A Related Fixed Point Theorem of Integral Type on Two Fuzzy 2-Metric Spaces

Pheiroijam Suranjoy Singh
Sagolband Takyel Kolom Leikai
Imphal West, Manipur - 795001, India.

Abstract

In this paper, a related fixed point theorem is obtained. It extends a result proved by R.K. Namdeo, N.K. Tiwari, B. Fisher and K. Tas [9]. The notion of fuzzy 2-metric spaces satisfying integral type inequalities is used.

Keywords : Fuzzy 2-metric space, fixed point, related fixed point, integral type inequality.
2000 AMS Subject Classification : $47 \mathrm{H} 10,54 \mathrm{H} 25$.

Intoduction

The concept of fuzzy sets was introduced by L. Zadeh [14] in 1965. Fuzzy metric space was introduced by Kramosil and Michalek [7] in 1975. Then, it was modified by George and Veeramani [4] in 1994. Fuzzy has been studied and developed by many mathematicians for many years. Introduction of fuzzy 2-metric space is one of such developments. Gahler [10, 11] investigated 2-metric spaces in a series of his papers. Fuzzy 2-metric space is studied in $[6,8,12$, $13]$ and many others. Related fixed point is studied in [1, 2, 3, 5, 9] and many more.

Some definitions are stated as follows:
Definition 1.1 : A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is called a t - norm in $([0,1], *)$ if following conditions are satisfied:
For all $a, b, c, d \in[0,1]$,
i. $a * 1=a$,
ii. $a * b=b * a$,
iii. $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$,
iv. $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$.

Definition 1.2. The 3 -tuple $(X, \mu, *)$ is called a fuzzy 2- metric space if X is an arbitrary set, * is a continuous t - norm and μ is a fuzzy set in $X^{3} \times[0, \infty)$ satisfying the following conditions:
For all $x, y, z, u \in \mathrm{X}$ and $t_{1}, t_{2}, t_{3}>0$,
i. $\mu(x, y, z, 0)=0$,
ii. $\mu(x, y, z, t)=1, t>0$ and when at least two of the three points are equal,
iii. $\mu(x, y, z, t)=\mu(y, x, z, t)=\mu(z, x, y, t)$ (symmetry about three variables),
iv. $\mu\left(x, y, z, t_{1}+t_{2}+t_{3}\right) \geq \mu\left(x, y, u, t_{1}\right) * \mu\left(x, u, z, t_{2}\right) * \mu\left(u, y, z, t_{3}\right)$
v. $\mu(x, y, z, \cdot):[0, \infty) \rightarrow[0,1]$ is left continuous,
vi. $\lim _{t \rightarrow \infty} \mu(x, y, z, t)=1$.

Definition 1.3: Let $(X, \mu, *)$ be a fuzzy 2-metric space. A sequence $\left\{x_{n}\right\} \quad X$ is said to:
i. converge to x in X if and only if $\lim _{t \rightarrow \infty} \mu\left(x_{n}, x, a, t\right)=1 \quad \forall a \in X$ and $t>0$.
ii. be a Cauchy sequence if and only if $\lim _{t \rightarrow \infty} \mu\left(x_{n+p}, x_{n}, a, t\right)=1 \quad \forall a \in X, p>0$ and $t>0$.

Definition 1.4 : A fuzzy 2-metric space $(X, \mu, *)$ is aid to be complete if and only if every Cauchy sequence in X is convergent in X.

The following was proved in [9].
Theorem 1.1: Let (X, d) and (Y, ρ) be complete metric spaces. Let T be a mapping of X into Y and S be a mapping of Y into X satisfying the inequalities

$$
\begin{array}{r}
d\left(S y, S y^{\prime}\right) d\left(S T x, S T x^{\prime}\right) \leq c \max \left\{\begin{array}{r}
d\left(S y, S y^{\prime}\right) \rho\left(T x, T x^{\prime}\right), d\left(x^{\prime}, S y\right) \rho\left(y^{\prime}, T x\right), \\
\left.d\left(x, x^{\prime}\right) d\left(S y, S y^{\prime}\right), d(S y, S T x) d\left(S y^{\prime}, S T x^{\prime}\right)\right\} \\
\rho\left(T x, T x^{\prime}\right) \rho\left(T S y, T S y^{\prime}\right) \leq c \max \left\{d\left(S y, S y^{\prime}\right) \rho\left(T x, T x^{\prime}\right), d\left(x^{\prime}, S y\right) \rho\left(y^{\prime}, T x\right),\right. \\
\left.\rho\left(y, y^{\prime}\right) \rho\left(T x, T x^{\prime}\right), \rho(T x, T S y) \rho\left(T x, T y^{\prime}\right)\right\}
\end{array}\right.
\end{array}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y, where $0 \leq c<1$. If either S or T is continuous, then $S T$ has a unique fixed point z in X and $T S$ has a unique fixed point w in Y. Further, $T z=w$ and $S w=z$.

