
A Parallel Algorithm to Process Harmonic

Progression Series Using OpenMP

1,
Rinki Kaur,

2.
Sanjay Kumar,

3.
V.

K. Patle

1,2,3.
School of Studies in Computer science & IT

Pt. Ravishankar Shukla University, Raipur (Chhattisgarh) 492010 India

Abstract—

In Present days, multicore systems have become

popular as it provides parallelism and hence less delay, but

multicore systems provide only hardware parallelism. In order

to achieve best result we should use software parallelism also.

 To achieve software parallelism there are many

programming models like OpenMP, MPI etc. In this work we

have used OpenMP for dividing Harmonic Progression Series

into different threads and running on quad core processor. We

have found the optimum number of threads for best result.

Keywords—

Parallelism, Multithreading, Multi-core

Processor, OpenMP, Parallel Programming

I.

INTRODUCTION

One of the recent innovations in computer engineering

has been the development of multi-core

processors, which

are composed of two or more independent cores in a single

physical package.

Today, many processors, including digital

signal processor (DSP), mobile, graphics, and general

purpose

Central

processing units (CPUs)

have a multi-core design,

driven by the demand of higher

performance. Major CPU

vendors have changed strategy away from increasing the

raw clock rate to

adding on-chip support for multi-threading

by increase in the number of cores. Dual-and quad-core

processors are now commonplace

[1].

Parallel programming or parallel computing is an

alternative towards the traditional serial computing which

instead of only allowing a single instruction to be executed

once at a time, it simultaneously executes

multiple

instruction at once using multiple computational resources

[2],[3],[4]. High-end computing is one area that sought

tremendous amount of processing powers which most

computer systems

are having difficulties to accomplish.

This is where parallel programming plays its

role. From

solving complex mathematical equations to assisting

scientist in

research, parallel programming has proven the world it’s

worth [2], [3], [4].

Parallel computing on shared memory

multi-processors has become an effective method to solve

large scale scientific and engineering computational

problems. Both MPI and shared memory are available for

data communication between processors on shared memory

platforms [5]. There are three main models for parallel

programming multi-core architectures. These

models are the

message-passing paradigm (MPI), shared memory

programming model, and Partitioned Global Address Space

(PGAS) programming model [6], [7]. The shared memory

programming model allows a simpler

programming of

parallel application, as the control of the data location is not

required.

OpenMP is the most widely

used solution for shared

memory programming, as it allows an easy development of

parallel

applications through compiler directives. Moreover,

it is becoming more important as the

number of cores per

system increases.

The OpenMP Application Programming Interface

(API) was developed to enable portable shared memory

parallel programming. It aims to support the parallelization

of applications from many disciplines. Moreover, its

creators

intended

to provide an approach that was relatively

easy to learned

as well as apply. The API is designed to

permit an incremental approach to parallelizing an existing

code, in which portions of a program are parallelized,

possibly in successive steps. In this paper performance

evaluation of multi-core processor

are discussed on the basis

of three

parameters

(scalability, average execution time for

each thread in each terms, CPU utilization for each thread in

each term) by using OMP, which gives multithreading

environment.

This paper aims to analyze the performance of

multi-

core architecture on the basis of the sum

of

Harmonic

Progression implemented

on various thread

processing via

the parallel programming paradigm.

This paper has been

organized

as follows. In section

2, we briefly describe the

multi-core processor and multithreading. In Section 3

the

methodology is described in

detail. In Section4 elaborates

the results and analysis of the finding.

Finally, section 5

is

the conclusion

& future work.

II.

MULTI-CORE PROCESSOR AND MULTITHREADING

Multi-core Processor

employing multithreading are

being extensively used now a days.

67

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20329

A.

Multi –core processor

A

multi-core processor is a single computing

component with two or more independent actual central

processing units called “cores”, which are the units that read

and execute program instructions. The instruction are

ordinary CPU instructions

such as add , move data, and

branch, but the multiple

cores can run multiple instructions

at the same time, increasing overall speed for programs

amenable to parallel computing.

A

dual-core

processor is a

multi-core processor with two independent

cores. A quad-

core processor is a multi-core processor with four

independent cores, an octo-core processor

or octa-core

processor

contains eight cores, and a deca-core processor

contains ten cores

[8].

B.

Multithreading

A thread is a basic unit of execution. A single thread

executes a series of application instructions, following a

single path of logic through the application. All applications

have at least one thread

[12]. Multi-Threading is the ability

of a CPU

to execute several threads

apparently at the same

time. CPUs are very fast at executing instructions. Modern

PCs can execute nearly a billion instructions every second.

Instead of running the same program for one second, the

CPU will run one program for perhaps a few hundred

microseconds then switch to another and run

it for a short

while and so on.

Multithreading is the approach of using multiple

threads of execution to process different operations An

operating system is able to take each of these threads and

other multiplex them onto the same core or to run them in

parallel on multiple cores that may exist.

As such,

multithreading is a common approach to parallel

programming, whereby you can split a larger problem into

multiple sub-problems and use multiple threads (i.e.

multithreading) to process those sub-problems

concurrently.

Multithreading is similar to multitasking, but enables

the processing of multiple threads

at one time, rather than

multiple processes.

