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Abstract— Innovation in machine learning is far from 

complete. In fact, things are just about to take a ‘quantum leap’, 

when the world of quantum physics and machine learning are 

about to merge, aiming to solve advanced problems through 

intelligent computing. Quantum-classical hybrid techniques 

termed “variational algorithms” are well-suited to noisy 

quantum computing devices and are swiftly gaining popularity 

in the quantum machine learning community. Quantum 

machines tap directly into an unimaginably vast fabric of 

reality—the unusual and counterintuitive realm of quantum 

field theory, to accelerate computation. Quantum computers will 

predictively play an important role in machine learning, 

including the essential element of accessing more 

computationally complex feature spaces. 
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I. INTRODUCTION 

Quantum computing is the practical application of quantum 

phenomena such as superposition and entanglement to do 

computation that can be theoretically or physically applied 

[1]. This can be verified both theoretically and 

experimentally. The present time is now known as the Noisy 

Intermediate-Scale Quantum era, commonly referred to as the 

NISQ era [13]. Specifically, this refers to quantum devices of 

approximately less than 100 qubits whose quantum logic 

gates of which still bear some error with them. Machine 

learning is a way to determine and evaluate patterns (instead 

of using traditionally-coded algorithms) and can be applied to 

a variety of different applications, however, its 

implementation in Artificial Intelligence (AI) is the one that’s 

got the whole world abuzz. We are interested in this 

intersecting field where quantum computers apply machine 

learning algorithms and conventional machine learning 

methods are employed to assess the quantum machines. This 

area of research is developing at such blazing speeds that it 

has spawned an entire new field called Quantum Machine 

Learning (QML).  

 

Classical computer are based on an architecture that works on 

binary state’s that is 1's and 0's, each signifying a given state. 

In a Quantum environment there exists multiple states, that is 

1's, 0’s and both which signify respective states the machine 

can be in at any given state at any given time and thus is the 

definition of superposition. A Quantum circuit is at the heart 

of the Quantum hardware, it handles execution in a sequential 

form using Quantum Gates placed in a continual format. The 

Quantum Mechanical Phenomenon’s are used to extrapolate 

and manipulate the outputs and hence we will use Quantum 

Entanglement and Quantum Tunneling to get the state. This 

enables Quantum Hardware Devices to explore multiple 

states all at once and at a very high speed. Here Quantum 

Machine learning involves classical algorithms which when 

executed help to solve problems, these process uses Quantum 

Hardware which requires the classical algorithm to be 

mapped into a Quantum understandable form. This helps 

make the training faster and testing more accurate in labelling 

the Iris Flower data set. The results of these processes 

involves measuring Qubits at the end of processing which 

will give us our classification of the Iris Flower.  

 

Many Quantum algorithms have been executed on Near-

Term Quantum Devices, these are basically Application 

Specific IC devices or Field Programmable hardware. This is 

due to the fact that full-fledged Quantum Hardware is a thing 

of the future until then we cannot talk about the Quantum 

Advantages. Hence the best practice or the logical way to go 

about executing Quantum Algorithms is to encode the 

classical data into amplitudes of Quantum states, this with the 

help of Quantum Circuits will allow for execution [7, 8]. The 

Quantum Algorithms having ‘n’ Qubits can be encoded into 

2n respective amplitudes, this means that the execution will 

be in poly-arithmetic time [9, 12]. 

 

The present progress of Quantum Computing has given rise 

to Noisy Intermediate- Scale [13], this is basically a Quantum 

Computer with less than 100 Qubits and will contain some 

noise or error in the result. These devices having less than 

100 Qubits and an error coefficient will not be suitable for 

large scale execution of everyday problems until a fully 

functional Quantum Environment can be created hence 

algorithms must be structured in such a way to be unaffected 

by errors. Variational Quantum algorithms are conceptualized 

on the principle of dual nature [14], that is a Quantum Circuit 

keeps updating the parameters based on some rule depending 

on the output and executes the algorithm with the 

parameterized requirements, these circuits work in an 

iterative fashion such that when an output is produced the 

circuit tries to optimize itself by manipulating its parameters 

in accordance to some rule.  

 

The next section elaborates on Variation Quantum Classifier 

(VQC). 
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II. VARIATIONAL QUANTUM CLASSIFIER (VQC) 

Noisy Intermediate-Scale Quantum or NISQ a Variational 

Quantum Classifier (VQC) is a hybrid made up of Quantum 

and Classical algorithm where “Layers” or “blocks” the basic 

Quantum building block are repeatedly used to form 

Variational Quantum Classifier Circuits which will be the 

executor or processor in this demonstration, it must be noted 

that it should resilient to errors. The architecture is inspired 

by Schuld et al. (2018) and Farhi and Neven (2018). Elies M. 

Gil Fuster, Variational Quantum Classifier. 

 

In this paper we will demonstrate that a Variational Quantum 

Classifier behavior will be determined by Quantum Circuits 

and output dependent functions based on free parameters 

executed iteratively in comparison to classical execution 

which takes place iteratively to minimize this functions 

outcome which will also make it the fault tolerant. The 

classical execution involves something call gradient descent, 

this basically means it tries to find the local minima of a 

function. The Quantum execution for supervised learning 

works differently in that it make use of Variational 

Algorithms which are implemented using differential 

programing, State Preparation which encodes classical data 

sets into amplitude and rotations of Quantum bits for 

Quantum hardware to understand after this the Quantum bits 

are executed using parameterized Unitary Operations, all 

parameters may by modified depending on given rules, the 

output which is the classification of the Iris Dataset is  to be 

finally measured when the job is done. 

