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Abstract—Visual odometry principles are rapidly demanding 

in navigation and mapping fields, which can be implemented with 

Unmanned Ariel Vehicles (UAV). Building a spatially consistent 

probabilistic model for a quadcopter for its navigation, 3D 

mapping and autonomy are the key purposes of this work. It also 

aims to put a spotlight on cost effective simulation solutions for 

the build and makes the drone autonomous by pose estimation 

computation. The environment mapping for the navigation in 

GPS-denied and clustered environments are carried out by 

traditional Simultaneous Localisation and Mapping (SLAM) 

technique with Large-Scale Direct Odometry Algorithm (LSD).   

 

Keywords—SLAM; Visual Navigation; Robotics; Visual 

Odometry 

I. INTRODUCTION 

 

In    recent    years, both remote controlled and 

autonomously flying Quadcopters have become an important 

tool not only in the military domain but also in civilian 

environments. They can also be used especially for 

observational and exploration purposes in indoor and outdoor 

environments, but also for data collection, object manipulation 

or simply as high-tech toys.  

While the concept of an aircraft flying with four 

horizontally aligned rotors had already been proposed in 1922, 

this design quickly disappeared and was dominated by the 

much more common two-rotor helicopter. There are two main 

reasons for this development: While mechanically very simple, 

a quadcopter is inherently unstable and hence difficult to 

control - without the help of advanced electronic control 

systems and stabilizing routines, manual control turned out to 

be too complex. Furthermore, quadcopters are less energy-

efficient than traditional helicopters. 

With the growing importance of UAVs however, the 

quadcopter design has become more popular again. It is 

because that, mechanically quadcopters are simpler to control 

due to fixed thrusts. In addition to that, the four rotors can be 

enclosed by a frame, protecting them from the collisions and 

permitting the drone to flight indoors and in obstacle-dense 

environments. Finally, the use of four rotors allows each to 

have a smaller diameter, causing them to store less kinetic 

energy during flight and reducing the damage caused should 

the rotor hit an object, making quadcopters significantly safer 

to use close to the people. 

 

 

            In order to navigate, modern UAVs can rely on a wide 

range of sensors. In addition to an inertial measurement unit 

(IMU) measuring the aircraft’s orientation and acceleration, a  

The GPS-based navigation system is often used to determine 

the UAV's absolute position - enabling it to autonomously 

navigate in a known environment, or simply to stay at its 

position without drifting away. 

II. RELATED WORKS 

      

   In the literature, many authors presented autonomous 

methods of navigating the UAV by Visual Odometry methods. 

The mapping and pose estimation can be accomplished with 

both monocular and stereo cameras. Recently, M.Pizzoli et al 

2014 [2] presented such navigational systems with the 

Monocular camera. But, using such monocular cameras for the 

odometry purposes will not sufficiently estimate the real scale 

of surrounding environments. So, stereo cameras can be used 

for the improvement in accuracy of generating the maps. But 

some works Changhong Fu et al 2015 [1] and 2014 [5] have 

cited that, there will be some problems in implementing the 

stereo camera for visual odometry. 

These papers really an emphasis on SLAM methods, 

which should be more computationally feasible and easy as 

well. If we implement normal SLAM methods without sensor 

fusions as presented in [5], there will be some inaccuracy in 

computing the depth maps, which will lead to invalid pose 

estimation. On the other hand, J.Engel et al 2014 [3] proposed 

a Direct Monocular SLAM algorithm (feature-less) for 

mapping the environment under dense reconstruction. This can 

be used for the stereo cameras for correct rendering and 

computation of environment maps. Other works like J.Zhang et 

al 2014 [4] proposes the odometry systems with Direct SLAM 

along with LiDar based sensor devices, which produced 

promising results. 

