

A Review on Performance Evaluation of Different
Digital Multipliers in VLSI using VHDL

Bhawna Singroul
M. Tech Student

Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur

C.G., India

Pallavee Jaiswal
Assistant Professor

Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur C.G., India

Abstract The importance of digital electronics is increasing
day-by-day in our day-today life. Digital multipliers have
great importance in designing modern gadgets, in digital
signal processing and in many other applications. For the
improvement in performance of modern devices and
softwares, there is a need of designing a multiplier having
high speed, less area, low power consumption, simple and
regular design. Here is a review presented by comparing
performance of various multipliers. The multipliers are
mostly compared in terms of delay power consumption and
area required etc. parameters. This paper brings all
important digital multipliers together for comparative
analysis. This comparative analysis helps us to select one most
suitable multiplier for a particular application.

Keywords: Digital multipliers, comparison, delay, power, area,
vedic, wallce, booth.

1. INTRODUCTION

1.1 Overview
Low power consumption and smaller area are some of the
most important criteria for the fabrication of DSP systems
and high performance systems. Optimizing the speed and
area of the multiplier is a major design issue. However,
area and speed are usually conflicting constraints so that
improving speed results mostly in larger areas. In our
project we try to determine the best solution to this problem
by comparing a few multipliers. Multipliers are key
components of many high performance systems such as
FIR filters, microprocessors, digital signal processors, etc.
A system’s performance is generally determined by the
performance of the multiplier because the multiplier is
generally the slowest element in the system. Furthermore, it
is generally the most area consuming. Hence, optimizing
the speed and area of the multiplier is a major design issue.
However, area and speed are usually conflicting constraints
so that improving speed results mostly in larger areas. As a
result, whole spectrums of multipliers with different area-
speed constraints have been designed with fully parallel.
Multipliers at one end of the spectrum and fully serial
multipliers at the other end. In between are digit serial
multipliers where single digits consisting of several bits are
operated on. These multipliers have moderate performance
in both speed and area. However, existing digit serial
multipliers have been plagued by complicated switching
systems and/or irregularities in design. Radix 2𝑛𝑛

multipliers which operate on digits in a parallel fashion
instead of bits bring the pipelining to the digit level and
avoid most of the above problems. They were introduced
by M. K. Ibrahim in 1993. These structures are iterative
and modular. The pipelining done at the digit level brings
the benefit of constant operation speed irrespective of the
size of the multiplier. The clock speed is only determined
by the digit size which is already fixed before the design is
implemented.

1.2 Filter
A filter is a device or process that removes some unwanted
components or features from a signal. Filtering is a class of
signal processing, the defining feature of filters being the
complete or partial suppression of some aspect of the
signal. Most often, this means removing some frequencies
or frequency bands. However, filters do not exclusively act
in the frequency domain; especially in the field of image
processing many other targets for filtering exist.
Correlations can be removed for certain frequency
components and not for others without having to act in the
frequency domain. Filters are widely used in electronics
and telecommunication, in radio, television, audio
recording, radar, control systems, music synthesis, image
processing, and computer graphics.Filters are circuits
which perform signal processing functions, specifically to
remove unwanted frequency components from the signal,
to enhance wanted ones, or both.

Digital filters are very important part of DSP. Infect their
extraordinary performance is one of the key reasons that
DSP has become so popular. Filters have two uses: signal
separation and signal restoration. Signal separation is
needed when the signal has been contaminated with
interference, noise or other signals. For example imagine a
device for measuring the electrical activity of a baby’s
heart (EKG) while in the womb. The raw signal will be
likely to be corrupted by the breathing and the heartbeat of
the mother. A filter must be used to separate these signals
so that they can be individually analysed.

There are many different bases of classifying filters and
these overlap in many different ways; there is no simple
hierarchical classification. Filters may be:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

57

1. Passive or active
2. Analog or digital
3. High-pass, low-pass, band-pass, band-stop (band-

rejection; notch), or all-pass.
4. Discrete-time (sampled) or continuous-time
5. Linear or non-linear

1.2.1 Infinite impulse response (IIR)
Infinite impulse response (IIR) is a property applying to
many linear time-invariant systems. Common examples of
linear time-invariant systems are most electronic and digital
filters. Systems with this property are known as IIR
systems or IIR filters, and are distinguished by having an
impulse response which does not become exactly zero past
a certain point, but continues indefinitely. This is in
contrast to a finite impulse response (FIR) in which the
impulse response h (t) does become exactly zero at times t
> T for some finite T, thus being of finite duration.

