
A Research Paper on Serverless Computing

Vaishnavi Kulkarni
Technical Support Engineer

Supermoney, Mumbai,India

Abstract— Serverless computing is a method of providing

backend services on an as-used basis. A serverless provider

allows users to write and deploy code without the hassle of

worrying about the underlying infrastructure. Keywords—

Serverless computing, Cloud computing, front end, back end.

I. INTRODUCTION

Serverless computing is a method of providing backend

services on an as-used basis. A serverless provider allows

users to write and deploy code without the hassle of worrying

about the underlying infrastructure. A company that gets

backend services from a serverless vendor is charged based

on their computation and do not have to reserve and pay for

a fixed amount of bandwidth or number of servers, as the

service is auto-scaling. Note that despite the name serverless,

physical servers are still used but developers do not need to

be aware of them.

In the early days of the web, anyone who wanted to build a

web application had to own the physical hardware required to

run a server, which is a cumbersome and expensive

undertaking.

Then came cloud computing, where fixed numbers of servers

or amounts of server space could be rented remotely.

Developers and companies who rent these fixed units of

server space generally over-purchase to ensure that a spike in

traffic or activity will not exceed their monthly limits and

break their applications. This means that much of the server

space that gets paid for can go to waste. Cloud vendors have

introduced auto-scaling models to address the issue, but even

with auto-scaling an unwanted spike in activity, such as

a DDoS Attack, could end up being very expensive.

Fig:Cost Benefits of Serverless

Serverless computing allows developers to purchase

backend services on a flexible ‘pay-as-you-go’ basis,

meaning that developers only have to pay for the services

they use. This is like switching from a cell phone data plan

with a monthly fixed limit, to one that only charges for each

byte of data that actually gets used.

The term ‘serverless’ is somewhat misleading, as there are

still servers providing these backend services, but all of the

server space and infrastructure concerns are handled by the

vendor. Serverless means that the developers can do their

work without having to worry about servers at all.

The term ‘serverless’ is somewhat misleading, as there are

still servers providing these backend services, but all of the

server space and infrastructure concerns are handled by the

vendor. Serverless means that the developers can do their

work without having to worry about servers at all.

II. ARCHITECTURE OF SERVERLESS COMPUTING

Serverless architecture is largely based on a

Functions as a Service (FaaS) model that allows cloud

platforms to execute code without the need for fully

provisioned infrastructure instances. FaaS, also known as

Compute as a Service (CaaS), are stateless, server-side

functions that are event-driven, scalable, and fully managed

by cloud providers.

DevOps teams write code that focuses on business logic and

then define an event that triggers the function to be executed,

such as an HTTP request. The cloud provider then executes

the code and sends the results to the web application for users

to review.

AWS Lambda, Microsoft Azure Functions, Google Cloud

Functions and IBM OpenWhisk are all well-known examples

of serverless services offered by the cloud providers.

The convenience and cost-saving benefits associated with on-

demand auto-scaling resources, and only paying for services

as they're needed, makes serverless frameworks an appealing

option for DevOps teams and business stakeholders alike.

➢ Examples of serverless

The growing popularity of cloud computing and

microservices combined with the demand for greater

innovation and agility without increasing costs has

contributed significantly to the prevalence of serverless

applications. Notable use cases include:

• Slack:

Serverless is ideal for independent task based applications

such as chatbots and can save on operational costs since

billing is based on the actual number of requests. Slack, a

popular, cloud-based business communication platform, uses

a serverless application called marbot to send notifications

from Amazon Web Services (AWS) to DevOps teams

through Slack.

• HomeAway:

Reducing development time and server costs while

simplifying the build process are goals that universally appeal

to business teams and IT teams. HomeAway relied on Google

Cloud Functions to develop an app that allowed users to

search and comment on the recommendations of travelers in

real time, even in areas without an internet connection. The

cloud services available through Cloud Firestore and Cloud

Functions made it possible to set up the infrastructure within

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS090064
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 09, September 2022

351

https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
www.ijert.org
www.ijert.org
www.ijert.org

minutes and deploy the app within six weeks with just one

full-time developer.

• GreenQ:

Garbage pick-up and disposal is an industry that may not

seem to require innovative technology, but GreenQ took a

sophisticated approach to streamlining and improving waste

management by using IBM OpenWhisk to create an IoT

platform that uses hardware installed on garbage trucks to

collect key metrics such as pickup time, location, and load

weight. The auto-scaling available through serverless was

particularly valuable due to the fluctuation of infrastructure

demands based on the number of customers and trucks at any

given time.

• Coca-Cola:

Soft drink giant Coca-Cola has enthusiastically embraced

serverless after its implementation in vending machines

resulted in significant savings. Whenever a beverage is

purchased, the payment gateway makes a call to the AWS

API Gateway and triggers an AWS Lambda function to

complete the transaction. Since vending machines must

communicate with headquarters for inventory and marketing

purposes, the ability to pay per request rather than operating

at full capacity had a substantial impact on reducing costs.

III. FRONTEND VS BACKEND

Application development is generally split into two

realms: the frontend and the backend. The frontend is the part

of the application that users see and interact with, such as the

visual layout. The backend is the part that the user doesn’t

see; this includes the server where the application's files live

and the database where user data and business logic is

persisted.