 

 

 

A. State Preparation  

In State Preparation an initial input ‘x’ has to be encoded 

using amplitude encoding of Quantum bits, this is done by 

applying the static state circuit to map the classical dataset 

into it respective Quantum Qubits such that it is 

understood by the Quantum Circuit and is then executed 

in the initial ground state. The output Qubits are measured 

to get the resultant prediction of classification of the Iris 

flower. This is better understood by mapping ‘n’ qubit 

Quantum Circuit Architecture where an input ‘x’ ∈ R to 

the 2n amplitude vector ϕ(x) that describes the initial 

quantum state |ϕ(x) i. The encoding techniques are 

described below: 

 

• Basis Encoding: - In this type of encoding inputs say 

‘x’ is encoded to binary strings into the basis state of 

Qubits[21,22]. For Example x = 01001 is 

represented by the 5-qubit basis state |01001i. The 

computational basis state corresponds to a standard 

basis vector |ii (with i being the integer 

representation of the bit string) in a 2n-dimensional 

Hilbert space F, and thus, the effect of the feature-

embedding circuit is given by Uφ : x ∈{0,1}n →|ii. 

This feature map maps each data input to a state 

from an orthonormal basis. 

 

• Amplitude Encoding:-In this type of encoding we 

normalize the inputs ‘x’ such that x = (x0,...,xN−1)T 

∈RN of dimension N = 2n with the amplitudes |ψxi 

[8, 13], Uφ : x ∈RN →|ψxi = N−1 X i=0 xi|ii. Please 

find that, |ii denotes the i’th computational basis 

state. This represents the linear kernel, κ(x, x0) = 

hψx|ψx0i = xTx0. 

 

• Product Encoding: - This type of encoding uses 

tensor product encoding where features which have 

been encoded of the ‘x’ input depicted by 

(x1,..,xN)T ∈ RN is encoded into Qubit amplitudes.  

B. Model Circuit 

In modelling Quantum circuits the ‘ket’ vector present in the 

Hilbert vector space maps to the ket vector ϕ0 = Uθϕ(x) by a 

unitary operation Uθ, parameterized by a set of variables θ. 

Now to train our VQC model I will formulate rules for 

parameters that will be looked up during optimization phase 

and learned, this may have an effect on the shape of the cost 

function. A single qubit gate G is a 2×2 unitary, which can 

always be written as G(α,β,γ,φ) = eiφ (eiβ cosα eiγ sinα −e−iγ 

sinα e−iβ cos α) and may be defined by 4 parameters  such 

as{α,β,γ,φ} [30].The number of Quantum gates depend 

linearly on the number of Qubit Architecture. This means the 

algorithm running in the VQC will require a polynomial 

amount of inputs, for this reason we will have a circuit 

architecture with rigid gates and controls. A number of 

combinations of Quantum circuit gates were used to mimic 

multi-qubit-based quantum classifiers but this is theoretical 

and a large number of such combinations may exists in reality 

[10, 13, and 20]. 
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C. Measurement 

Measurement involve us measuring the output Qubits from 

got from the previous stages of processing and give us the 

required prediction on classifying the Iris flower into its 

respective genus. The pre-processing used in the classical 

methods is to sum a informative bias ‘b’ to extrapolate a 

sequential output such as  π(x;θ,b) = p(q0 = 1,x,θ) + b such 

that we may assign a rule f(x;θ) = {1 if π(x;θ) }> 0.5 else 0. 

This is to predict all given probabilities of ‘pa’ corresponding 

to outputs ‘S3’ for the state ψ(x)i. pa = Tr(πa|˜ ψ(x)˜ ψ(x)|, 

this will mean the probabilities of S3 = a; S3 =PN a=0 aπa. I 

will be able to formulate a rule for our VQC so as to get pb = 

max {pa} → f∗(x) = ‘lb’, this will inference the label ‘LB’ 

will have S3=b as the most probable result from measuring 

our VQC. To reduce the noise spoken about earlier I need to 

Train and the VQC and optimize it using new parameter rules 

after every iteration or also known as Vector Matrix 

Multiplication or just VMM such that each weight in the 

matrix is adjustable based on the parameter changes and can 

be modified during training[8]. This may be also understood 

as a VMM operation because of the latter process. 

III.CONCLUSION 

Our paper presents a review of existing classical-quantum 

hybrid algorithms, mainly the Variational Quantum Classifier 

(VQC) and the steps required to implement it as part of 

Quantum Circuit Learning and serves as a beacon for further 

research in the field of Quantum Computing and Quantum 

Machine Learning.  In our demonstration of VQC for Iris 

Dataset we have shown that state preparation will encode the 

classical data set into quantum amplitudes so as to make it 

understandable by the quantum hardware by one of the 

methods, next we demonstrate how the processes will be 

performed by VQC by Unitary operations which involves 

Quantum theory knowledge with the help of non-mutable 

parameters for the algorithm. As a result we will measure the 

Qubits received from performing previous processes to 

actually get the prediction for classification of the Iris Flower 

into it correct biological genus. This signifies a hybrid 

algorithm which harnesses Quantum hardware and classical 

machine learning algorithms. Hence this states that my team 

and I were in fact able to deploy classical Machine Learning 

which can be interpreted by Quantum hardware. 
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