1.2.2 Finite Impulse Response filters (FIR)
Finite Impulse Response filters are the most important
element in signal processing and communication. FIR filter
architecture has multiplier, adder and delay unit. So FIR
filter performance is mainly based on multiplier.

An FIR filter has a number of useful properties which
sometimes make it preferable to an infinite impulse
response (IIR) filter. FIR filters:

1. Require no feedback. This means that any
rounding errors are not compounded by summed
iterations. The same relative error occurs in each
calculation. This also makes implementation
simpler.

2. Are inherently stable, since the output is a sum of
a finite number of finite multiples of the input
values, so can be no greater than ∑ 𝑖𝑖 times the
largest value appearing in the input.

3. Can easily be designed to be linear phase by
making the coefficient sequence symmetric. This
property is sometimes desired for phase-sensitive
applications, for example data communications,
seismology, crossover filters, and mastering.

The main disadvantage of FIR filters is that considerably
more computation power in a general purpose processor is
required compared to an IIR filter with similar sharpness or
selectivity, especially when low frequency (relative to the
sample rate) cutoffs are needed. However many digital
signal processors provide specialized hardware features to
make FIR filters approximately as efficient as IIR for many
applications.

FIR filters are widely used because they have linear phase
characteristics, guarantee stability and are easy to
implement with multipliers, adders and delay elements.
The number of taps in digital filters varies according to
applications. In commercial filter chips with the fixed
number of taps zero coefficients are loaded to registers for
unused taps and unnecessary calculations have to be

performed. To alleviate this problem, the FIR filter chips
providing variable-length taps have been widely used in
many application fields. However, these FIR filter chips
use memory, an address generation unit, and a modulo unit
to access memory in a circular manner. The paper proposes
two special features called a data reuse structure and a
recurrent-coefficient scheme to provide variable-length taps
efficiently. Since the proposed architecture only requires
several MUXs, registers, and a feedback-loop, the number
of gates can be reduced over 20 % than existing chips.
In, general, FIR filtering is described by a simple
convolution operation as expressed in the equation (1)

Y[n] = ∑𝑁𝑁−1
𝑘𝑘=0 ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘](1)

where x[n], y[n], and h[n] represent data input, filtering
output, and a coefficient, respectively and N is the filter
order. The equation using the bit-serial algorithm for a FIR
filter can be represented as

𝑦𝑦(𝑛𝑛) = ∑𝑁𝑁−1
𝑘𝑘=0 ∑𝑀𝑀−1

𝑗𝑗=0 (ℎ𝑓𝑓[𝑘𝑘]. 2𝑗𝑗). 𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (2)

Where, theℎ𝑓𝑓, N and M are the jth bit of the coefficient.

1.3 Multiplier
A multiplier is one of the key hardware blocks in most
digital signalprocessing (DSP) systems. Typical DSP
applications where a multiplier plays animportant role
include digital filtering, digital communications and
spectralanalysis. Many current DSP applications are
targeted atportable, battery-operated systems, so that power
dissipation becomes one of theprimary design constraints.
Since multipliers are rather complex circuits and
musttypically operate at a high system clock rate, reducing
the delay of a multiplier isan essential part of satisfying the
overall design.

1.4 Types of multiplier
1.4.1 Binary multiplier

A Binary multiplier is an electronic hardware device used
in digital electronics or a computer or other electronic
device to perform rapid multiplication of two numbers in
binary representation. It is built using binary adders.The
rules for binary multiplication can be stated as follows

1. If the multiplier digit is a 1, the multiplicand is simply
copied down and represents the product.

2. If the multiplier digit is a 0 the product is also 0.

For designing a multiplier circuit we should have circuitry
to provide or do the following three things:

1. It should be capable identifying whether a bit is 0 or 1.

2. It should be capable of shifting left partial products.

3. It should be able to add all the partial products to give
the products as sum of partial products.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

58

4. It should examine the sign bits. If they are alike, the sign
of the product will be a positive, if the sign bits are
opposite product will be negative. The sign bit of the
product stored with above criteria should be displayed
along with the product.

From the above discussion we observe that it is not
necessary to wait until all the partial products have been
formed before summing them. In fact the addition of partial
product can be carried out as soon as the partial product is
formed.

