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Abstract—Visual odometry principles are rapidly demanding
in navigation and mapping fields, which can be implemented with
Unmanned Ariel Vehicles (UAV). Building a spatially consistent
probabilistic model for a quadcopter for its navigation, 3D
mapping and autonomy are the key purposes of this work. It also
aims to put a spotlight on cost effective simulation solutions for
the build and makes the drone autonomous by pose estimation
computation. The environment mapping for the navigation in
GPS-denied and clustered environments are carried out by
traditional Simultaneous Localisation and Mapping (SLAM)
technique with Large-Scale Direct Odometry Algorithm (LSD).
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. INTRODUCTION
In recent years, both remote controlled and

autonomously flying Quadcopters have become an important
tool not only in the military domain but also in civilian
environments. They can also be used especially for
observational and exploration purposes in indoor and outdoor
environments, but also for data collection, object manipulation
or simply as high-tech toys.

While the concept of an aircraft flying with four
horizontally aligned rotors had already been proposed in 1922,
this design quickly disappeared and was dominated by the
much more common two-rotor helicopter. There are two main
reasons for this development: While mechanically very simple,
a quadcopter is inherently unstable and hence difficult to
control - without the help of advanced electronic control
systems and stabilizing routines, manual control turned out to
be too complex. Furthermore, quadcopters are less energy-
efficient than traditional helicopters.

With the growing importance of UAVs however, the
quadcopter design has become more popular again. It is
because that, mechanically quadcopters are simpler to control
due to fixed thrusts. In addition to that, the four rotors can be
enclosed by a frame, protecting them from the collisions and
permitting the drone to flight indoors and in obstacle-dense
environments. Finally, the use of four rotors allows each to
have a smaller diameter, causing them to store less kinetic
energy during flight and reducing the damage caused should
the rotor hit an object, making quadcopters significantly safer
to use close to the people.
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In order to navigate, modern UAVs can rely on a wide
range of sensors. In addition to an inertial measurement unit
(IMU) measuring the aircraft’s orientation and acceleration, a
The GPS-based navigation system is often used to determine
the UAV's absolute position - enabling it to autonomously
navigate in a known environment, or simply to stay at its
position without drifting away.

Il.  RELATED WORKS

In the literature, many authors presented autonomous
methods of navigating the UAV by Visual Odometry methods.
The mapping and pose estimation can be accomplished with
both monocular and stereo cameras. Recently, M.Pizzoli et al
2014 [2] presented such navigational systems with the
Monocular camera. But, using such monocular cameras for the
odometry purposes will not sufficiently estimate the real scale
of surrounding environments. So, stereo cameras can be used
for the improvement in accuracy of generating the maps. But
some works Changhong Fu et al 2015 [1] and 2014 [5] have
cited that, there will be some problems in implementing the
stereo camera for visual odometry.

These papers really an emphasis on SLAM methods,
which should be more computationally feasible and easy as
well. If we implement normal SLAM methods without sensor
fusions as presented in [5], there will be some inaccuracy in
computing the depth maps, which will lead to invalid pose
estimation. On the other hand, J.Engel et al 2014 [3] proposed
a Direct Monocular SLAM algorithm (feature-less) for
mapping the environment under dense reconstruction. This can
be used for the stereo cameras for correct rendering and
computation of environment maps. Other works like J.Zhang et
al 2014 [4] proposes the odometry systems with Direct SLAM
along with LiDar based sensor devices, which produced
promising results.

The [1] presents low-cost stereo odometry system
based on the SGM and SLAM algorithms. But this algorithm
really, peaks the processor load in the time of flight. It also has
some liabilities as well. It produces an overhead on the
processor, such that high-end heterogeneous cores are needed
to carry out the odometry tasks. On focusing the cost and
payload capabilities of these unmanned systems, VisLab 3dv
[7]; Skybotic iv [8] and DLR device [9] presented a clean stereo
guidance and mapping systems, which has a higher degree of
accuracy and also lesser payload. But the liability lies on the
cost of the system. These earlier efforts also tell us that there
was a technical advantage of reducing the payload of the
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quadcopter. It also has a disadvantage of using their proposed
systems for dense visual reconstructions only. The basics of the
SLAM, 3D mapping, and reconstruction of the environment
was studied to the vast extent. They are dealt in-depth on
various technical papers. The problem of inaccuracy while
moving a monocular camera was fully covered in Matia Pizolli
et al 2014 [2], which proposes a new framework called:
REMODE. It also takes less footprint memory devices and
fewer cores for its operation. The [5] presents the Fuzzy logic
controller for the monocular visual odometry base on the
Cross-entropy optimization for the Extended Kalman filter,
used for the feature extraction. It also proposes a way to clear
collision avoidance errors by using FLC optimization.

