

A Real-Time Visual Navigation System for

Quadcopter based on LSD-SLAM Algorithm

Mr. M. Sudhakaran, M. E, (Ph.D.)

Associate Professor,

Department of Electrical and Electronics Engineering,

Ganadhipathy Tulsi’s Jain Engineering college

Vellore-632 102.

S. Anandharaman
PG Student

Department of Electrical and Electronics Engineering

Ganadhipathy Tulsi’s Jain Engineering college

Vellore-632 102.

Abstract—Visual odometry principles are rapidly demanding

in navigation and mapping fields, which can be implemented with

Unmanned Ariel Vehicles (UAV). Building a spatially consistent

probabilistic model for a quadcopter for its navigation, 3D

mapping and autonomy are the key purposes of this work. It also

aims to put a spotlight on cost effective simulation solutions for

the build and makes the drone autonomous by pose estimation

computation. The environment mapping for the navigation in

GPS-denied and clustered environments are carried out by

traditional Simultaneous Localisation and Mapping (SLAM)

technique with Large-Scale Direct Odometry Algorithm (LSD).

Keywords—SLAM; Visual Navigation; Robotics; Visual

Odometry

I. INTRODUCTION

In recent years, both remote controlled and

autonomously flying Quadcopters have become an important

tool not only in the military domain but also in civilian

environments. They can also be used especially for

observational and exploration purposes in indoor and outdoor

environments, but also for data collection, object manipulation

or simply as high-tech toys.

While the concept of an aircraft flying with four

horizontally aligned rotors had already been proposed in 1922,

this design quickly disappeared and was dominated by the

much more common two-rotor helicopter. There are two main

reasons for this development: While mechanically very simple,

a quadcopter is inherently unstable and hence difficult to

control - without the help of advanced electronic control

systems and stabilizing routines, manual control turned out to

be too complex. Furthermore, quadcopters are less energy-

efficient than traditional helicopters.

With the growing importance of UAVs however, the

quadcopter design has become more popular again. It is

because that, mechanically quadcopters are simpler to control

due to fixed thrusts. In addition to that, the four rotors can be

enclosed by a frame, protecting them from the collisions and

permitting the drone to flight indoors and in obstacle-dense

environments. Finally, the use of four rotors allows each to

have a smaller diameter, causing them to store less kinetic

energy during flight and reducing the damage caused should

the rotor hit an object, making quadcopters significantly safer

to use close to the people.

 In order to navigate, modern UAVs can rely on a wide

range of sensors. In addition to an inertial measurement unit

(IMU) measuring the aircraft’s orientation and acceleration, a

The GPS-based navigation system is often used to determine

the UAV's absolute position - enabling it to autonomously

navigate in a known environment, or simply to stay at its

position without drifting away.

II. RELATED WORKS

 In the literature, many authors presented autonomous

methods of navigating the UAV by Visual Odometry methods.

The mapping and pose estimation can be accomplished with

both monocular and stereo cameras. Recently, M.Pizzoli et al

2014 [2] presented such navigational systems with the

Monocular camera. But, using such monocular cameras for the

odometry purposes will not sufficiently estimate the real scale

of surrounding environments. So, stereo cameras can be used

for the improvement in accuracy of generating the maps. But

some works Changhong Fu et al 2015 [1] and 2014 [5] have

cited that, there will be some problems in implementing the

stereo camera for visual odometry.

These papers really an emphasis on SLAM methods,

which should be more computationally feasible and easy as

well. If we implement normal SLAM methods without sensor

fusions as presented in [5], there will be some inaccuracy in

computing the depth maps, which will lead to invalid pose

estimation. On the other hand, J.Engel et al 2014 [3] proposed

a Direct Monocular SLAM algorithm (feature-less) for

mapping the environment under dense reconstruction. This can

be used for the stereo cameras for correct rendering and

computation of environment maps. Other works like J.Zhang et

al 2014 [4] proposes the odometry systems with Direct SLAM

along with LiDar based sensor devices, which produced

promising results.