1.4.2 Baugh Wooley Multiplier
Baugh-Wooley algorithm for the unsigned binary
multiplication is based on the concept shown in figure. The
algorithm specifies that all possibleAND terms are created
first, and then sent through an array of half-adders andfull-
adders with the Carry-outs chained to the next most
significant bit at each level of addition. Negative operands
may be multiplied using a Baugh-Wooleymultiplier.

Figure 1.2: Baugh Wooley multiplier architecture

1.4.3 Braun multiplier
The simplest parallel multiplier is the Braun array. All the
partial products are computed in parallel, then collected
through a cascade of Carry Save Adders. The completion
time is limited by the depth of the carry save array, and by
the carry propagation in the adder. Note that this multiplier
is only suited for positive operands. The structure of the
Braun algorithm for the unsigned binary multiplication is
shown in figure

Figure 1.3: Braun multiplier architecture

1.4.4 Wallace multiplier
The partial-sum adders can also be rearranged in a tree like
fashion, reducing both the critical path and the number of
adder cells needed. The presented structure is called the
Wallace tree multiplier and its implementation is shown in
figure. The tree multiplier realizes substantial hardware
savings for larger multipliers. The propagation delay is
reduced as well. In fact, it can be shown that the
propagation delay through the tree is equal to O (log3/2

(N)). While substantially faster than the carry-save
structure for large multiplier word lengths, the Wallace
multiplier has the disadvantage of being vary irregular,
which complicates the task of an efficient layout design.

Figure 1.4: Wallace multiplier architecture

1.4.5 Combinational Multiplier
Combinational Multipliers do multiplication of two
unsigned binary numbers .This multiplier is also used for
the multiplication of two signed number. Each bit of the
multiplier is multiplied against the multiplicand, the
product is associated according to the position of the bit
within the multiplier, and the resulting products are then
added to form the final result. Main advantage of binary
multiplication is that the generation of intermediate
products are easy. If the multiplier bit is a 1, the product is
an correctly shifted copy of the multiplicand; if the
multiplier bit is a 0, the product is simply 0.In most of the
systems combinational multipliers are slow and take a lot
of area. [15]

1.4.6 Array Multiplier
Array multiplier is well known due to its regularstructure.
Multiplier circuit is based on repeated additionand shifting
procedure. Each partial product is generatedby the
multiplication of the multiplicand with onemultiplier digit.
The partial product are shifted accordingto their bit
sequences and then added. The summation canbe
performed with normal carry propagation adder. N-1adders
are required where N is the no. of multiplier bits [15]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

59

Figure 1.5: Array multiplier architecture

1.4.7 Sequential Multiplier

If we want to multiply two binary number (multiplicand X
has n bits and multiplier Y has m bits) using single n bit
adder, we can built a sequential circuit that processes a
single partial product at a time and then cycle the circuit m
times. This type of circuit is called sequential multiplier.
Sequential multipliers are attractive for their low area
requirement. In a sequential multiplier, the multiplication
process is divided into some sequential steps. In each step
some partial products will be generated, added to an
accumulated partial sum and partial sum will be shifted to
align the accumulated sum with partial product of next
steps. Therefore, each step of a sequential multiplication
consists of three different operations which are generating
partial products, adding the generated partial products to
the accumulated partial sum and shifting the partial sum.
[15]

1.4.8 Booth multiplier
The decision to use a Radix-4 modified Booth algorithm
rather than Radix-2 Booth algorithm is that in Radix-4, the
number of partial products is reduced to n/2. Though
Wallace Tree structure multipliers could be used but in this
format, the multiplier array becomes very large and
requires large numbers of logic gates and interconnecting
wires which makes the chip design large and slows down
the operating speed.

The Booth multiplier makes use of Booth encoding
algorithm in order to reduce the number of partial products
by processing three bits at a time during recoding .This
recoding method is widely used to generate the partial

products for implementation of large parallel multipliers,
which adopts the parallel encoding scheme.