The [1] presents low-cost stereo odometry system 

based on the SGM and SLAM algorithms. But this algorithm 

really, peaks the processor load in the time of flight. It also has 

some liabilities as well. It produces an overhead on the 

processor, such that high-end heterogeneous cores are needed 

to carry out the odometry tasks. On focusing the cost and 

payload capabilities of these unmanned systems, VisLab 3dv 

[7]; Skybotic iv [8] and DLR device [9] presented a clean stereo 

guidance and mapping systems, which has a higher degree of 

accuracy and also lesser payload. But the liability lies on the 

cost of the system. These earlier efforts also tell us that there 

was a technical advantage of reducing the payload of the 
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quadcopter. It also has a disadvantage of using their proposed 

systems for dense visual reconstructions only. The basics of the 

SLAM, 3D mapping, and reconstruction of the environment 

was studied to the vast extent. They are dealt in-depth on 

various technical papers. The problem of inaccuracy while 

moving a monocular camera was fully covered in Matia Pizolli 

et al 2014 [2], which proposes a new framework called: 

REMODE. It also takes less footprint memory devices and 

fewer cores for its operation. The [5] presents the Fuzzy logic 

controller for the monocular visual odometry base on the 

Cross-entropy optimization for the Extended Kalman filter, 

used for the feature extraction. It also proposes a way to clear 

collision avoidance errors by using FLC optimization. 

Although there are numerous types of reconstruction 

principles available for the mono camera, the Andreas et al 

2011 [6], proposes a reconstruction method in real time for 

Stereo camera. It utilizes parse feature matching principle from 

the high definition stereo camera pair in real time, which can 

also be implemented on FPGA-based systems. The inferences 

obtained for stereo 3D reconstruction was only 3 to 4 fps using 

the StereoScan algorithm. A traditional Semi-Global Matching 

(SGM) based depth mapping system was designed by 

G.Camellini et al 2014 [7], which also describes the hardware 

implementation. They have implemented their system on 

Xilinx- Zynq SOCs for high performance. The accurate real-

time SLAM in the Janosch et al 2014 [8], was a highly 

sophisticated real-time SLAM system, which uses IMUs and 

the same Zynq SOCs. Some authors also design Mobile Robots 

based on the SLAM and IMUs. The authors of [8] and [9] 

design these robots on FPGA platform. They invoke all the 

algorithms on Heterogeneous processors for the real-time data 

transfer to the base station system. The study of SGM was dealt 

in Simon Hermann 2012 [10], which proposes a new Fast SGM 

algorithm focusing on the Driver Assistance Systems. They 

benchmarked their results with the Trinocular camera based 

frames which they tell that it was 40% faster than novel SGM 

methods. 

The basics of Kalman filter, Corner detection, Feature 

detection and Edge detection was studied for the use in SLAM 

algorithm. The Extended Kalman filter (EKF) was the majorly 

used filter in the algorithm. The Bernd Kitt et al 2010 [11] 

proposes a new faster and accurate filtering of the real time 

images with the help of EKF and Random Sample Consensus 

(RANSAC) based outlier rejection schemes. The corner 

detection algorithm was proposed in [14] and [12]. The famous 

Harris detector was used as a regular detector in all types of 

SLAM algorithms. The [12] proposes new binary strings for 

independent feature detection, called BRIEF. Thus, the 

literature study gives the clear outline of the existing system 

and various algorithms and techniques. Proper selection of the 

algorithm and the technique of control was applied onto the 

proposed system, aiming at the following points: Cost, 

Payload, Algorithm complexity, and Processor selection. 

III. THE SLAM ALGORITHM 

 

The most fundamental problems in robotics, the 

simultaneous localization and mapping problem. This problem 

is commonly abbreviated as SLAM and is also known as 

Concurrent Mapping and Localization, or CML. SLAM 

problems arise when the robot does not have access to a map 

of the environment; nor does it have access to its own poses.  

Instead, all it is given are measurements z1: t and controls u1: 

t. In SLAM, the robot acquires a map of its environment while 

simultaneously localizing itself relative to this map. SLAM is 

significantly more difficult than all robotics problems 

discussed thus far: It is more difficult than localization in that 

the map is unknown and has to be estimated along the way. It 

is more difficult than mapping with known poses since the 

poses are unknown and have to be estimated along the way. 