Fig :Frontend vs Backend

For example, let’s imagine a website that sells

concert tickets. When a user types a website address into the

browser window, the browser sends a request to the backend

server, which responds with the website data. The user will

then see the frontend of the website, which can include

content such as text, images, and form fields for the user to

fill out. The user can then interact with one of the form fields

on the frontend to search for their favorite musical act. When

the user clicks on ‘submit’, this will trigger another request to

the backend. The backend code checks its database to see if a

performer with this name exists, and if so, when they will be

playing next, and how many tickets are available. The

backend will then pass that data back to the frontend, and the

frontend will display the results in a way that makes sense to

the user. Similarly, when the user creates an account and

enters financial information to buy the tickets, another back-

and-forth communication between the frontend and backend

will occur.

IV. ADVANTAGE AND DISADVANTAGE OF

SERVERLESS COMPUTING

Advantage

• Lower costs - Serverless computing is generally

very cost-effective, as traditional cloud

providers of backend services (server

allocation) often result in the user paying for

unused space or idle CPU time.

• Simplified scalability - Developers using

serverless architecture don’t have to worry

about policies to scale up their code. The

serverless vendor handles all of the scaling on

demand.

• Simplified backend code - With FaaS,

developers can create simple functions that

independently perform a single purpose, like

making an API call.

• Quicker turnaround - Serverless architecture can

significantly cut time to market. Instead of

needing a complicated deploy process to roll out

bug fixes and new features, developers can add

and modify code on a piecemeal basis.

Disadvantage

• Testing and debugging become more challenging

It is difficult to replicate the serverless environment in order

to see how code will actually perform once deployed.

Debugging is more complicated because developers do not

have visibility into backend processes, and because the

application is broken up into separate, smaller functions.

• Serverless computing introduces new security

concerns

When vendors run the entire backend, it may not be possible

to fully vet their security, which can especially be a problem

for applications that handle personal or sensitive data.

Because companies are not assigned their own discrete

physical servers, serverless providers will often be running

code from several of their customers on a single server at any

given time. This issue of sharing machinery with other parties

is known as 'multitenancy' – think of several companies

trying to lease and work in a single office at the same time.

Multitenancy can affect application performance and, if the

multi-tenant servers are not configured properly, could result

in data exposure. Multitenancy has little to no impact for

networks that sandbox functions correctly and have powerful

enough infrastructure.

• Serverless architectures are not built for long-running

processes

This limits the kinds of applications that can cost-effectively

run in a serverless architecture. Because serverless providers

charge for the amount of time code is running, it may cost

more to run an application with long-running processes in a

serverless infrastructure compared to a traditional one.

• Performance may be affected

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS090064
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 09, September 2022

352

www.ijert.org
www.ijert.org
www.ijert.org

Because it's not constantly running, serverless code may need

to 'boot up' when it is used. This startup time may degrade

performance. However, if a piece of code is used regularly,

the serverless provider will keep it ready to be activated – a

request for this ready-to-go code is called a 'warm start.' A

request for code that hasn't been used in a while is called a

'cold start.'

• Vendor lock-in is a risk

Allowing a vendor to provide all backend services for an

application inevitably increases reliance on that vendor.

Setting up a serverless architecture with one vendor can make

it difficult to switch vendors if necessary, especially since

each vendor offers slightly different features and workflows

V. How does serverless compare to other cloud backend

models?

A couple of technologies that are often conflated with

serverless computing are Backend-as-a-Service and Platform-

as-a-Service. Although they share similarities, these models

do not necessarily meet the requirements of serverless.

Backend-as-a-service (BaaS) is a service model where a

cloud provider offers backend services such as data storage,

so that developers can focus on writing front-end code. But

while serverless applications are event-driven and run on the

edge, BaaS applications may not meet either of these

requirements.

Platform-as-a-service (PaaS) is a model where developers

essentially rent all the necessary tools to develop and deploy

applications from a cloud provider, including things like

operating systems and middleware. However, PaaS

applications are not as easily scalable as serverless

applications. PaaS also don’t necessarily run on the edge and

often have a noticeable startup delay that isn’t present in

serverless applications

Infrastructure-as-a-service (IaaS) is a catchall term for

cloud vendors hosting infrastructure on behalf of their

customers. IaaS providers may offer serverless functionality,

but the terms are not synonymous.

CONCLUSION

Serverless computing continues to evolve as

serverless providers come up with solutions to overcome

some of its drawbacks. One of these drawbacks is cold starts.

Typically when a particular serverless function has not been

called in a while, the provider shuts down the function to save

energy and avoid over-provisioning. The next time a user

runs an application that calls that function, the serverless

provider will have to spin it up fresh and start hosting that

function again. This startup time adds significant latency,

which is known as a ‘cold start’.

Once the function is up and running it will be served much

more rapidly on subsequent requests (warm starts), but if the

function is not requested again for a while, the function will

once again go dormant. This means the next user to request

that function will experience a cold start. Up until fairly

recently, cold starts were considered a necessary trade-off of

using serverless functions.

REFERENCES
[1] https://martinfowler.com/articles/serverless.html

[2] http://lukeangel.co/cross-platform/docker-servless-faas-functions-as-

a-service/

[3] https://hackernoon.com/what-is-serverless-architecture-what-are-its-

pros-and-cons-cc4b804022e9

[4] https://serverless.com/blog/2018-serverless-community-survey-
huge-growth-usage/

[5] https://serverless.com/framework/docs/providers/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS090064
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 09, September 2022

353

www.ijert.org
www.ijert.org
www.ijert.org