Although there are numerous types of reconstruction
principles available for the mono camera, the Andreas et al
2011 [6], proposes a reconstruction method in real time for
Stereo camera. It utilizes parse feature matching principle from
the high definition stereo camera pair in real time, which can
also be implemented on FPGA-based systems. The inferences
obtained for stereo 3D reconstruction was only 3 to 4 fps using
the StereoScan algorithm. A traditional Semi-Global Matching
(SGM) based depth mapping system was designed by
G.Camellini et al 2014 [7], which also describes the hardware
implementation. They have implemented their system on
Xilinx- Zynq SOCs for high performance. The accurate real-
time SLAM in the Janosch et al 2014 [8], was a highly
sophisticated real-time SLAM system, which uses IMUs and
the same Zyng SOCs. Some authors also design Mobile Robots
based on the SLAM and IMUs. The authors of [8] and [9]
design these robots on FPGA platform. They invoke all the
algorithms on Heterogeneous processors for the real-time data
transfer to the base station system. The study of SGM was dealt
in Simon Hermann 2012 [10], which proposes a new Fast SGM
algorithm focusing on the Driver Assistance Systems. They
benchmarked their results with the Trinocular camera based
frames which they tell that it was 40% faster than novel SGM
methods.

The basics of Kalman filter, Corner detection, Feature
detection and Edge detection was studied for the use in SLAM
algorithm. The Extended Kalman filter (EKF) was the majorly
used filter in the algorithm. The Bernd Kitt et al 2010 [11]
proposes a new faster and accurate filtering of the real time
images with the help of EKF and Random Sample Consensus
(RANSAC) based outlier rejection schemes. The corner
detection algorithm was proposed in [14] and [12]. The famous
Harris detector was used as a regular detector in all types of
SLAM algorithms. The [12] proposes new binary strings for
independent feature detection, called BRIEF. Thus, the
literature study gives the clear outline of the existing system
and various algorithms and techniques. Proper selection of the
algorithm and the technique of control was applied onto the
proposed system, aiming at the following points: Cost,
Payload, Algorithm complexity, and Processor selection.

1.  THE SLAM ALGORITHM

The most fundamental problems in robotics, the
simultaneous localization and mapping problem. This problem
is commonly abbreviated as SLAM and is also known as
Concurrent Mapping and Localization, or CML. SLAM

problems arise when the robot does not have access to a map
of the environment; nor does it have access to its own poses.
Instead, all it is given are measurements z1: t and controls ul:
t. In SLAM, the robot acquires a map of its environment while
simultaneously localizing itself relative to this map. SLAM is
significantly more difficult than all robotics problems
discussed thus far: It is more difficult than localization in that
the map is unknown and has to be estimated along the way. It
is more difficult than mapping with known poses since the
poses are unknown and have to be estimated along the way.

A. Extended Kalman Filter SLAM

The EKF SLAM algorithm applies the EKF to online
SLAM using maximum likelihood data association. In doing
so, EKF SLAM is subject to a number of approximations and
limiting assumptions:

1) Feature-based extraction. Maps, in the EKF, are
composed of point landmarks. For computational
reasons, the number of point landmarks is usually small
(e.g., smaller than 1,000). Further, the EKF approach
tends to work well the less ambiguous the landmarks
are. For this reason, EKF SLAM requires significant
engineering of feature detectors, sometimes using
artificial beacons or landmarks as features.

2) Photometric noise. As any EKF algorithm, EKF
SLAM makes a Gaussian noise assumption for the robot
motion and the perception. The amount of uncertainty
in the posterior must be relatively small since otherwise
the linearization in EKFs tend to introduce intolerable
errors.

3) Pose measurements. This algorithm can only process
positive sightings of the sustained landmarks. It cannot
process negative information that arises from the
absence of sustained landmarks in the set of sensor
measurements. This is a direct consequence of the
Gaussian belief representation.

B. Large Scale Direct-SLAM (LSD-SLAM)

The LSD SLAM is the featureless SLAM, which
operates on the direct point clouds of the image and allows the
system to build large-scale, consistent maps of the
environment, which it percepts. Along with highly accurate
pose estimation based on direct image alignment, the 3D
environment is reconstructed in real-time by using pose-graph
of key frames, associated with semi-dense depth maps. These
are obtained by filtering over a large number of pixel-wise
point comparisons. The two key objectives fulfilled by using
direct methods can be:

. A novel direct tracking method which operates on sim
(3), thereby explicitly detecting scale-drift, and
. An elegant probabilistic solution to include the effect

of noisy depth values into tracking. The resulting direct
monocular SLAM system runs in real-time on a CPU.
1) Direct Odometry
Direct visual odometry (VO) methods circumvent the
limitation of high CPU overhead by optimizing the geometry
directly on the image intensities, which enables using all
information in the image. In addition to higher accuracy and
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robustness in particular with little keypoints at particular dense
areas, this provides substantially more information about the
geometry of the environment, which can be very valuable for
drone navigation.
2) Outline of the Algorithm

The algorithm consists of three major components:
tracking, depth map estimation and map optimization as
visualized in Figure 1.