Figure 1.6: Block diagram of Booth multiplier

1.5 Radix multiplication algorithm

Radix multiplication algorithms can beused to design
iterative array multipliers, serial/parallel multipliers and
serialmultipliers. Due to the iterative nature of the
algorithms, the resulting structuresare regular, modular and
require localized communication only, which makes
themsuitable for VLSI implementation. The advantage of
the structures based on theradix approach is that the
architecture of the basic cell is not fixed for all radices.Any
architecture can be used so long as its functionality satisfies
the correspondingradix multiplication algorithm. The new
algorithms can be used as a structuredmultiplier-design
methodology that will allow designers to find the best
compromisebetween hardware cost and multiplication time.
The multiplier architecture is first defined in terms of the
radix-2𝑛𝑛multiplication algorithm which is general for all n.
This architecture being available for every n. The trade-off
between cost and time is then achieved by choosing the
radix that gives the best performance.

1.5.1 Radix 2𝑛𝑛 multiplication algorithm

The architecture of a radix 2𝑛𝑛 multiplier is given in the
Figure. This block diagram shows the multiplication of two
numbers with four digits each. These numbers are denoted
as V and U while the digit size was chosen as four bits. The
reason for this will become apparent in the following
sections. Each circle in the figure corresponds to a radix
cell which is the heart of the design. Every radix cell has
four digit inputs and two digit outputs. The input digits are

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

60

also fed through the corresponding cells. The dots in the
figure represent latches for pipelining. Every dot consists
of four latches. The ellipses represent adders which are
included to calculate the higher order bits. They do not fit
the regularity of the design as they are used to “terminate”
the design at the boundary. The outputs are again in terms
of four bit digits and are shown by W’s. The 1’s denote the
clock period at which the data appear.

Figure 1.7: Radix 2𝑛𝑛multiplier architecture

2. METHODOLOGY

2.1 Overview

In this project we first designed three different types of
multipliers using shift and add method, radix 2 and radix 4
modified booth multiplier algorithm. We used different
type of adders like sixteen bit full adder in designing that
multiplier. Then we designed a 4 tap delay FIR filter and in
place of the multiplication and additions we implemented
the components of different multipliers and adders. Then
we compared the working of different multipliers by
comparing the power consumption by each of them.

2.2 VHDL: The language
An entity declaration, or entity, combined with architecture
or body constitutes a VHDL model. VHDL calls the entity-
architecture pair a design entity. By describing alternative
architectures for an entity, we can configure a VHDL
model for a specific level of investigation. The entity
contains the interface description common to the alternative
architectures. It communicates with other entities and the
environment through ports and generics. Generic
information particularizes an entity by specifying
environment constants such as register size or delay value.
For example,

entityA is
port (x, y: in real; z: out real);
generic (delay: time);
endA;

The architecture contains declarative and statement
sections. Declarations form theregion before the reserved
word begin and can declare local elements such as signals
and components. Statements appear after begin and can
contain concurrent statements. For instance,

architecture B of A is
component M
port (j : in real ; k : out real);
end component;
signala,b,c real := 0.0;
begin
"concurrent statements"
end B;

The variety of concurrent statement types gives VHDL the
descriptive power to createand combine models at the
structural, dataflow, and behavioural levels into one
simulation model. The structural type of description makes
use of component instantiation statements to invoke models
described elsewhere. After declaring components, we use
them in the component instantiation statement, assigning
ports to local signals or other ports and giving values to
generics invert: M port map (j => a ; k =>c); We can then
bind the components to other design entities through
configuration specifications in VHDL's architecture
declarative section or through separate configuration
declarations. The dataflow style makes wide use of a
number of types of concurrent signal assignment
statements, which associate a target signal with an
expression and a delay. The list of signals appearing in the
expression is the sensitivity list; the expression must be
evaluated for any change on any of these signals. The target
signals obtain new values after the delay specified in the
signal assignment statement. If no delay is specified, the
signal assignment occurs during the next simulation cycle:
c <= a + b after delay;
VHDL also includes conditional and selected signal
assignment statements. It uses block statements to group
signal assignment statements and makes them synchronous
with a guarded condition. Block statements can also
contain ports and generics to provide more modularity in
the descriptions. We commonly use concurrent process
statements when we wish to describe hardware at the
behavioural level of abstraction. The process statement
consists of declarations and procedural types of statements
that make up the sequential program. Wait and assert
statements add to the descriptive power of the process
statements for modelling concurrent actions:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

61

Process
begin
variable i : real := 1.0;
wait on a;
 i = b * 3.0;
 c <= i after delay;
end process;

