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Abstract: Ordinary differential equations (ODEs) are basically 

involved in many engineering problems. Many applications of 

differential equation are useful to solve problems like heat-time 

relation, velocity-time relation, traffic transportation problems 

etc. They arise in models throughout mathematics, science, and 

engineering. By itself, a system of ODEs has many solutions. 

Some systems work with initial values called Initial Value 

Problems. However, in many applications a solution is 

determined in a more complicated way. A boundary value 

problem (BVP) specifies values or equations for solution 

components at more than one variable. Unlike IVPs, a boundary 

value problem may not have a solution, or may have a finite 

number of solution or infinitely many solutions. Some problems 

are so complex that we need computer programme to solve them 

so programs are developed for solving BVPs require users to 

provide a guess for the solution desired. Often there are 

parameters that have to be determined so that the BVP has a 

solution. Again there might be more than one possibility, so 

programs require a guess for the parameters desired. Many 

problems, arising in a wide variety of application areas, give rise 

to mathematical models which form boundary value problems 

for ordinary differential equations. These problems rarely have 

a closed form solution, and computer simulation is typically 

used to obtain their approximate solution. 

The study being carried out is based on the investigation of the 

numerical methods for solving first-order ordinary differential 

equations. The aim of the study is to give a comparative analysis 

of the numerical methods for solving first-order differential 

equations by use of an alternative approach which is the use of 

numerical approximation methods to find an accurate 

approximation to the desired solution of an initial value 

problem. The methods are presented in the simplest context 

possible which is a single scalar first order differential equation. 
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1.  INTRODUCTION  

Numerical analysis is the study of algorithms that use 

numerical approximation for the problems of mathematical 

analysis. Numerical analysis naturally finds applications in all 

fields of engineering and the physical sciences, but in the 

21st century also the life sciences and even the arts have 

adopted elements of scientific computations. Ordinary 

differential equations appear in celestial mechanics (planets, 

stars and galaxies); numerical linear algebra is important for 

data analysis; stochastic differential equations and Markov 

chains are essential in simulating living cells for medicine 

and biology. When using numerical methods or algorithms 

and computing with finite precision, errors of approximation 

or rounding and truncation are introduced. In numerical 

analysis, Numerical integration constitutes a broad family 

of algorithms for calculating the numerical value of a definite 

integral, and by extension, the term is also sometimes used to 

describe the numerical solution of differential equations. This 

article focuses on calculation of definite integrals. The 

term numerical quadrature (often abbreviated to quadrature) 

is more or less a synonym for numerical integration, 

especially as applied to one-dimensional integrals. Numerical 

integration over more than one dimension is sometimes 

incorrectly described as cubature,[1] since the meaning 

of quadrature is understood for higher-dimensional 

integration as well. Many differential equations cannot be 

solved using symbolic computation ("analysis"). For practical 

purposes, however – such as in engineering – a numeric 

approximation to the solution is often sufficient. 

The algorithms studied here can be used to compute such an 

approximation. An alternative method is to use techniques 

from calculus to obtain a series expansion of the solution. 

Ordinary differential equations occur in many scientific 

disciplines, for instance in physics, chemistry, biology, 

and economics. In addition, some methods in numerical 

partial differential equations convert the partial differential 

equation into an ordinary differential equation, which must 

then be solved. 

 

2. IMPLEMENTATION OF C++ PROGRAM IN SOLVING 

ORDINARY LINEAR DIFFERENTIAL EQUATION. 

 

Numerical methods help us to find a better solution of any 

problems. In engineering, we face practical problems and the 

solution of those problems can only be obtain using 

numerical methods. In advanced technology, we use 

computer programming to solve ODE. Here we are going to 

use C++ programming to solve a LDE using Runga-Kutta 4th 

order method, Milne’s Predictor & Corrector method and 

Euler’s method.  
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2.1. Algorithm 1 

 Euler’s Method 

 #include<stdio.h> 

#include<conio.h> 

int fn; 

float a,b,x,y,h,t,k,q; 

float fun(float x,float y) 

 { 

    switch(fn) 

  { 

   case 1 : return ((3*x)+(y/2)); 

   case 2 : return ((y-x)/(y+x)); 

   case 3 : return (y-2*x/y); 

   case 4 : return ((x*x+1)*(y*y)/2); 

   case 5 : return (3*exp(x)+2*y); 

         // default: cout<<"Enter a Valid 

Choice: "; 

   } 

 } 

void main() 

 { 

    clrscr(); 

    printf("Select a function (1-5) from following:\n1. 