Tracking Depth Map Map
«New Image Estimation Optimizatio
Track on * Take KF? n
current KF _ <Createnew, . °*AddKFto
if yes Map
*Refine KF, +Current
if no Map

Fig. 1 Overview of LSD-SLAM

In brief, the algorithm undergoes three phases in its
operation as follows:

e The tracking component continuously tracks new
camera images. That is, it estimates their rigid body
pose & € se (3) with respect to the current key frame,
using the pose of the previous frame as initialization.

e The depth map estimation component uses tracked
frames to either refine or replace the current key
frame. Depth is refined by filtering over many per-
pixel, small-baseline stereo comparisons coupled
with interleaved spatial regularization. If the camera
has moved too far, a new key frame is initialized by
projecting points from existing, close-by key frames
into it.

e Once a key frame is replaced as tracking reference
and hence its depth map will not be refined further,
it is incorporated into the global map by the map
optimization component. To detect loop closures
and scale drift, a similarity transform & € 2 se (3) to
close-by existing key frames (including its direct
predecessor) is estimated using scale-aware, direct
sim(3)-image alignment.

3) Representation of the Map
The map is represented as a pose graph of key frames:
Each key frame Ki consists of a camera image [;: Q; — R, an
inverse depth map D;: p; — R and the variance of the inverse
depth V;: Qp; — R . Note that the depth map and variance are
only defined for a subset of pixels Qp; c €;, containing all
image regions in the vicinity of sufficiently large intensity
gradient, hence semi-dense. Edges ¢; between key frames
contain their relative alignment as similarity transform
gj; € stm(3), as well as the corresponding covariance matrix
sji'
4) Tracking new frames: direct se (3) image alignment
Starting from an existing key frame K; = (I;; Dj; Vi),
the relative 3D pose ¢;; € sim(3) of a new image I; is computed
by minimizing the variance-normalized photometric error

1 (D, &)
Ep(&) = Z 227”
peap; Il “ro@) ll g
(0 &) = L(®) — L(w(p,Di(p), &)
2
dr, (p,s--)
2 = 207 P V;
O-TP(I’iji) g +( aDL(p) i(p)
Where || .|| 5 is the Huber norm :
= iflr] <6 (4)
Ir2l s = 2

|r| — g otherwise
5) Keys and Depth maps

a) Key frame : If the camera moves too far away from
the existing map, a new key frame is created from the most
recent tracked image. The threshold accompanying weighted
combination of relative distance and angle to the current key
frame:

dist(e;;) := & W (5)
where W is a diagonal matrix containing the weights.
Note that, each key frame is scaled such that its mean inverse
depth is one. This threshold is, therefore, relative to the current
scale of the scene, and ensures sufficient possibilities for small
baseline stereo comparisons.

b) Depth Map: Once a new frame is chosen to become a
key frame, its depth map is initialized by projecting points from
the previous key frame into it, followed by one iteration of
spatial regularization and outlier removal. Afterward, the depth
map is scaled to have a mean inverse depth of one this scaling
factor is directly incorporated into the sim (3) camera pose.
Finally, it replaces the previous key frame and is used for
tracking subsequent new frames.

¢) Refinement. Tracked frames that do not become a key
frame are used to refine the current key frame: A high number
of very efficient small baseline stereo comparisons is
performed for image regions where the expected stereo
accuracy is sufficiently large. The result is incorporated into the
existing depth map, thereby refining it and potentially adding
new pixels, this is done using the EKF filtering.

IV. THE SOFTWARE IMPLEMENTATION

The LSD SLAM is bound as a software for all its
operations through ROS package. All the necessary nodes are
built into ROS binary packages and cross compiled. ROS is an
open source, node based software for robotics. The nodes are
predefined in the c++ based codings, which also encapsulates
all the other pipes and Process IDs into the same main level
thread.

1) The software Architecture

For running the software, various new nodes are to be
created as different real-time clients for core process. These are
inter-related  with each  other and
communicates within themselves by using the ®3)
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roscore main process. Figure 2 shows the architecture and
relationship between these nodes: Isd_slam, usb_cam and
ptam. The background services govern these nodes and their
communication.