The [1] presents low-cost stereo odometry system

based on the SGM and SLAM algorithms. But this algorithm

really, peaks the processor load in the time of flight. It also has

some liabilities as well. It produces an overhead on the

processor, such that high-end heterogeneous cores are needed

to carry out the odometry tasks. On focusing the cost and

payload capabilities of these unmanned systems, VisLab 3dv

[7]; Skybotic iv [8] and DLR device [9] presented a clean stereo

guidance and mapping systems, which has a higher degree of

accuracy and also lesser payload. But the liability lies on the

cost of the system. These earlier efforts also tell us that there

was a technical advantage of reducing the payload of the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCARMS - 2016 Conference Proceedings

Volume 4, Issue 26

Special Issue - 2016

1

quadcopter. It also has a disadvantage of using their proposed

systems for dense visual reconstructions only. The basics of the

SLAM, 3D mapping, and reconstruction of the environment

was studied to the vast extent. They are dealt in-depth on

various technical papers. The problem of inaccuracy while

moving a monocular camera was fully covered in Matia Pizolli

et al 2014 [2], which proposes a new framework called:

REMODE. It also takes less footprint memory devices and

fewer cores for its operation. The [5] presents the Fuzzy logic

controller for the monocular visual odometry base on the

Cross-entropy optimization for the Extended Kalman filter,

used for the feature extraction. It also proposes a way to clear

collision avoidance errors by using FLC optimization.

Although there are numerous types of reconstruction

principles available for the mono camera, the Andreas et al

2011 [6], proposes a reconstruction method in real time for

Stereo camera. It utilizes parse feature matching principle from

the high definition stereo camera pair in real time, which can

also be implemented on FPGA-based systems. The inferences

obtained for stereo 3D reconstruction was only 3 to 4 fps using

the StereoScan algorithm. A traditional Semi-Global Matching

(SGM) based depth mapping system was designed by

G.Camellini et al 2014 [7], which also describes the hardware

implementation. They have implemented their system on

Xilinx- Zynq SOCs for high performance. The accurate real-

time SLAM in the Janosch et al 2014 [8], was a highly

sophisticated real-time SLAM system, which uses IMUs and

the same Zynq SOCs. Some authors also design Mobile Robots

based on the SLAM and IMUs. The authors of [8] and [9]

design these robots on FPGA platform. They invoke all the

algorithms on Heterogeneous processors for the real-time data

transfer to the base station system. The study of SGM was dealt

in Simon Hermann 2012 [10], which proposes a new Fast SGM

algorithm focusing on the Driver Assistance Systems. They

benchmarked their results with the Trinocular camera based

frames which they tell that it was 40% faster than novel SGM

methods.

The basics of Kalman filter, Corner detection, Feature

detection and Edge detection was studied for the use in SLAM

algorithm. The Extended Kalman filter (EKF) was the majorly

used filter in the algorithm. The Bernd Kitt et al 2010 [11]

proposes a new faster and accurate filtering of the real time

images with the help of EKF and Random Sample Consensus

(RANSAC) based outlier rejection schemes. The corner

detection algorithm was proposed in [14] and [12]. The famous

Harris detector was used as a regular detector in all types of

SLAM algorithms. The [12] proposes new binary strings for

independent feature detection, called BRIEF. Thus, the

literature study gives the clear outline of the existing system

and various algorithms and techniques. Proper selection of the

algorithm and the technique of control was applied onto the

proposed system, aiming at the following points: Cost,

Payload, Algorithm complexity, and Processor selection.

III. THE SLAM ALGORITHM

The most fundamental problems in robotics, the

simultaneous localization and mapping problem. This problem

is commonly abbreviated as SLAM and is also known as

Concurrent Mapping and Localization, or CML. SLAM

problems arise when the robot does not have access to a map

of the environment; nor does it have access to its own poses.

