Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 09, September 2022

A Research Paper on Serverless Computing

Vaishnavi Kulkarni
Technical Support Engineer
Supermoney, Mumbai,India

Abstract— Serverless computing is a method of providing
backend services on an as-used basis. A serverless provider
allows users to write and deploy code without the hassle of
worrying about the underlying infrastructure. Keywords—
Serverless computing, Cloud computing, front end, back end.

I. INTRODUCTION
Serverless computing is a method of providing backend
services on an as-used basis. A serverless provider allows
users to write and deploy code without the hassle of worrying
about the underlying infrastructure. A company that gets
backend services from a serverless vendor is charged based
on their computation and do not have to reserve and pay for
a fixed amount of bandwidth or number of servers, as the
service is auto-scaling. Note that despite the name serverless,
physical servers are still used but developers do not need to
be aware of them.
In the early days of the web, anyone who wanted to build a
web application had to own the physical hardware required to
run a server, which is a cumbersome and expensive
undertaking.
Then came cloud computing, where fixed numbers of servers
or amounts of server space could be rented remotely.
Developers and companies who rent these fixed units of
server space generally over-purchase to ensure that a spike in
traffic or activity will not exceed their monthly limits and
break their applications. This means that much of the server
space that gets paid for can go to waste. Cloud vendors have
introduced auto-scaling models to address the issue, but even
with auto-scaling an unwanted spike in activity, such as
a DDoS Attack, could end up being very expensive.

Cost Benefits of Serverless

ol o WEITEC Y Braee

Fig:Cost Benefits of Serverless

Serverless computing allows developers to purchase
backend services on a flexible ‘pay-as-you-go’ basis,
meaning that developers only have to pay for the services
they use. This is like switching from a cell phone data plan
with a monthly fixed limit, to one that only charges for each
byte of data that actually gets used.

The term ‘serverless’ is somewhat misleading, as there are
still servers providing these backend services, but all of the
server space and infrastructure concerns are handled by the

vendor. Serverless means that the developers can do their
work without having to worry about servers at all.

The term ‘serverless’ is somewhat misleading, as there are
still servers providing these backend services, but all of the
server space and infrastructure concerns are handled by the
vendor. Serverless means that the developers can do their
work without having to worry about servers at all.

II. ARCHITECTURE OF SERVERLESS COMPUTING
Serverless architecture is largely based on a
Functions as a Service (FaaS) model that allows cloud
platforms to execute code without the need for fully
provisioned infrastructure instances. FaaS, also known as
Compute as a Service (CaaS), are stateless, server-side
functions that are event-driven, scalable, and fully managed
by cloud providers.
DevOps teams write code that focuses on business logic and
then define an event that triggers the function to be executed,
such as an HTTP request. The cloud provider then executes
the code and sends the results to the web application for users
to review.
AWS Lambda, Microsoft Azure Functions, Google Cloud
Functions and IBM OpenWhisk are all well-known examples
of serverless services offered by the cloud providers.
The convenience and cost-saving benefits associated with on-
demand auto-scaling resources, and only paying for services
as they're needed, makes serverless frameworks an appealing
option for DevOps teams and business stakeholders alike.
» Examples of serverless
The growing popularity of cloud computing and
microservices combined with the demand for greater
innovation and agility without increasing costs has
contributed significantly to the prevalence of serverless
applications. Notable use cases include:
e Slack:
Serverless is ideal for independent task based applications
such as chatbots and can save on operational costs since
billing is based on the actual number of requests. Slack, a
popular, cloud-based business communication platform, uses
a serverless application called marbot to send notifications
from Amazon Web Services (AWS) to DevOps teams
through Slack.
e HomeAway:
Reducing development time and server costs while
simplifying the build process are goals that universally appeal
to business teams and IT teams. HomeAway relied on Google
Cloud Functions to develop an app that allowed users to
search and comment on the recommendations of travelers in
real time, even in areas without an internet connection. The
cloud services available through Cloud Firestore and Cloud
Functions made it possible to set up the infrastructure within

IJERTV 111 S090064

www.ijert.org

351

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 09, September 2022

minutes and deploy the app within six weeks with just one
full-time developer.

e GreenQ:
Garbage pick-up and disposal is an industry that may not
seem to require innovative technology, but GreenQ took a
sophisticated approach to streamlining and improving waste
management by using IBM OpenWhisk to create an loT
platform that uses hardware installed on garbage trucks to
collect key metrics such as pickup time, location, and load
weight. The auto-scaling available through serverless was
particularly valuable due to the fluctuation of infrastructure
demands based on the number of customers and trucks at any
given time.

e Coca-Cola:
Soft drink giant Coca-Cola has enthusiastically embraced
serverless after its implementation in vending machines
resulted in significant savings. Whenever a beverage is
purchased, the payment gateway makes a call to the AWS
APl Gateway and triggers an AWS Lambda function to
complete the transaction. Since vending machines must
communicate with headquarters for inventory and marketing
purposes, the ability to pay per request rather than operating
at full capacity had a substantial impact on reducing costs.