——

A LSD SLAM
+lsd slam core
*lsd slam live
=slam_viewer

\ /

*cam_calib
» calib.cfg
A\ ;

,-| USB CAM s

*img_proc
*img mono

ROS and its Core

BOOST, Vizual C++ and other Libraries

Mntex & Linux Threads

Fig. 2 The Software Architecture

2) Compilers and tools

This work is fully implemented via software by using
Cross compilation of different compilers and language tools.
The basic language used for the LSD SLAM process and its
background processes like viewer, depth map estimator are
fully written and compiled under C++. To bring more
synchronization and integrity among all the nodes, the BOOST
libraries are used. These are free, open source dynamically
reconfigured subroutines written in C++. The tools are
summarized as follows:

TABLE I TABLE | COMPILER TOOLS USED
S. No. Tool/compiler Purpose
For running the LSD SLAM and its core
1 Robotic  Operating | services. To provide node
' System communication and kernel based
interaction with the algorithm.
To compile composite color geometry at
2 Open CV the ru_ntim_e, with_both _static and dynamic
’ link libraries, which will be useful for I/0O
rendering with the algorithm.
To compile 3D geometry and visual c++
3. Open GL libraries for the purpose of core services
of the ROS.
It is a c++ library collection for
implementing kernel services at user
4. Boost lib defined environment. With this libraries,
mutex locks are implemented into the
program.
It is a package, which uses USB camera
5. USB_CAM node for giving inputs and outputs within the
ROS.

V. SIMULATIONRESULTS

The simulations done using the software tools as
discussed earlier are presented here. Both SLAM algorithm and
Calibration of live camera implementations are simulated. As
SLAM is probabilistic model based system, the global
coordinates and mapping coordinates are rendered
simultaneously. The coherence between them should be
acceptably accurate.

1) Results of LSD-SLAM Algorithm

The ROS is deployed with master-client node strategy
in Ubuntu. The backend image rendering for the algorithm is
provided by a camera calibration tool. Since the camera used
for the algorithm's simulation must be synchronized with
rendered images, this camera calibration tool gives real-time
error correction and calibration. This is done by PTAM
(Parallel tracking and mapping) camera calibrator tool. The
output of this node is shown below.

Tracking Map, guality good. Found: 481/609 217/319 34/46 20/26 Map 1: 1430P, 4KF

Fig. 3 Result of PTAM calibrator tool in ROS

Next, this calibrated VGA image sequences are
streamed as input the core of the algorithm, i.e., SLAM node.
Our algorithm must have two components viz., the DEBUG
WINDOW depth image and 3D POINT CLOUD mapping for
occupancy. These two windows provide us the correct mapping
of the environment and depth image synchronization. The
tracking of the global frame and current observance frame are
also done by the algorithm.

The overall output of SLAM algorithm can be
rendered with two types of inputs: Live SLAM and Dataset
SLAM. The live SLAM is the real-time algorithm
implementation by connecting a webcam with the system and
to track the occupancy for odometry purposes. But on the other
hand, the dataset SLAM gives an output of already recorded
dataset video. The simulation was done for both types of
algorithmic implementation. They are carried out on Pentium
processor powered Laptop at No overclocked frequencies. This
is an evident that the algorithm runs with no computational
overhead. The figure below shows the output of dataset SLAM
in the system:
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PolntCloud Viewer

Fig. 5 Result of live SLAM in ROS

J Depth map i \ .
Tracking estimation \ Map Optimization ‘ Motion estimation

¥ T

LSD-SLAM

Fig 6 Block diagram of future implementation
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VI. CONCLUSION AND FUTURE WORKS

The expected results for this work is tried to
implement using the software and simulation. It is successfully
done to bring the closeness of the objective. By using the
proposed simulation, following points can be observed:

* The ground truth is improved by using the proposed
algorithm. The plotting accuracy in terms of the number of
point clouds is also increased®.

» For large loop closure, the depth of the map is clearly
closed with the short period of time, thanks to the Parallel
Tracking and Mapping feature.

 The key frame observance and remapping in a case of
tracking loss is highly accurate. When comparing to the feature
and sensor based SLAM algorithms, this direct SLAM
technique brings less computational overhead to the CPU as
well as simulates faster®

However, there are several future enhancements that
can be done. These include introduction of IMUs and
Gyroscopes along with the Quadcopter to improve accuracy,
implementing the direct SLAM technique with an additional
camera for improved 3D loop closure as well as observance and
implementing this software in real time with the help of low-
cost Quadcopter arrangements. Figure 6 shows our future
implementation with the sensors and drone.
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