Instead, all it is given are measurements z1: t and controls u1:

t. In SLAM, the robot acquires a map of its environment while

simultaneously localizing itself relative to this map. SLAM is

significantly more difficult than all robotics problems

discussed thus far: It is more difficult than localization in that

the map is unknown and has to be estimated along the way. It

is more difficult than mapping with known poses since the

poses are unknown and have to be estimated along the way.

A. Extended Kalman Filter SLAM

The EKF SLAM algorithm applies the EKF to online

SLAM using maximum likelihood data association. In doing

so, EKF SLAM is subject to a number of approximations and

limiting assumptions:

1) Feature-based extraction. Maps, in the EKF, are

composed of point landmarks. For computational

reasons, the number of point landmarks is usually small

(e.g., smaller than 1,000). Further, the EKF approach

tends to work well the less ambiguous the landmarks

are. For this reason, EKF SLAM requires significant

engineering of feature detectors, sometimes using

artificial beacons or landmarks as features.

2) Photometric noise. As any EKF algorithm, EKF

SLAM makes a Gaussian noise assumption for the robot

motion and the perception. The amount of uncertainty

in the posterior must be relatively small since otherwise

the linearization in EKFs tend to introduce intolerable

errors.

3) Pose measurements. This algorithm can only process

positive sightings of the sustained landmarks. It cannot

process negative information that arises from the

absence of sustained landmarks in the set of sensor

measurements. This is a direct consequence of the

Gaussian belief representation.

B. Large Scale Direct-SLAM (LSD-SLAM)

The LSD SLAM is the featureless SLAM, which

operates on the direct point clouds of the image and allows the

system to build large-scale, consistent maps of the

environment, which it percepts. Along with highly accurate

pose estimation based on direct image alignment, the 3D

environment is reconstructed in real-time by using pose-graph

of key frames, associated with semi-dense depth maps. These

are obtained by filtering over a large number of pixel-wise

point comparisons. The two key objectives fulfilled by using

direct methods can be:

• A novel direct tracking method which operates on sim

(3), thereby explicitly detecting scale-drift, and

• An elegant probabilistic solution to include the effect

of noisy depth values into tracking. The resulting direct

monocular SLAM system runs in real-time on a CPU.

1) Direct Odometry

Direct visual odometry (VO) methods circumvent the

limitation of high CPU overhead by optimizing the geometry

directly on the image intensities, which enables using all

information in the image. In addition to higher accuracy and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCARMS - 2016 Conference Proceedings

Volume 4, Issue 26

Special Issue - 2016

2

robustness in particular with little keypoints at particular dense

areas, this provides substantially more information about the

geometry of the environment, which can be very valuable for

drone navigation.

2) Outline of the Algorithm

The algorithm consists of three major components:

tracking, depth map estimation and map optimization as

visualized in Figure 1.

Fig. 1 Overview of LSD-SLAM

In brief, the algorithm undergoes three phases in its

operation as follows:

 The tracking component continuously tracks new

camera images. That is, it estimates their rigid body

pose ξ є se (3) with respect to the current key frame,

using the pose of the previous frame as initialization.

 The depth map estimation component uses tracked

frames to either refine or replace the current key

frame. Depth is refined by filtering over many per-

pixel, small-baseline stereo comparisons coupled

with interleaved spatial regularization. If the camera

has moved too far, a new key frame is initialized by

projecting points from existing, close-by key frames

into it.

 Once a key frame is replaced as tracking reference

and hence its depth map will not be refined further,

it is incorporated into the global map by the map

optimization component. To detect loop closures

and scale drift, a similarity transform ξ є 2 se (3) to

close-by existing key frames (including its direct

predecessor) is estimated using scale-aware, direct

sim(3)-image alignment.