Now, theorem 1.1 is extended to two pairs of mappings in integral and fuzzy 2-metric space settings as follows.

Main result

Theorem 2.1 : Let (X, μ, a, t) and (Y, v, a, t) be two complete fuzzy 2-metric spaces. Let A, B be mappings of X into Y and S, T be mappings of Y into X satisfying the inequalities

$$
\begin{align*}
& \quad \begin{aligned}
\min \left\{\mu\left(S y, T y^{\prime}, a, t\right) v\left(A x, B x^{\prime}, a, t\right), \mu\left(x^{\prime}, S y, a, t\right) v\left(y^{\prime}, A x, a, t\right),\right. \\
\left.\mu\left(x, x^{\prime}, a, t\right) \mu\left(S y, T y^{\prime}, a, t\right), \mu(S y, S A x, a, t) \mu\left(T y^{\prime}, T B x^{\prime}, a, t\right)\right\}
\end{aligned} \\
& \int_{1}^{k \mu\left(S y, T y^{\prime}, a, t\right) \mu\left(S A x, T B x^{\prime}, a, t\right)} \begin{aligned}
\mu(s) d s \geq \int_{1}
\end{aligned} \quad \varphi(s) d s \tag{1}
\end{align*}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y, where $k \in(0,1)$. If A and S or B and T are continuous, then $S A$ and $T B$ have a unique common fixed point z in X and $B S$ and $A T$ have unique common fixed point w in Y. Further, $A z=B z=w$ and $S w=T w=z$.

Proof : Let x be any arbitrary point in X. We define sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X and Y respectively as:

$$
S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n}, T y_{2 n}=x_{2 n}, A x_{2 n}=y_{2 n-1}, \text { for } n=1,2,3, \ldots
$$

Applying inequality (1), we get

$$
\begin{aligned}
& \int_{1} k \mu\left(S y_{2 n-1}, T y_{2 n}, a, t\right) \mu\left(S A x_{2 n}, T B x_{2 n-1}, a, t\right) \varphi(s) d s \\
= & \int_{1} k \mu^{2}\left(x_{2 n-1}, x_{2 n}, a, t\right) \varphi(s) d s \\
& \min \left\{\mu\left(S y_{2 n-1}, T y_{2 n}, a, t\right) v\left(A x_{2 n}, B x_{2 n-1}, a, t\right), \mu\left(x_{2 n-1}, S y_{2 n-1}, a, t\right) v\left(y_{2 n}, A x_{2 n}, a, t\right),\right. \\
& \left.\mu\left(x_{2 n}, x_{2 n-1}, a, t\right) \mu\left(S y_{2 n-1}, T y_{2 n}, a, t\right), \mu\left(S y_{2 n-1}, S A x_{2 n}, a, t\right) \mu\left(T y_{2 n}, T B x_{2 n-1}, a, t\right)\right\} \\
& \left.\int_{1} \quad \min _{\left\{\mu \left(x_{2 n-1}\right.\right.}, x_{2 n}, a, t\right) v\left(y_{2 n-1}, y_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n-1}, a, t\right) v\left(y_{2 n}, y_{2 n-1}, a, t\right), \\
= & \left.\int_{1} \mu\left(x_{2 n}, x_{2 n-1}, a, t\right) \mu\left(x_{2 n-1}, x_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n-1}, a, t\right) \mu\left(x_{2 n}, x_{2 n}, a, t\right)\right\}
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\int_{1}^{k \mu\left(x_{2 n-1}, x_{2 n}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\min \left\{v\left(y_{2 n-1}, y_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n}, a, t\right)\right\}} \varphi(s) d s \tag{3}
\end{equation*}
$$