Other concurrent statements include the concurrent
assertion statement, concurrentprocedure call, and generate
statement. Packages are design units that permit types and
objects to be shared. Arithmetic operations dominate the
execution time of most Digital Signal Processing (DSP)
algorithms and currently the time it takes to execute a
multiplication operation is still the dominating factor in
determining the instruction cycle time of a DSP chip and
Reduced Instruction Set Computers (RISC). Among the
many methods of implementing high speed parallel
multipliers, there is one basic approach namely Booth
algorithm.
Power consumption in VLSI DSPs has gained special
attention due to the proliferation of high-performance
portable battery-powered electronic devices such as cellular
phones, laptop computers, etc. DSP applications require
high computational speed and, at the same time, suffer
from stringent power dissipation constraints.Multiplier
modules are common to many DSP applications. The
fastest types of multipliers are parallel multipliers. Among
these, the Wallace multiplier is among thefastest. However,
they suffer from a bad regularity. Hence, when regularity,
high performance and low power are primary concerns,
Booth multipliers tend to be theprimary choice.Booth
multipliers allow the operation on signed operands in 2's
complement. They derive from array multipliers where, for
each bit in a partial product line, an encoding scheme is
used to determine if this bit is positive, negative or zero.
The Modified Booth algorithm achieves a major
performance improvement through radix-4 encoding. In
this algorithm each partial product line operates on 2 bits at
a time, thereby reducing the total number of the partial
products. This is particularly true for operands using 16 bits
or more.
2.3 Shift and add multiplier

Shift-and-add multiplication is similar to the multiplication
performed by paper and pencil. This method adds the
multiplicand X to itself Y times, where Y denotes the
multiplier. To multiply two numbers by paper and pencil,
the algorithm is to take the digits of the multiplier one at a
time from right to left, multiplying the multiplicand by a
single digit of the multiplier and placing the intermediate
product in the appropriate positions to the left of the earlier
results.

As an example, consider the multiplication of two unsigned
4-bit numbers, 8 (1000) and 9 (1001).

 Multiplicand 1000 ×
 Multiplier1001

 1000
 0000
0000
 1000

Product1001000

In the case of binary multiplication, since the digits are 0
and 1, each step of the multiplication is simple. If the
multiplier digit is 1, a copy of the multiplicand (1 ×
multiplicand) is placed in the proper positions; if the
multiplier digit is 0, a number of 0 digits (0 × multiplicand)
are placed in the proper positions.

2.4 Booth multiplier (Radix2)

Booth's algorithm is based upon recoding the multiplier, y,
to a recoded, value, z, leaving the multiplicand, x,
unchanged. In Booth recoding, each digit of the multiplier
can assume negative as well as positive and zero values.
There is a special notation, called signed digit (SD)
encoding, to express these signed digits. In SD encoding +1
and 0 are expressed as 1and 0, but -1 is expressed as 1

The value of a 2s complement integer was defined a by
equation.

This equation says that in order to get the value of a signed
2's complement number, multiply the m – ith digit by -2`-1,
and multiply each remaining digit i by +2g.

For example, -7, which is 1001 in 2's complement notation,
would be, in SD notation, 1001 = -8 + 0 + 0 + 1 = -7.

For implementing booth algorithm most important step is
booth recoding. By booth recoding we can replace string of
1s by 0s. For example the value of strings of five 1s, 11111
= 25 – 1 = 100001 = 32 – 1 = 31. Hence if this number
were to be used as the multiplier in a multiplication, we
could replace five additions by one addition and one
subtraction.

The Booth recoding procedure, then, is as follows:

1. Working from lsb to msb, replace each 0 digit of the
original number with a 0 in the recoded number until a 1 is
encountered.

2. When a 1 is encountered, insert a 1 at that position in the
recoded number, and skip over any succeeding I's until a 0
is encountered.

3. Replace that 0 with a 1 and continue.

This algorithm is expressed in tabular form in Table 3.1,
considering pairs of

numbers, 𝑦𝑦𝑖𝑖−1 and 𝑦𝑦𝑖𝑖 , and the recoded digit, 𝑧𝑧𝑖𝑖, shown in
Table 3.1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

62

𝑦𝑦𝑖𝑖 𝑦𝑦𝑖𝑖−1 𝑧𝑧𝑖𝑖−𝑖𝑖 Multiplier
Value

Situation

0 0 0 0 String of 0s
0 1 1 +1 End of string

of 1s
1 0 1 -1 Begin string of

1s
1 1 0 0 String of 1s

Table 2.1: Booth recoding table for radix-.