3) Representation of the Map

The map is represented as a pose graph of key frames:

Each key frame Ki consists of a camera image 𝐼𝑖 : Ω𝑖 → ℝ, an

inverse depth map 𝐷𝑖: Ω𝐷𝑖 → ℝ and the variance of the inverse

depth 𝑉𝑖: Ω𝐷𝑖 → ℝ . Note that the depth map and variance are

only defined for a subset of pixels Ω𝐷𝑖 ⊂ Ω𝑖, containing all

image regions in the vicinity of sufficiently large intensity

gradient, hence semi-dense. Edges 휀𝑗𝑖 between key frames

contain their relative alignment as similarity transform

휀𝑗𝑖 𝜖 𝔰𝔦𝔪(3), as well as the corresponding covariance matrix

휀𝑗𝑖.

4) Tracking new frames: direct se (3) image alignment

Starting from an existing key frame Ki = (Ii; Di; Vi),

the relative 3D pose 휀𝑗𝑖 𝜖 𝔰𝔦𝔪(3) of a new image Ij is computed

by minimizing the variance-normalized photometric error

𝐸𝑝(휀𝑗𝑖) = ∑ ‖
𝑟𝑝

2 (𝑝, 휀𝑗𝑖)

𝜎𝑟𝑝(𝑝, 𝑗𝑖)
2 ‖

𝛿𝑝∈Ω𝐷𝑖

𝑟𝑝(𝑝, 휀𝑗𝑖) ∶= 𝐼𝑖(𝑝) − 𝐼𝑗(𝜔(𝑝, 𝐷𝑖(𝑝), 휀𝑗𝑖))

𝝈𝒓𝒑(𝒑,𝜺𝒋𝒊)
𝟐 ∶= 2𝜎𝐼

2 + (
𝜕𝑟𝑝(𝑝, 휀𝑗𝑖)

𝜕𝐷𝑖(𝑝)
)

2

𝑉𝑖(𝑝)

Where ‖ . ‖ 𝛿 is the Huber norm :

‖ 𝑟2‖ 𝛿 ∶= {

𝑟2

2𝛿
 if |𝑟| ≤ 𝛿

|𝑟| −
𝛿

2
 otherwise

5) Keys and Depth maps

a) Key frame : If the camera moves too far away from

the existing map, a new key frame is created from the most

recent tracked image. The threshold accompanying weighted

combination of relative distance and angle to the current key

frame:

dist(휀𝑗𝑖) ∶= 휀𝑗𝑖
𝑇 W 휀𝑗𝑖

where W is a diagonal matrix containing the weights.

Note that, each key frame is scaled such that its mean inverse

depth is one. This threshold is, therefore, relative to the current

scale of the scene, and ensures sufficient possibilities for small

baseline stereo comparisons.

 b) Depth Map: Once a new frame is chosen to become a

key frame, its depth map is initialized by projecting points from

the previous key frame into it, followed by one iteration of

spatial regularization and outlier removal. Afterward, the depth

map is scaled to have a mean inverse depth of one this scaling

factor is directly incorporated into the sim (3) camera pose.

Finally, it replaces the previous key frame and is used for

tracking subsequent new frames.

 c) Refinement. Tracked frames that do not become a key

frame are used to refine the current key frame: A high number

of very efficient small baseline stereo comparisons is

performed for image regions where the expected stereo

accuracy is sufficiently large. The result is incorporated into the

existing depth map, thereby refining it and potentially adding

new pixels, this is done using the EKF filtering.

IV. THE SOFTWARE IMPLEMENTATION

The LSD SLAM is bound as a software for all its

operations through ROS package. All the necessary nodes are

built into ROS binary packages and cross compiled. ROS is an

open source, node based software for robotics. The nodes are

predefined in the c++ based codings, which also encapsulates

all the other pipes and Process IDs into the same main level

thread.

1) The software Architecture

For running the software, various new nodes are to be

created as different real-time clients for core process. These are

inter-related with each other and

communicates within themselves by using the

Tracking

•New Image

•Track on
current KF

Depth Map
Estimation

•Take KF?