A. Extended Kalman Filter SLAM 

The EKF SLAM algorithm applies the EKF to online 

SLAM using maximum likelihood data association. In doing 

so, EKF SLAM is subject to a number of approximations and 

limiting assumptions:  

1) Feature-based extraction.  Maps, in the EKF, are 

composed of point landmarks. For computational 

reasons, the number of point landmarks is usually small 

(e.g., smaller than 1,000). Further, the EKF approach 

tends to work well the less ambiguous the landmarks 

are. For this reason, EKF SLAM requires significant 

engineering of feature detectors, sometimes using 

artificial beacons or landmarks as features.  

2) Photometric noise.  As any EKF algorithm, EKF 

SLAM makes a Gaussian noise assumption for the robot 

motion and the perception. The amount of uncertainty 

in the posterior must be relatively small since otherwise 

the linearization in EKFs tend to introduce intolerable 

errors. 

3) Pose measurements. This algorithm can only process 

positive sightings of the sustained landmarks.  It cannot 

process negative information that arises from the 

absence of sustained landmarks in the set of sensor 

measurements. This is a direct consequence of the 

Gaussian belief representation. 

B. Large Scale Direct-SLAM (LSD-SLAM) 

The LSD SLAM is the featureless SLAM, which 

operates on the direct point clouds of the image and allows the 

system to build large-scale, consistent maps of the 

environment, which it percepts. Along with highly accurate 

pose estimation based on direct image alignment, the 3D 

environment is reconstructed in real-time by using pose-graph 

of key frames, associated with semi-dense depth maps. These 

are obtained by filtering over a large number of pixel-wise 

point comparisons. The two key objectives fulfilled by using 

direct methods can be: 

• A novel direct tracking method which operates on sim 

(3), thereby explicitly detecting scale-drift, and  

• An elegant probabilistic solution to include the effect 

of noisy depth values into tracking. The resulting direct 

monocular SLAM system runs in real-time on a CPU.  

1) Direct Odometry 

Direct visual odometry (VO) methods circumvent the 

limitation of high CPU overhead by optimizing the geometry 

directly on the image intensities, which enables using all 

information in the image. In addition to higher accuracy and 
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robustness in particular with little keypoints at particular dense 

areas, this provides substantially more information about the 

geometry of the environment, which can be very valuable for 

drone navigation. 

2) Outline of the Algorithm 

The algorithm consists of three major components: 

tracking, depth map estimation and map optimization as 

visualized in Figure 1. 

 
Fig. 1  Overview of LSD-SLAM 

 

In brief, the algorithm undergoes three phases in its 

operation as follows: 

 The tracking component continuously tracks new 

camera images. That is, it estimates their rigid body 

pose ξ є se (3) with respect to the current key frame, 

using the pose of the previous frame as initialization. 

 The depth map estimation component uses tracked 

frames to either refine or replace the current key 

frame. Depth is refined by filtering over many per-

pixel, small-baseline stereo comparisons coupled 

with interleaved spatial regularization. If the camera 

has moved too far, a new key frame is initialized by 

projecting points from existing, close-by key frames 

into it.  

 Once a key frame is replaced as tracking reference 

and hence its depth map will not be refined further, 

it is incorporated into the global map by the map 

optimization component. To detect loop closures 

and scale drift, a similarity transform ξ є 2 se (3) to 

close-by existing key frames (including its direct 

predecessor) is estimated using scale-aware, direct 

sim(3)-image alignment. 

3) Representation of the Map 

The map is represented as a pose graph of key frames: 

Each key frame Ki consists of a camera image  𝐼𝑖 : Ω𝑖 → ℝ, an 

inverse depth map 𝐷𝑖: Ω𝐷𝑖 → ℝ and the variance of the inverse 

depth 𝑉𝑖: Ω𝐷𝑖 → ℝ . Note that the depth map and variance are 

only defined for a subset of pixels Ω𝐷𝑖 ⊂ Ω𝑖, containing all 

image regions in the vicinity of sufficiently large intensity 

gradient, hence semi-dense. Edges  𝜀𝑗𝑖 between key frames 

contain their relative alignment as similarity transform   

𝜀𝑗𝑖  𝜖 𝔰𝔦𝔪(3), as well as the corresponding covariance matrix 

𝜀𝑗𝑖. 