Applying inequality (2), we get

$$
\begin{aligned}
& \int_{1} k v\left(A x_{2 n}, B x_{2 n-1}, a, t\right) v\left(B S y_{2 n-1}, A T y_{2 n}, a, t\right)^{\prime}{ }_{\varphi(s) d s} \\
= & \int_{1} k v^{2}\left(y_{2 n-1}, y_{2 n}, a, t\right) \varphi(s) d s \\
& \min \left\{\mu\left(S y_{2 n-1}, T y_{2 n}, a, t\right) v\left(A x_{2 n}, B x_{2 n-1}, a, t\right), \mu\left(x_{2 n-1}, S y_{2 n-1}, a, t\right) v\left(y_{2 n}, A x_{2 n}, a, t\right),\right. \\
\geq & \left.v\left(y_{2 n-1}, y_{2 n}, a, t\right) v\left(A x_{2 n}, B x_{2 n-1}, a, t\right), v\left(A x_{2 n}, B S y_{2 n-1}, a, t\right) v\left(B x_{2 n-1}, A T y_{2 n}, a, t\right)\right\} \\
& \max _{1} \mu\left(x_{2 n-1}, x_{2 n}, a, t\right) v\left(y_{2 n-1}, y_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n-1}, a, t\right) v\left(y_{2 n}, y_{2 n-1}, a, t\right), \\
= & \left.v\left(y_{2 n-1}, y_{2 n}, a, t\right) v\left(y_{2 n-1}, y_{2 n}, a, t\right), v\left(y_{2 n-1}, y_{2 n}, a, t\right) v\left(y_{2 n}, y_{2 n-1}, a, t\right)\right\}
\end{aligned}
$$

$$
\varphi(s) d s
$$

from which it follows that

$$
\begin{equation*}
\int_{1}^{k v}\left(y_{2 n-1}, y_{2 n}, a, t\right) \varphi(s) d s \geq \int_{1} \min \left\{v\left(y_{2 n-1}, y_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n}, a, t\right)\right\} \tag{4}
\end{equation*}
$$

(3) and (4) can be written as

$$
\int_{1}^{k \mu\left(x_{n-1}, x_{n}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\min \left\{v\left(y_{n-1}, y_{n}, a, t\right), \mu\left(x_{n-1}, x_{n}, a, t\right)\right\}} \varphi(s) d s
$$

$$
\int_{1}^{k v\left(y_{n-1}, y_{n}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\min \left\{v\left(y_{n-1} 1_{n}, a, t\right), \mu\left(x_{n-1}, x_{n}, a, t\right)\right\}} \varphi(s) d s
$$

which can be again written as

$$
\begin{align*}
& \int_{1}^{k \mu\left(x_{n+1}, x_{n}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\min \left\{v\left(y_{n+1}, y_{n}, a, t\right), \mu\left(x_{n+1}, x_{n}, a, t\right)\right\}} \varphi(s) d s \tag{5}\\
& \int_{1}^{k v\left(y_{n+1}, y_{n}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\min \left\{v\left(y_{n+1}, y_{n}, a, t\right), \mu\left(x_{n+1}, x_{n}, a, t\right)\right\}} \varphi(s) d s \tag{6}
\end{align*}
$$

From (5) and (6), by induction, we get

$$
\begin{aligned}
& \int_{1}^{\mu\left(x_{n+1}, x_{n}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\frac{1}{k^{n}} \min \left\{v\left(y_{1}, y_{2}, a, t\right), \mu\left(x_{1}, x_{2}, a, t\right)\right\}} \varphi \varphi(s) d s \\
& \int_{1}^{v\left(y_{n+1}, y_{n}, a, t\right)} \varphi(s) d s \geq \int_{1} k^{\frac{1}{n}} \min \left\{v\left(y_{1}, y_{2}, a, t\right), \mu\left(x_{1}, x_{2}, a, t\right)\right\}
\end{aligned} \varphi(s) d s
$$