•Create new,
if yes

•Refine KF,
if no

Map
Optimizatio
n

•Add KF to
Map

•Current
Map

(1) (2)

(4)

(5)

(3)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCARMS - 2016 Conference Proceedings

Volume 4, Issue 26

Special Issue - 2016

3

roscore main process. Figure 2 shows the architecture and

relationship between these nodes: lsd_slam, usb_cam and

ptam. The background services govern these nodes and their

communication.

 Fig. 2 The Software Architecture

2) Compilers and tools

This work is fully implemented via software by using

Cross compilation of different compilers and language tools.

The basic language used for the LSD SLAM process and its

background processes like viewer, depth map estimator are

fully written and compiled under C++. To bring more

synchronization and integrity among all the nodes, the BOOST

libraries are used. These are free, open source dynamically

reconfigured subroutines written in C++. The tools are

summarized as follows:

TABLE I. TABLE I COMPILER TOOLS USED

S. No. Tool/compiler Purpose

1.
Robotic Operating

System

For running the LSD SLAM and its core

services. To provide node

communication and kernel based
interaction with the algorithm.

2. Open CV

To compile composite color geometry at

the runtime, with both static and dynamic

link libraries, which will be useful for I/O
rendering with the algorithm.

3. Open GL

To compile 3D geometry and visual c++

libraries for the purpose of core services
of the ROS.

4. Boost lib

It is a c++ library collection for

implementing kernel services at user

defined environment. With this libraries,
mutex locks are implemented into the

program.

5. USB_CAM node
It is a package, which uses USB camera
for giving inputs and outputs within the

ROS.

V. SIMULATION RESULTS

The simulations done using the software tools as

discussed earlier are presented here. Both SLAM algorithm and

Calibration of live camera implementations are simulated. As

SLAM is probabilistic model based system, the global

coordinates and mapping coordinates are rendered

simultaneously. The coherence between them should be

acceptably accurate.

1) Results of LSD-SLAM Algorithm

The ROS is deployed with master-client node strategy

in Ubuntu. The backend image rendering for the algorithm is

provided by a camera calibration tool. Since the camera used

for the algorithm's simulation must be synchronized with

rendered images, this camera calibration tool gives real-time

error correction and calibration. This is done by PTAM

(Parallel tracking and mapping) camera calibrator tool. The

output of this node is shown below.

Fig. 3 Result of PTAM calibrator tool in ROS

Next, this calibrated VGA image sequences are

streamed as input the core of the algorithm, i.e., SLAM node.

Our algorithm must have two components viz., the DEBUG

WINDOW depth image and 3D POINT CLOUD mapping for

occupancy. These two windows provide us the correct mapping

of the environment and depth image synchronization. The

tracking of the global frame and current observance frame are

also done by the algorithm.

The overall output of SLAM algorithm can be

rendered with two types of inputs: Live SLAM and Dataset

SLAM. The live SLAM is the real-time algorithm

implementation by connecting a webcam with the system and

to track the occupancy for odometry purposes. But on the other

hand, the dataset SLAM gives an output of already recorded

dataset video. The simulation was done for both types of

algorithmic implementation. They are carried out on Pentium

processor powered Laptop at No overclocked frequencies. This

is an evident that the algorithm runs with no computational

overhead. The figure below shows the output of dataset SLAM

in the system:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCARMS - 2016 Conference Proceedings

Volume 4, Issue 26

Special Issue - 2016

4

Fig. 4 Result of Dataset SLAM in ROS

Fig. 5 Result of live SLAM in ROS

Fig 6 Block diagram of future implementation

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCARMS - 2016 Conference Proceedings

Volume 4, Issue 26

Special Issue - 2016

5

VI. CONCLUSION AND FUTURE WORKS

The expected results for this work is tried to

implement using the software and simulation. It is successfully

done to bring the closeness of the objective. By using the

proposed simulation, following points can be observed:

 • The ground truth is improved by using the proposed

algorithm. The plotting accuracy in terms of the number of

point clouds is also increased1.

 • For large loop closure, the depth of the map is clearly

closed with the short period of time, thanks to the Parallel

Tracking and Mapping feature.

