per-string basis (as opposed to
percharacter).

SecuriFly also attempts to sanitize query strings that have
been generated using tainted input. However, this
sanitization approach does not help if injection is
performed into numeric fields. In general, dynamic taint-
based techniques have shown a lot of promise in their
ability to detect and prevent SQLIAs. The primary
drawback of these approaches is that identifying all sources
of tainted user input in highly-modular Web applications

and accurately propagating taint information is often a
difficult task.

New Query Development Paradigms. Two recent
approaches, SQL DOM [18] and Safe Query Objects [24],
use encapsulation of database queries to provide a safe and
reliable way to access databases. These techniques offer an
effective way to avoid the SQLIA problem by changing the
query-building process from an unregulated one that uses
string concatenation to a systematic one that uses a type-
checked API. Within their API, they are able to
systematically apply coding best practices such as input
filtering and rigorous type checking of user input. By
changing the development paradigm in which SQL queries
are created, these techniques eliminate the coding practices
that make most SQLIASs possible. Although effective, these
techniques have the drawback that they require developers
to learn and use a new programming paradigm or query-
development process. Furthermore, because they focus on
using a new development process, they do not provide any
type of protection or improved security for existing legacy
systems.

Intrusion Detection Systems. Valeur and colleagues [17]
propose the use of an Intrusion Detection System (IDS) to
detect SQLIAs. Their IDS system is based on a machine
learning technique that is trained using a set of typical
application queries. The technique builds models of the
typical queries and then monitors the application at runtime
to identify queries that do not match the model. In their
evaluation, Valeur and colleagues have shown that their
system is able to detect attacks with a high rate of success.
However, the fundamental limitation of learning based
techniques is that they can provide no guarantees about
their detection abilities because their success is dependent
on the quality of the training set used. A poor training set
would cause the learning technique to generate a large
number of false positives and negatives.

Proxy Filters. Security Gateway [12] is a proxy filtering
system that enforces input validation rules on the data
flowing to a Web application. Using their Security Policy
Descriptor Language (SPDL), developers provide
constraints and specify transformations to be applied to
application parameters as they flow from the Web page to
the application server. Because SPDL is highly expressive,
it allows developers considerable freedom in expressing
their policies. However, this approach is human-based and,
like defensive programming, requires developers to know
not only which data needs to be filtered, but also what
patterns and filters to apply to the data.

Instruction Set Randomization. SQLrand [29] is an
approach based on instruction-set randomization. SQLrand
provides a framework that allows developers to create
queries using randomized instructions instead of normal
SQL keywords. A proxy filter intercepts queries to the
database and de-randomizes the keywords.SQL code
injected by an attacker would not have been constructed
using the randomized instruction set. Therefore, injected
commands would result in a syntactically incorrect query.
While this technique can be very effective, it has several

Volume 3, I ssue 10

Published by, www.ijert.org 5

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

practical drawbacks.First, since it uses a secret key to
modify instructions, security of the approach is dependent
on attackers not being able to discover the key. Second, the
approach imposes a significant infrastructure overhead
because it require the integration of a proxy for the
database in the system.

VIIl. CONCLUSION

In this paper, | have presented a survey and comparison of
current techniques for detecting and preventing SQLIAS.
To perform this evaluation, | first identified the various
types of SQLIAs known to date. | then evaluated the
considered techniques in terms of their ability to detect
and/or prevent such attacks. | also studied the different
mechanisms through which SQLIAs can be introduced into
an application and identified which techniques were able to
handle which mechanisms. Lastly, | summarized the
deployment requirements of each technique and evaluated
to what extent its detection and prevention mechanisms
could be fully automated .Our evaluation found several
general trends in the results. Many of the techniques have
problems handling attacks that take advantage of poorly-
coded stored procedures and cannot handle attacks that
disguise themselves using alternate encodings. We also
found a general distinction in prevention abilities based on
the difference between prevention-focused and genera al
detection and prevention techniques. Future evaluation
work should focus on evaluating the techniques’s precision
and effectiveness in practice.

REFERENCES
[1] http://www.jiclt.com/index.php/jiclt/article/view/141[2]
[2] https://technet.microsoft.com/en-
us/library/ms161953(v=SQL.105).aspx
[3] https://www.netsparker.com/blog/web-security/sql-injection-

vulnerability-history/

[4] Halfond,viegas,orso “A Classification of SQL, Injection Attacks and
Countermeasures”, ISSSE , 2006

[5] William Halfond — ISSSE 2006 — March 14th, 2006

[6]M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,
Redmond, Washington, second edition, 2003.