4) Tracking new frames: direct se (3) image alignment 

Starting from an existing key frame Ki = (Ii; Di; Vi), 

the relative 3D pose 𝜀𝑗𝑖 𝜖 𝔰𝔦𝔪(3) of a new image Ij is computed 

by minimizing the variance-normalized photometric error 

𝐸𝑝(𝜀𝑗𝑖) =  ∑ ‖
𝑟𝑝

2 (𝑝, 𝜀𝑗𝑖)

𝜎𝑟𝑝(𝑝,𝜀𝑗𝑖)
2 ‖

𝛿𝑝∈Ω𝐷𝑖

 

𝑟𝑝(𝑝, 𝜀𝑗𝑖)  ∶=  𝐼𝑖(𝑝) −  𝐼𝑗(𝜔(𝑝, 𝐷𝑖(𝑝), 𝜀𝑗𝑖)) 

𝝈𝒓𝒑(𝒑,𝜺𝒋𝒊)
𝟐  ∶=  2𝜎𝐼

2 + (
𝜕𝑟𝑝(𝑝, 𝜀𝑗𝑖)

𝜕𝐷𝑖(𝑝)
)

2  

𝑉𝑖(𝑝) 

Where  ‖ . ‖ 𝛿 is the Huber norm :  

‖ 𝑟2‖ 𝛿  ∶= {

𝑟2 

2𝛿
       if |𝑟|  ≤  𝛿

|𝑟| −  
𝛿

2
  otherwise

   

5) Keys and Depth maps 

a) Key frame :  If the camera moves too far away from 

the existing map, a new key frame is created from the most 

recent tracked image. The threshold accompanying weighted 

combination of relative distance and angle to the current key 

frame: 

dist(𝜀𝑗𝑖 ) ∶= 𝜀𝑗𝑖
𝑇 W 𝜀𝑗𝑖   

where W is a diagonal matrix containing the weights. 

Note that, each key frame is scaled such that its mean inverse 

depth is one. This threshold is, therefore, relative to the current 

scale of the scene, and ensures sufficient possibilities for small 

baseline stereo comparisons. 

       b)  Depth Map:  Once a new frame is chosen to become a 

key frame, its depth map is initialized by projecting points from 

the previous key frame into it, followed by one iteration of 

spatial regularization and outlier removal. Afterward, the depth 

map is scaled to have a mean inverse depth of one this scaling 

factor is directly incorporated into the sim (3) camera pose. 

Finally, it replaces the previous key frame and is used for 

tracking subsequent new frames. 

      c) Refinement. Tracked frames that do not become a key 

frame are used to refine the current key frame: A high number 

of very efficient small baseline stereo comparisons is 

performed for image regions where the expected stereo 

accuracy is sufficiently large. The result is incorporated into the 

existing depth map, thereby refining it and potentially adding 

new pixels, this is done using the EKF filtering.  

IV. THE SOFTWARE IMPLEMENTATION 

 

The LSD SLAM is bound as a software for all its 

operations through ROS package. All the necessary nodes are 

built into ROS binary packages and cross compiled. ROS is an 

open source, node based software for robotics. The nodes are 

predefined in the c++ based codings, which also encapsulates 

all the other pipes and Process IDs into the same main level 

thread. 

1) The software Architecture 

For running the software, various new nodes are to be 

created as different real-time clients for core process. These are 

inter-related with each other and 

communicates within themselves by using the 

Tracking

•New Image

•Track on 
current KF

Depth Map 
Estimation

•Take KF?

•Create new, 
if yes

•Refine KF, 
if no

Map 
Optimizatio
n

•Add KF to 
Map

•Current 
Map

(1) (2) 

(4) 

(5) 

(3) 
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roscore main process. Figure 2 shows the architecture and 

relationship between these nodes: lsd_slam, usb_cam and 

ptam. The background services govern these nodes and their 

communication. 

 

 
                                   Fig. 2  The Software Architecture 

 

2) Compilers and tools 

This work is fully implemented via software by using 

Cross compilation of different compilers and language tools. 