2.5 Booth Multiplication Algorithm for radix 2

Booth algorithm gives a procedure for multiplying binary
integers in signed 2’s complement representation. I will
illustrate the booth algorithm with the following example:

Example, 2 ten x (- 4) ten

0010 two* 1100 two

Step 1: Making the Booth table

I. From the two numbers, pick the number with the smallest
difference between a series of consecutive numbers, and
make it a multiplier.

i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1 to
0 another change, and so there are two changes on this one

1100 -- From 1 to 1 no change, 1 to 0 one change, 0 to 0 no
change, so there is only one change on this one. Therefore,
multiplication of 2 x (– 4), where 2 ten (0010 two) is the
multiplicand and (– 4) ten (1100 two) is the multiplier.

II. Let X = 1100 (multiplier)

Let Y = 0010 (multiplicand)

Take the 2’s complement of Y and call it –Y

–Y = 1110

III. Load the X value in the table.

IV. Load 0 for X-1 value it should be the previous first
least significant bit of X

V. Load 0 in U and V rows which will have the product of
X and Y at the end of operation.

VI. Make four rows for each cycle; this is because we are
multiplying four bits numbers.

U V X X-1 Comment
0000 0000 1100 0 Load the

value
 1st cycle
 2nd cycle
 3rd cycle
 4th cycle

Table 2.2: Making the Booth table

Step 2: Booth Algorithm

Booth algorithm requires examination of the multiplier bits,
and shifting of the partial product. Prior to the shifting, the
multiplicand may be added to partial product, subtracted
from the partial product, or left unchanged according to the
following rules:

Look at the first least significant bits of the multiplier “X”,
and the previous least significant bits of the multiplier “X -
1”.

I 0 0 Shift only

1 1 Shift only.

0 1 Add Y to U, and shift

1 0 Subtract Y from U, and shift or add (-Y) to U and shift

II Take U & V together and shift arithmetic right shift
which preserves the sign bit of 2’s complement number.
Thus a positive number remains positive, and a negative
number remains negative.

III Shift X circular right shift because this will prevent us
from using two registers for the X value.

U V X X-1
0000 0000 1100 0
0000 0000 0110 0

Shift only

Table 2.3: I 0 0 Shift only

Repeat the same steps until the four cycles are completed

U V X X-1
0000 0000 1100 0
0000 0000 0110 0
0000 0000 0011 0

Shift only

Table 2.4: 1 1 Shift only.

U V X X-1
0000 0000 1100 0
0000 0000 0110 0
0000 0000 0011 0
1110
1111

0000
0000

0011
1001

0
1

Table 2.5: 0 1 Add Y to U, and shiftShift

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

63

Add – Y (0000 + 1110 – 1110)

U V X X-1
0000 0000 1100 0
0000 0000 0110 0
0000 0000 0011 0
1110
1111

0000
0000

0011
1001

0
1

1111 1000 1100 1
Shift only

Table 2.6: 1 0 Subtract Y from U, and shift or add (-Y) to
U and shift

We have finished four cycles, so the answer is shown, in
the last rows of U and V which is: 11111000 two

Note: By the fourth cycle, the two algorithms have the
same values in the product register

2.6 Modified booth multiplier (Radix 4)

The Booth multiplier makes use of Booth encoding
algorithm in order to reduce the number of partial products
by processing three bits at a time during recoding. This
recoding method iswidely used to generate the
partialproducts for implementation of large parallel
multipliers, which adopts the parallel encoding scheme.

2.7 Booth multiplication algorithm for radix 4

One of the solutions of realizing high speed multipliers is
to enhance parallelism which helps to decrease the number
of subsequent calculation stages. The original version of
the Booth algorithm (Radix-2) had two drawbacks. They
are: (i) the number of add subtract operations and the
number of shift operations become variable and become
inconvenient in designing parallel multipliers. (ii) The
algorithm becomes inefficient when there are isolated 1’s.
These problems are overcome by using modified Radix4
Booth algorithm which scans strings of three bits with the
algorithm given below:

1) Extend the sign bit 1 position if necessary to ensure that
n is even.

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial
Product will he 0, +y ,-y, +2y or -2y.

The negative values of y are made by taking the 2’s
complement and in this paperCarry-look-ahead (CLA) fast
adders are used. The multiplication of y is done by shifting
y by one bit to the left. Thus, in any case, in designing a n-
bit parallel multipliers, only n/2 partial products are
generated.