 • The key frame observance and remapping in a case of

tracking loss is highly accurate. When comparing to the feature

and sensor based SLAM algorithms, this direct SLAM

technique brings less computational overhead to the CPU as

well as simulates faster2.

However, there are several future enhancements that

can be done. These include introduction of IMUs and

Gyroscopes along with the Quadcopter to improve accuracy,

implementing the direct SLAM technique with an additional

camera for improved 3D loop closure as well as observance and

implementing this software in real time with the help of low-

cost Quadcopter arrangements. Figure 6 shows our future

implementation with the sensors and drone.

REFERENCES

[1] Changhong Fu, A. Carrio, P. Campoy, "Efficient Visual Odometry and

Mapping for Unmanned Aerial Vehicle Using ARM-based Stereo Vision

Pre-Processing System" in International Conference on Unmanned
Aircraft Systems (ICUAS) / 2015. pp. 957 – 968.

[2] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic,

monocular dense reconstruction in real time,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pp. 2609–

2616.

[3] J. Engel, T. Schps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in Computer Vision ECCV 2014, ser. Lecture Notes in

Computer Science, vol. 8690, 2014, pp. 834–849.

[4] J. Zhang, M. Kaess, and S. Singh, "Real-time Depth Enhanced
Monocular Odometry," in Intelligent Robots and Systems (IROS), 2014

IEEE/RSJ International Conference on, 2014, pp. 4973–4980.

[5] C. Fu, M. Olivares-Mendez, R. Suarez-Fernandez, and P. Campoy,
“Monocular Visual-Inertial SLAM-based Collision Avoidance Strategy

for Fail-Safe UAV Using Fuzzy Logic Controllers,” Journal of Intelligent

& Robotic Systems, vol. 73, no. 1-4, pp. 513–533.
[6] A. Geiger, J. Ziegler, and C. Stiller (2011), “Stereoscan: Dense 3d

reconstruction in real-time,” in Intelligent Vehicles Symposium (IV),

IEEE, 2014, pp. 963–968.
[7] G. Camellini, M. Felisa, P. Medici, P. Zani, F. Gregoretti, C. Passerone,

and R. Passerone, “3DV - An embedded, dense stereovision-based depth

mapping system,” in Intelligent Vehicles Symposium Proceedings, IEEE,
2014, pp. 1435–1440.

[8] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,

and R. Siegwart, “A Synchronized Visual-Inertial Sensor System with

FPGA Pre-Processing for Accurate Real-Time SLAM,” in Robotics and

Automation (ICRA), 2014 IEEE International Conference on, 2014, pp.

431–437.

[9] K. Schmid and H. Hirschmuller, “Stereo vision and imu based realtime

ego-motion and depth image computation on a handheld device,” in

Robotics and Automation (ICRA), 2013 IEEE International Conference

on, pp. 4671–4678.

[10] S. Hermann and R. Klette, “Evaluation of a new coarse-to-fine strategy
for fast semi-global stereo matching,” in Advances in Image and Video

Technology, ser. Lecture Notes in Computer Science, vol. 7087, 2012,

pp. 395–406.
[11] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo

image sequences with ransac-based outlier rejection scheme,” in

Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 486–492.
[12] E. Rosten and T. Drummond, “Machine Learning for High-speed Corner

Detection,” in Computer Vision ECCV, 9th European Conference on,

2006, pp. 430–443.
[13] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust

Independent Elementary Features,” in 2010 11th European Conference

on Computer Vision (ECCV), 2010 pp. 778–792.
[14] C. Harris and M. Stephens, “A combined corner and edge detector,” in

Proc. of Fourth Alvey Vision Conference, 1988, pp. 147–151.

[15] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: an efficient probabilistic 3d mapping framework based on

octrees,” Autonomous Robots, vol. 34, no. 3, 2013, pp. 189–206.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCARMS - 2016 Conference Proceedings

Volume 4, Issue 26

Special Issue - 2016

6