[7] http://www.dbnetworks.com/pdf/sql-injection-detection- eb-
environment.pdf

[8] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application Security
Assessment by Fault Injection and Behavior Monitoring. In
Proceedings of the 11th International World Wide Web Conference
(WWW 03), May 2003.

[9] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,
Redmond, Washington, second edition, 2003.

[10]Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.
Securing Web Application Code by Static Analysis and Runtime
Protection. In Proceedings of the 12th International World Wide
Web Conference (WWW 04), May 2004.

[11] V. B. Livshits and M. S. Lam. Finding Security Errors in Java
Programs with Static Analysis. In Proceedings of the 14th Usenix
Security Symposium, pages 271-286, Aug. 2005

[12] D. Scott and R. Sharp. Abstracting Application-level Web Security.
In Proceedings of the 11th International Conference on the World
Wide Web (WWW 2002), pages 396-407, 2002.

[13] E. M. Fayo. Advanced SQL Injection in Oracle Databases. Technical
report, Argeniss Information Security, Black Hat Briefings, Black
Hat USA, 2005.

[14]G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree
Validation to Prevent SQL Injection Attacks. In International
Workshop on Software Engineering and Middleware (SEM), 2005

[15]Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. In The 33rd Annual Symposium on
Principles of Programming Languages (POPL 2006), Jan. 2006.

[16]S. McDonald. SQL Injection Walkthrough. White paper,
SecuriTeam, May 2002.
http://www.securiteam.com/securityreviews/SDPON1P76E.html.

[17] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to
the Detection of SQL Attacks. In Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, July 2005.

[18] R. McClure and I. Kruger. SQL DOM: Compile Time Checking of ~
Dynamic SQL Statements. In Proceedings of the 27th International
Conference on Software Engineering (ICSE 05), pages 88-96, 2005

[19]S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Proceedings of the 2nd Applied Cryptography and
Network Security (ACNS) Conference, pages 292-302, June 2004.

[20]V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for
Java. In Proceedings 21st Annual Computer Security Applications
Conference, Dec. 2005.

[21] M. Martin, B. Livshits, and M. S. Lam. Finding Application Errors
and Security Flaws Using PQL: A Program Query Language. In
Proceedings of the 20th annual ACM SIGPLAN conference on
Object oriented programming systems languages and applications
(OOPSLA 2005), pages 365-383, 2005.

[22]A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting
Information. In Twentieth IFIP International Information Security
Conference (SEC 2005), May 2005.

[23]T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks

through Context-Sensitive String Evaluation. In Proceedings of
Recent Advances in Intrusion Detection (RAID2005), 2005.
[24] W. R. Cook and S. Rai. Safe Query Objects: Statically Typed
Objects as Remotely Executable Queries. In Proceedings of the 27"
International Conference on Software Engineering (ICSE
2005),2005.

[25] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks. In Proceedings of the IEEE
and ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005. To
appear.

[26]W. G. Halfond and A. Orso. Combining Static Analysis and Runtime
Monitoring to Counter SQL-Injection Attacks. In Proceedings of the
Third International ICSE Workshop on Dynamic Analysis (WODA
2005), pages 22-28, St. Louis, MO, USA, May 2005.

[27] G. Wassermann and Z. Su. An Analysis Framework for Security in
Web Applications. In Proceedings of the FSE Workshop on
Specification and Verification of Component-Based Systems
(SAVCBS 2004), pages 7078, 2004.

[28]C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis
Tool for SQL/JDBC Applications. In Proceedings of the 26%
International Conference on Software Engineering (ICSE 04) —
Formal Demos, pages 697-698, 2004.

[29] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically
Generated Queries in Database Applications. In Proceedings of the
26th International Conference on Software Engineering (ICSE 04),
pages 645-654, 2004.

[29] S. McDonald. SQL Injection: Modes of attack, defense, and why it
matters. White paper, Government Security.org, April 2002.

[30] C. Anley. Advanced SQL Injection In SQL Server Applications.
White paper, Next Generation Security Software Ltd., 2002.

[31] O. Maor and A. Shulman. SQL Injection Signatures Evasion. White
paper, Imperva, April 2004. http://www.imperva.com/ application
defense center/white papers/sql injection signatures evasion.html.

Volume 3, I ssue 10

Published by, www.ijert.org 6