dy/dx=3x+y/2"); 

    printf("\n2. dy/dx=(y-x)/(y+x)"); 

    printf("\n3. dy/dx=y-2x/y"); 

    printf("\n4. dy/dx=(1/2)(x^2+1)(y^2)") ; 

    printf("\n5. dy/dx=3e^x+2y\n"); 

    scanf("%d",&fn); 

    printf("\nEnter x(0) : "); 

    scanf("%f",&a); 

    printf("\nEnter y(0) : "); 

    scanf("%f",&b); 

    printf("\nEnter step size (h) : "); 

    scanf("%f",&h); 

    printf("\nEnter end point (xn) : "); 

    scanf("%f",&t); 

    x=a; 

    y=b; 

    clrscr(); 

    printf("\n\t  X\t  Y\n"); 

    while(x<t) 

    { 

 k=h*fun(x,y); 

 y=y+k; 

 x=x+h; 

 printf("\t%0.3f\t%0.3f\n",x,y); 

    } 

    scanf("%f",&q); 

} 

     2.2 Algorithm 2  

Milne’s Predictor & Corrector Method.  

 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

 

float n,xf,h,x[150],y[150],f[150]; 

int fn; 

void input(); 

void milne(); 

void output(); 

float function(float, float); 

void select(void); 

 

void main() 

{ 

 clrscr(); 

 select(); 

 input(); 

 milne(); 

 clrscr(); 

 output(); 

 getch(); 

} 

 

              void input() 

 {      cout<<"\nEnter value of x(0): " ; 

 cin>>x[0]; 

 cout<<"\nEnter value of y(0): "; 
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 cin>>y[0]; 

 cout<<"\nEnter value of xf: "; 

 cin>>xf; 

 cout<<"\nEnter value of number of iteration (n): "; 

 cin>>n; 

 

 } 

 

2.3 Algorithm 3  

Runga-Kutta 4th order Method. 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

int fn; 

float f(float x,float y); 

 

void main() 

 { 

    clrscr(); 

    float x0,y0,k1,k2,k3,k4,k,y,x,h,xn,u,n; 

    cout<<"Select a function (1-5) from following:\n1. 

dy/dx=3x+y/2"; 

    cout<<"\n2. dy/dx=(y-x)/(y+x)"; 

    cout<<"\n3. dy/dx=y-2x/y"; 

    cout<<"\n4. dy/dx=(1/2)(x^2+1)(y^2)" ; 

    cout<<"\n5. dy/dx=3e^x+2y\n"; 

    cin>>fn; 

    cout<<"\n\nEnter x0 : "; 

    cin>>x0; 

    cout<<"\n\nEnter y0 : "; 

    cin>>y0; 

    cout<<"\n\nEnter end point (xn) : "; 

    cin>>xn; 

    cout<<"\n\nEnter step size (h) : "; 

    cin>>h; 

    x=x0; 

    y=y0; 

    clrscr(); 

    cout<<"\n\nX\t\tY\n"; 

    n=(xn-x0)/h; 

    for(int i=0; i<=n; i++) 

    { 

 k1=h*f(x,y); 

 k2=h*f((x+h/2),(y+k1/2)); 

 k3=h*f((x+h/2),(y+k2/2)); 

 k4=h*f((x+h),(y+k3)); 

 k=((k1+k2+k2+k3+k3+k4)/6); 

 cout<<"\n"<<x<<"\t\t"<<y; 

 y=y+k; 

 x=x+h; 

 

    } 

    getch(); 

 

 } 

float f(float x,float y) 

 { 

       switch(fn) 

  { 

   case 1 : return ((3*x)+(y/2)); 

   case 2 : return ((y-x)/(y+x)); 

   case 3 : return (y-2*x/y); 

   case 4 : return ((x*x+1)*(y*y)/2); 

   case 5 : return (3*exp(x)+2*y); 

         // default: cout<<"Enter a Valid 

Choice: "; 

   } 

 } 

3.  WHY NUMERICAL METHODS? 

Basically Numerical method are key of every practical 

problem. We can reach to a particular solution of every 

practical problem using numerical methods. Generally every 

wave equation, heat equation, Laplace equation, equation of 

motions deal with partial differential equation and using some 

parameters we can convert them into ordinary differential 

equations. After converting them into ordinary differential 

equation, numerical method is the best tool to solve them, to 

compare those equations with some other previous results, 

make graphs to compare them. 

Hence to obtain solution of any differential equation for given 

boundary conditions, we must use numerical methods. 

 

4. CONCLUSION 

 

1. Generally many engineering problems associated with 

ordinary differential equations or partial differential equations. 
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2. Solutions of these differential equations can be obtained 

using analytical methods. 

 

3. Where analytical methods failed, we use numerical 

techniques to solve them. 

 

4. As there are so many numerical techniques available, we 

can use any of one and can obtain solution of differential 

equation using given boundary conditions. 

 

5. C++ is an important technique to solve mathematical 

problems, so we use it to solve ordinary differential by Euler’s 

method, Milne’s P-C method and R-K 4th order method. 
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