Let $\quad t_{1}=\frac{t}{p}$. Now,
$\int_{1}^{\mu\left(x_{n}, x_{n+p}, a, t\right)} \varphi(s) d s=\int_{1}^{\mu\left(x_{n}, x_{n+p}, a, t_{1}+t_{1}+\ldots p \text { times }\right)} \varphi(s) d s$
$\geq \int_{1}^{\mu\left(x_{n}, x_{n+1}, a, t_{1}\right)}{ }_{\varphi(s) d s} * \int_{1}^{\mu\left(x_{n+1}, x_{n+2}, a, t_{1}\right)}{ }_{\varphi(s) d s} * \ldots * \int_{1}^{\mu\left(x_{n+p-1}, x_{n+p}, a, t_{1}\right)} \varphi_{\varphi(s) d s}$
$\geq \int_{1}^{\frac{1}{k^{n}}} \min \left\{v\left(y_{1}, y_{2}, a, t\right), \mu\left(x_{1}, x_{2}, a, t\right)\right\} \varphi(s) d s * \ldots * \int_{1}^{\frac{1}{k^{n+p-1}} \min \left\{v\left(y_{1}, y_{2}, a, t\right), \mu\left(x_{1}, x_{2}, a, t\right)\right\}} \varphi(s) d s$
which implies that

$$
\begin{aligned}
& \lim \int_{1}^{\mu\left(x_{n}, x_{n+p}, a, t\right)} \varphi(s) d s \geq 1 \\
& \quad \Rightarrow \mu\left(x_{n}, x_{n+p}, a, t\right) \geq 1
\end{aligned}
$$

$\Rightarrow\left\{x_{n}\right\}$ is a Cauchy sequence with a limit z in X.
Similarly, $\left\{y_{n}\right\}$ is a Cauchy sequence with a limit w in Y.
Now, on using the continuity of A and S respectively, we get

$$
w=\lim y_{2 n-1}=\lim A x_{2 n}=A z \quad \text { and } \quad z=\lim x_{2 n}=\lim S y_{2 n}=S w
$$

so that we get

$$
\begin{align*}
& A z=w \tag{7}\\
& S w=z \tag{8}
\end{align*}
$$

From (7) and (8), we get

$$
\begin{equation*}
S A z=z \tag{9}
\end{equation*}
$$

Again applying inequality (1), we get

$$
\begin{align*}
& \int_{1}^{k \mu\left(S A x_{2 n}, T B x_{2 n-1}, a, t\right)} \varphi(s) d s \\
& \min \left\{v\left(A x_{2 n}, B x_{2 n-1}, a, t\right), v\left(y_{2 n}, A x_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n}, a, t\right)\right\}
\end{align*}
$$

On letting $n \rightarrow \infty$, we have

$$
\int_{1}^{k \mu(S w, T B z, a, t)} \varphi(s) d s \geq \int_{1}^{v(A z, w, a, t)} \varphi(s) d s
$$

By (7), we have

$$
\begin{gathered}
\int_{1}^{k \mu(S w, T B z, a, t)} \varphi(s) d s \geq 0 \\
\Rightarrow k \mu(S w, T B z, a, t) \geq 1
\end{gathered}
$$

which implies that

$$
S w=T B z
$$

and from (8), we get

$$
\begin{equation*}
z=T B z \tag{11}
\end{equation*}
$$

From (9) and (11), we get

$$
\begin{equation*}
S A z=z=T B z \tag{12}
\end{equation*}
$$

Now, (10) gives

$$
\int_{1}^{k \mu\left(x_{2 n-1}, T y_{2 n}, a, t\right)} \varphi(s) d s
$$

$$
\begin{aligned}
& \min \left\{v\left(A x_{2 n}, B x_{2 n-1}, a, t\right), v\left(y_{2 n}, A x_{2 n}, a, t\right), \mu\left(x_{2 n-1}, x_{2 n}, a, t\right)\right\} \\
\geq & \int_{1} \varphi(s) d s
\end{aligned}
$$

On letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
& \int_{1}^{k \mu(z, T w, a, t)} \varphi(t) d t \geq 0 \\
& \quad \Rightarrow k \mu(z, T w, a, t) \geq 1
\end{aligned}
$$

which implies that

$$
\begin{equation*}
z=T w \tag{13}
\end{equation*}
$$

Again, applying inequality (2), we get

$$
\begin{align*}
& \int_{1} k v\left(B S y_{2 n-1}, A T y_{2 n}, a, t\right)
\end{align*}(s) d s
$$

On letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
& \int_{1}^{k v(B S w, A T w, a, t)} \varphi(s) d s \geq 0 \\
& \Rightarrow k v(B S w, A T w, a, t) \geq 1
\end{aligned}
$$

which implies that

$$
\begin{equation*}
B S w=A T w \tag{15}
\end{equation*}
$$

Now, (14) gives

$$
\begin{aligned}
& \int_{1}^{k v\left(y_{2 n}, A T y_{2 n}, a, t\right)} \varphi(s) d s \\
& \min \left\{\mu\left(S y_{2 n-1}, T y_{2 n}, a, t\right), \mu\left(x_{2 n-1}, S y_{2 n-1}, a, t\right), v\left(y_{2 n-1}, y_{2 n}, a, t\right), v\left(A x_{2 n}, B x_{2 n-1}, a, t\right)\right\} \\
\geq & \int_{1}
\end{aligned}
$$

On letting $n \rightarrow \infty$, we get

$$
\int_{1}^{k v(w, A T w, a, t)} \varphi(s) d s \geq 0
$$

$$
\Rightarrow k v(w, A T w, a, t) \geq 1
$$

which implies that

$$
\begin{equation*}
w=A T w \tag{16}
\end{equation*}
$$

From (15) and (16), we get

$$
\begin{equation*}
B S w=w=A T w \tag{17}
\end{equation*}
$$

From (8) and (17), we get

$$
\begin{equation*}
B z=w \tag{18}
\end{equation*}
$$

From (7) and (18), we get

$$
\begin{equation*}
A z=B z=w \tag{19}
\end{equation*}
$$

From (8) and (13), we get

$$
\begin{equation*}
S w=T w=z \tag{20}
\end{equation*}
$$

Similarly, on using the continuity of B and T, the above results hold.
To prove the uniqueness, let $S A$ and $T B$ have a second distinct common fixed point z^{\prime} in X and $B S$ and $A T$ have a second distinct common fixed point w^{\prime} in Y.

Applying inequality (1), we have

$$
\begin{align*}
& \int_{1}^{k \mu^{2}\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \\
& \min \left\{\mu(z, t, a, t) v\left(A z, B z^{\prime}, a, t\right), \mu\left(z^{\prime}, z^{\prime}, a, t\right) v\left(B z^{\prime}, A z, a, t\right),\right. \\
\geq & \int_{1}^{\left.\mu\left(z, z^{\prime}, a, t\right) \mu\left(z, z^{\prime}, a, t\right), \mu\left(z^{\prime}, z^{\prime}, a, t\right) \mu(z, z, a, t)\right\}} \varphi(s) d s \\
\Rightarrow & \int_{1}^{k \mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\min \left\{v\left(A z, B z^{\prime}, a, t\right),\left(B z^{\prime}, A z, a, t\right)\right\}} \varphi(s) d s \\
\Rightarrow & \int_{1}^{k \mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \geq \int_{1}^{v\left(A z, B z^{\prime}, a, t\right)} \varphi(s) d s \tag{21}
\end{align*}
$$

Applying inequality (2), we get

$$
\int_{1}^{k v^{2}\left(A z, B z^{\prime}, a, t\right)} \varphi(s) d s
$$

$$
\begin{align*}
& \min \left\{\mu\left(z, z^{\prime}, a, t\right) v\left(A z, B z^{\prime}, a, t\right), \mu\left(z^{\prime}, z^{\prime}, a, t\right) v\left(B z^{\prime}, A z, a, t\right),\right. \\
\geq & \int_{1}^{\left.v\left(A z, B z^{\prime}, a, t\right) v\left(A z, B z^{\prime}, a, t\right), v\left(A z, B z^{\prime}, a, t\right) v\left(B z^{\prime}, A z, a, t\right)\right\}} \varphi(s) d s \\
\Rightarrow & \int_{1}^{k v\left(A z, B z^{\prime}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \tag{22}
\end{align*}
$$