X(i) X(i-1) X(i-2) Y
0 0 0 +0
0 0 1 +y
0 1 0 +y
0 1 1 +2y
1 0 0 -2y
1 0 1 -y
1 1 0 -y
1 1 1 +0

Table 2.7: Radix4 Modified Booth algorithm scheme for odd
values of i.

3 REFERENCES

[1] R. Jaikumar, P. Poongodi and R. Lavanya,” Implementation of
high speed arithmetic logic using vedic mathematics techniques”
ictact journal on microelectronics, february 2015

[2] M. Ramalatha, K. Deena, Dayalan ,Dharani “High Speed Energy
Efficient ALU Design using Vedic Multiplication Techniques”
ACTEA IEEE 2009.

[3] N. Petra, D. D. Caro, V. Garofalo, E. Napoli, and A. G. M.
Strollo, “Design of fixed width multipliers with linear
compensation function”, IEEE Trans. Circuits Syst., vol. 58, no.
5, pp. 947960, May 2011.

[4] Jiun-Ping Wang, Shiann-RongKuang, and Shish-Chang Liang,
“High-Accuracy Fixed-Width Modied Booth Multipliers for
Lossy Applications”, IEEE Trans. Circuits Syst., vol. 19, no. 1,
pp. 52-60, January 2011.

[5] Yuan-Ho Chen, T.-Y. Chang, and C.-Y. Li, “Area-Effective and
Power-Efficient Fixed-Width Booth Multipliers Using
Generalized Probabilistic Estimation Bias”, IEEE Trans. Circuits
Syst., vol. 1, no. 3, pp. 277-287, September 2011.

[6] Yuan-Ho Chen and T.-Y. Chang, “A High-Accuracy Adaptive
Conditional-Probability Estimator for Fixed-Width Booth
Multipliers”, IEEE Trans. Circuits Syst., vol. 59, no. 3, pp. 594-
603, March 2012.

[7] Shin-Kai Chen, Chih-Wei Liu, “Design and Implementation of
High-Speed and Energy-Efcient Variable-Latency Speculating
Booth Multiplier (VLSBM)”, IEEE Trans. Circuits Syst. I, vol.
60, no. 10, pp. 26312643, October 2013.

[8] Shen-Fu Hsiao, Jun-Hong Zhang Jian, and Ming-Chih Chen,
“Low-Cost FIR Filter Designs Based on Faithfully Rounded
Truncated Multiple Constant Multiplication/Accumulation”, IEEE
Trans. Circuits Syst. II, Express Briefs, 2013.

[9] O. L. MacSorley, “High speed arithmetic in binary computers”,
Proc.IRE, vol.49,pp. 67-91, 1961.

[10] Parhami, Behrooz, “Computer Arithmetic: Algorithms and
Hardware Designs”, Oxford University Press 2000.

[11] David H. K. Hoe, Chris Martinez and Sri JyothsnaVundavalli,
“Design and Characterization of Parallel Prefix Adders using
FPGAs”, Proc. IEEE, pp. 168172, 2011.

[12] Srinivasasamanoj R. ,M. Sri Hari and B. RatnaRaju, “High speed
VLSI implementation of 256-bit Parallel Prefix Adders”,
International Journal of Wireless Communications and
Networking Technologies, vol. 1, no. 1, 2012.

[13] Shelja Jose, ShereenaMytheen, “Modified Booth Multiplier Based
Low-Cost FIR Filter Design”, International Journal of
Engineering Science and Innovative Technology, vol. 3,
September, 2014.

[14] Phil E. Madrid, Brian Millar and Earl E. Swartzlander, Jr,
“Modified Booth’s algorithm for high radix fixed point
multiplication”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems , Vol. 1, No. 2 June 1993.

[15] Soniya, Suresh Kumar, “A Review of Different Type of
Multipliers and Multiplier-Accumulator Unit”, International
Journal of Emerging Trends & Technology in Computer Science
(IJETTCS), Volume 2, Issue 4, July – August 2013

[16] GreeshmaHaridas, Dr. David Solomon George, “Area Efficient
Low Power Modified Booth Multiplier for FIR”, International
Conference on Emerging Trends in Engineering, Science and
Technology, Procedia Technology 24 (2016) 1163 – 1169

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050034
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

64