I1l. FRONTEND VS BACKEND
Application development is generally split into two
realms: the frontend and the backend. The frontend is the part
of the application that users see and interact with, such as the
visual layout. The backend is the part that the user doesn’t
see; this includes the server where the application's files live
and the database where user data and business logic is

persisted.
The Front End The Back Fnd
Fequeat webniic daca
e Beaganda with wehuiic data
Diaplrv webnite, Srwasdy
requeat for concert daica
— Checky dutabase, defvee Bt
ol avalabk duica and tcdets
Fequeat webniic daca
—_— Upedaten datakane afbekeer,
praceaca paysiats, acadi
ceafirmaton wfe

Fig :Frontend vs Backend

For example, let’s imagine a website that sells
concert tickets. When a user types a website address into the
browser window, the browser sends a request to the backend
server, which responds with the website data. The user will
then see the frontend of the website, which can include
content such as text, images, and form fields for the user to
fill out. The user can then interact with one of the form fields
on the frontend to search for their favorite musical act. When
the user clicks on ‘submit’, this will trigger another request to
the backend. The backend code checks its database to see if a
performer with this name exists, and if so, when they will be
playing next, and how many tickets are available. The
backend will then pass that data back to the frontend, and the
frontend will display the results in a way that makes sense to

the user. Similarly, when the user creates an account and
enters financial information to buy the tickets, another back-
and-forth communication between the frontend and backend
will occur.

IV. ADVANTAGE AND DISADVANTAGE OF
SERVERLESS COMPUTING

Advantage
e Lower costs - Serverless computing is generally
very cost-effective, as traditional cloud
providers of backend services (server

allocation) often result in the user paying for
unused space or idle CPU time.

o Simplified scalability - Developers using
serverless architecture don’t have to worry
about policies to scale up their code. The
serverless vendor handles all of the scaling on
demand.

e Simplified backend code- With FaaS,
developers can create simple functions that
independently perform a single purpose, like
making an API call.

e Quicker turnaround - Serverless architecture can
significantly cut time to market. Instead of
needing a complicated deploy process to roll out
bug fixes and new features, developers can add
and modify code on a piecemeal basis.

Disadvantage

° Testing and debugging become more challenging
It is difficult to replicate the serverless environment in order
to see how code will actually perform once deployed.
Debugging is more complicated because developers do not
have visibility into backend processes, and because the
application is broken up into separate, smaller functions.

e Serverless computing introduces new security

concerns

When vendors run the entire backend, it may not be possible
to fully vet their security, which can especially be a problem
for applications that handle personal or sensitive data.
Because companies are not assigned their own discrete
physical servers, serverless providers will often be running
code from several of their customers on a single server at any
given time. This issue of sharing machinery with other parties
is known as 'multitenancy’ — think of several companies
trying to lease and work in a single office at the same time.
Multitenancy can affect application performance and, if the
multi-tenant servers are not configured properly, could result
in data exposure. Multitenancy has little to no impact for
networks that sandbox functions correctly and have powerful
enough infrastructure.

e Serverless architectures are not built for long-running

processes

This limits the kinds of applications that can cost-effectively
run in a serverless architecture. Because serverless providers
charge for the amount of time code is running, it may cost
more to run an application with long-running processes in a
serverless infrastructure compared to a traditional one.

e Performance may be affected

IJERTV 111 S090064

www.ijert.org

352

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 09, September 2022

Because it's not constantly running, serverless code may need
to 'boot up' when it is used. This startup time may degrade
performance. However, if a piece of code is used regularly,
the serverless provider will keep it ready to be activated — a
request for this ready-to-go code is called a 'warm start.'" A
request for code that hasn't been used in a while is called a
‘cold start.'
e Vendor lock-in is a risk

Allowing a vendor to provide all backend services for an
application inevitably increases reliance on that vendor.
Setting up a serverless architecture with one vendor can make
it difficult to switch vendors if necessary, especially since
each vendor offers slightly different features and workflows

V. How does serverless compare to other cloud backend
models?
A couple of technologies that are often conflated with
serverless computing are Backend-as-a-Service and Platform-
as-a-Service. Although they share similarities, these models
do not necessarily meet the requirements of serverless.
Backend-as-a-service (BaaS)is a service model where a
cloud provider offers backend services such as data storage,
so that developers can focus on writing front-end code. But
while serverless applications are event-driven and run on the
edge, BaaS applications may not meet either of these
requirements.
Platform-as-a-service (PaaS) is a model where developers
essentially rent all the necessary tools to develop and deploy
applications from a cloud provider, including things like
operating systems and middleware. However, PaaS
applications are not as easily scalable as serverless
applications. PaaS also don’t necessarily run on the edge and
often have a noticeable startup delay that isn’t present in
serverless applications

Infrastructure-as-a-service (laaS)is a catchall term for
cloud vendors hosting infrastructure on behalf of their
customers. laaS providers may offer serverless functionality,
but the terms are not synonymous.

CONCLUSION

Serverless computing continues to evolve as
serverless providers come up with solutions to overcome
some of its drawbacks. One of these drawbacks is cold starts.
Typically when a particular serverless function has not been
called in a while, the provider shuts down the function to save
energy and avoid over-provisioning. The next time a user
runs an application that calls that function, the serverless
provider will have to spin it up fresh and start hosting that
function again. This startup time adds significant latency,
which is known as a ‘cold start’.
Once the function is up and running it will be served much
more rapidly on subsequent requests (warm starts), but if the
function is not requested again for a while, the function will
once again go dormant. This means the next user to request
that function will experience a cold start. Up until fairly
recently, cold starts were considered a necessary trade-off of
using serverless functions.

REFERENCES

[1] https://martinfowler.com/articles/serverless.html

[2] http://lukeangel.co/cross-platform/docker-servless-faas-functions-as-
a-service/

[3] https://hackernoon.com/what-is-serverless-architecture-what-are-its-
pros-and-cons-cc4b804022e9

[4] https://serverless.com/blog/2018-serverless-community-survey-
huge-growth-usage/

[5] https://serverless.com/framework/docs/providers/

IJERTV 111 S090064

www.ijert.org

353

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