The basic language used for the LSD SLAM process and its 

background processes like viewer, depth map estimator are 

fully written and compiled under C++. To bring more 

synchronization and integrity among all the nodes, the BOOST 

libraries are used. These are free, open source dynamically 

reconfigured subroutines written in C++. The tools are 

summarized as follows:  

TABLE I.  TABLE I COMPILER TOOLS USED 

S. No. Tool/compiler Purpose 

1. 
Robotic Operating 

System 

For running the LSD SLAM and its core 

services. To provide node 

communication and kernel based 
interaction with the algorithm. 

2. Open CV 

To compile composite color geometry at 

the runtime, with both static and dynamic 

link libraries, which will be useful for I/O 
rendering with the algorithm. 

3. Open GL 

To compile 3D geometry and visual c++ 

libraries for the purpose of core services 
of the ROS.  

4. Boost lib 

It is a c++ library collection for 

implementing kernel services at user 

defined environment. With this libraries, 
mutex locks are implemented into the 

program. 

5. USB_CAM node 
It is a package, which uses USB camera 
for giving inputs and outputs within the 

ROS. 

 

 

V. SIMULATION RESULTS 

 

The simulations done using the software tools as 

discussed earlier are presented here. Both SLAM algorithm and 

Calibration of live camera implementations are simulated. As 

SLAM is probabilistic model based system, the global 

coordinates and mapping coordinates are rendered 

simultaneously. The coherence between them should be 

acceptably accurate. 

 

1) Results of LSD-SLAM Algorithm 

The ROS is deployed with master-client node strategy 

in Ubuntu. The backend image rendering for the algorithm is 

provided by a camera calibration tool. Since the camera used 

for the algorithm's simulation must be synchronized with 

rendered images, this camera calibration tool gives real-time 

error correction and calibration. This is done by PTAM 

(Parallel tracking and mapping) camera calibrator tool. The 

output of this node is shown below. 

 

 
Fig. 3 Result of PTAM calibrator tool in ROS 

 

Next, this calibrated VGA image sequences are 

streamed as input the core of the algorithm, i.e., SLAM node. 

Our algorithm must have two components viz., the DEBUG 

WINDOW depth image and 3D POINT CLOUD mapping for 

occupancy. These two windows provide us the correct mapping 

of the environment and depth image synchronization. The 

tracking of the global frame and current observance frame are 

also done by the algorithm. 

The overall output of SLAM algorithm can be 

rendered with two types of inputs: Live SLAM and Dataset 

SLAM. The live SLAM is the real-time algorithm 

implementation by connecting a webcam with the system and 

to track the occupancy for odometry purposes. But on the other 

hand, the dataset SLAM gives an output of already recorded 

dataset video. The simulation was done for both types of 

algorithmic implementation. They are carried out on Pentium 

processor powered Laptop at No overclocked frequencies. This 

is an evident that the algorithm runs with no computational 

overhead. The figure below shows the output of dataset SLAM 

in the system: 
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Fig. 4  Result of Dataset SLAM in ROS 

 

 
Fig. 5  Result of live SLAM in ROS 

 

Fig 6  Block diagram of future implementation 
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VI. CONCLUSION AND FUTURE WORKS 

 

The expected results for this work is tried to 

implement using the software and simulation. It is successfully 

done to bring the closeness of the objective. By using the 

proposed simulation, following points can be observed: 

        • The ground truth is improved by using the proposed 

algorithm. The plotting accuracy in terms of the number of 

point clouds is also increased1. 

        • For large loop closure, the depth of the map is clearly 

closed with the short period of time, thanks to the Parallel 

Tracking and Mapping feature. 

        • The key frame observance and remapping in a case of 

tracking loss is highly accurate. When comparing to the feature 

and sensor based SLAM algorithms, this direct SLAM 

technique brings less computational overhead to the CPU as 

well as simulates faster2. 

However, there are several future enhancements that 

can be done. These include introduction of IMUs and 

Gyroscopes along with the Quadcopter to improve accuracy, 

implementing the direct SLAM technique with an additional 

camera for improved 3D loop closure as well as observance and 

implementing this software in real time with the help of low-

cost Quadcopter arrangements. Figure 6 shows our future 

implementation with the sensors and drone. 
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