From (21) and (22), we get

$$
\begin{aligned}
& \int_{1}^{k^{2} \mu(z, z, a, t)} \varphi(s) d s \geq \int_{1}^{\mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \\
& \Rightarrow \int_{1}^{\mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\frac{1}{k^{2}} \mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \\
& \Rightarrow \int_{1}^{\mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\frac{1}{k^{2}} \mu(z, z, a, t)} \varphi(s) d s \geq \ldots \geq \int_{1}^{\frac{1}{k^{n}} \mu\left(z, z^{\prime}, a, t\right)} \varphi(s) d s \\
& \Rightarrow \int_{1}^{\mu(z, z, a, t)} \varphi(s) d s \geq \lim \int_{1}^{\frac{1}{k^{n}} \mu(z, z, a, t)} \varphi(s) d s \geq 1 \\
& \Rightarrow \mu\left(z, z^{\prime}, a, t\right) \geq 1
\end{aligned}
$$

which implies that

$$
z=z^{\prime} .
$$

This proves the uniqueness of z. Similarly, the uniqueness of w can be proved.
The following corollary is a fuzzy 2-metric space version of theorem 1.1 in integral setting.
Corollary 2.2 : Let (X, μ, a, t) and (Y, v, a, t) be two complete fuzzy 2-metric spaces. Let S be mappings of X into Y and T be mappings of Y into X satisfying the inequalities

$$
\begin{array}{cc}
& \min \left\{\mu\left(T y, T y^{\prime}, a, t\right) v\left(S x, S x^{\prime}, a, t\right), \mu\left(x^{\prime}, T y, a, t\right) v\left(y^{\prime}, S x, a, t\right),\right. \\
\int_{1}^{k \mu\left(T y, T y^{\prime}, a, t\right) \mu\left(T S x, T S x^{\prime}, a, t\right)} \varphi(s) d s \geq \int_{1}^{\left.\mu\left(x, x^{\prime}, a, t\right) \mu\left(T y, T y^{\prime}, a, t\right), \mu(T y, T S x, a, t) \mu\left(T y^{\prime}, T S x^{\prime}, a, t\right)\right\}}
\end{array} \varphi(s) d s
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y, where $k \in(0,1)$. If either S or T is continuous, then $T S$ has a unique fixed point z in X and $S T$ has a unique fixed point w in Y. Further, $S z=w$ and $T w=z$.

Proof : By putting $A=B=S$ and $S=T=T$ in theorem 2.1, the result easily follows.

References

[1] Aliouche A. and Fisher B., A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe Journal of Mathematics and Statistics, Vol. 34 (2005), 39-45.
[2] Cho Y.J., Kang S.M. and Kim S.S., Fixed points in two metric spaces, Novi Sad Journal Math., 29 (1) (1999), 47-53.
[3] Fisher B. and Rao K.P.R, A related fixed point theorem on three metric space, Hacettepe Journal of Mathematics and Statistics, Vol. 36 (2) (2007), 143-146.
[4] George A. and Veeramani P., On some result in fuzzy metric space, Fuzzy Set and Systems, Vol. 64, (1994) 395-399.
[5] Jain S. and Fisher B., A related fixed point theorem for three metric spaces, Hacettepe Journal of Mathematics and Statistics, Vol. 31 (2002), 19-24.
[6] Jinkyu Han, A common fixed point theorem on fuzzy 2-metric spaces, Journal of the Chungcheong Mathematical Society, Volume 23, No. 4, December 2010.
[7] Kramosil O.and Michalek J., Fuzzy metric and statistical metric spaces, Kybernetica Vol. 11 (1975) 326-334.
[8] N.Thillaigovindan, S.Anita Shanthi and S.Vijayabalaji, Semigroup actions on intuitionistic fuzzy 2metric spaces, Int. J. Open Problems Compt. Math., Vol. 3, No. 1, March 2010.
[9] R.K. Namdeo, N.K. Tiwari, B.Fisher and K. Tas, Related fixed point theorems on two complete and compact metric spaces, Internat. J. Math. and Math. Sci. ,Vol. 21, No. 3 (1998), $559-564$.
[10] S. Gahler, (1965), Uber die uniromisieberkeit 2-metric Raume, Math.Nachr. 28, 235-244.
[11] S. Gahler, (1963), 2-metric Raume and ihre topologische strucktur, Math. Nachr., 26,115-148.
[12] Surjeet Singh Chauhan and Kiran Utreja, Fixed point theorem in fuzzy 2-metric space using absorbing maps, Research Journal of Pure Algebra, 2 (2) (2012), 77 - 81.
[13] Surjeet Singh Chauhan (Gonder) and Kiran Utreja, A common fixed point theorem in fuzzy 2- metric space, Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 2, 85 - 91, Hikari Ltd, www.m-hikari.com
[14] Zadeh, L.A., Fuzzy sets, Information and control, 8 (1965), 338-353.