Multithreading may occur within

processes.

Multithreading aims to increase utilization of a

single core by using thread-level as well as instruction-level

parallelism

[9].

III.

 MATERIAL AND METHOD

A.

Material

A program for the addition of Harmonic progression

series is used.

If

a sequence is in Arithmetic Progression,

then the sequence obtained by taking the reciprocal of every

term in the sequence forms a Harmonic Progression. These

programs

are divided into subsection and each subsection

is

executed by the different threads

for different number of

terms.

B.

Harmonic Progression Series

If a sequence is in AP,

then the sequence obtained by

taking the reciprocal of every term in the sequence forms a

Harmonic Progression [10].



That is if a, b, c, form an AP,

then 1/a,

1/b, 1/c … form an HP.



Let a, b, c form an HP. Then clearly, 1/a,

1/b, 1/c form an AP. Thus,



Sum of Harmonic Progression Series is

based on mathematical equation

Sum =

1 +
1

2
+

1

3
+

1

4
+

1

5
+ ⋯…………… . +

1

𝑛

C.

Hardware and Software

The Multi-core processor specifications used in this

work are quad

core and is described in following table.

Component

Description

of processor core

4(Quad)

Processor

Intel(R)core™i3-3110M

CPU @2.40GHz 2.40GHz

RAM

4.00GB RAM

System Type

64 bit

The software required to perform the parallel process are

Linux (fedora 15) as a

operating system and OpenMP

parallel programming model and system monitor for to

check the CPU utilization of the processor for performance

measure.

D.

Method

The parallel program for sum

of Harmonic Progression

series are written in OpenMP programming model. OpenMp

is a implementation of multithreading,

which

allows

to

create system threads and hereby takes advantage of

multi-

core-

architecture. OpenMP provides

the thread level

parallelism.

OpenMP uses

the fork-join model of parallel

execution.

All OpenMP programs begin as a single process:

the master thread.

A master thread forks a specified

number of slave threads and a task is divided among them.

The thread then runs concurrently, with the runtime

environment allocating threads to different processors.

By default, each thread executes the parallelized

section of code independently. Work-sharing construct can

be used to divide a task among the threads so that each

thread executes its allocated part of the code. Both task

parallelism and data parallelism can be achieved using

OpenMP in this way.

A parallel program for Harmonic Progression series are

divided into two levels:



According to Number of threads



According to Number of terms

68

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20329

According to Number of threads: In these levels we use

2,4,8,16,32 threads. For each thread we increase the number

of terms

as 100, 1000, 10000, 100000.

We make a parallel

program for each number of threads, in which we use a

#pragma omp parallel

for the thread creation.

#pragma

omp parallel is used to fork additional threads to

carry out the work enclosed in the construct in parallel. The

original process will be denoted as master thread

with

thread ID 0.

According to Number of terms: In these levels we have

used

the 100,1000,10000,100000 as a number of terms

for

each threads. For 2 threads

we divide 100, 1000,

1000,100000 equally into 2 sections.

For 4 threads

we

divide 100,1000,10000,100000 equally into 4 sections

and

also for the other threads. For this purpose we

have used

a

work sharing construct in a program.

#pragam omp sections: Work sharing construct clauses

sections

assigning consecutive but independent code blocks

to different threads.

It contains a set of sections and informs

that they should execute in parallel.

#pragam omp section:

This informs that the code block

that should be executed by a single thread and creation of

section depends

on the number of threads.

Syntax for section:

#pragma omp sections [clause ...] newline

{#pragma omp section newline

structured_block

#pragma omp section newline

structured_block}

These levels

provide a data level parallelism. This

parallelism is achieved by splitting H.P. series into

100,1000,10000,100000 terms which corresponds to 2, 4,

6,8,16 and 32

threads used.

#pragma omp critical:

A block in which only one thread

may enter at a time.

a)

Algorithm

The Parallel Algorithm for sum of Harmonic Progression

Series is describing in this section.

STEP1: Initialize the variables

STEP2: omp_set_num_threads

()

 // [function that set the maximum thread count at

run time.]

STEP3: Set the initial time using omp_get_wtime

()

function.

STEP4: #pragma omp parallel

 // [syntax of the openmp]

 // [create a team of threads that run the code block

in parallel]

STEP5: #pragma omp sections

 // [contains a set of sections and informs that they

should execute in parallel]

STEP6: #pragma omp section

 // [This informs that the code block that should be

executed by a single thread and creation of

section depend on the number of threads]

STEP7: #pragma omp critical

 // [A block in which only one thread may enter at a

time]

STEP8: Assign the initial value to SUM variable

STEP9: Initializes the counter

STEP10: Calculates the TERM and adds with SUM

STEP11: Increment the counter by 1

STEP12: omp_get_thread_num()

 // [Runtime function to return a Thread –ID]

STEP13: [END of Parallel Region]

STEP14: Prints the value of SUM

and Execution time

STEP15: STOP

b)

Performance Metrics

There are different kinds

of parameters

for

evaluating the performance of a system .These performance

parameters

are the execution time that are evaluate for each

threads and CPU utilization .

Scalability of parallel algorithms: Increasing number of

processor decreases efficiency with fixed problem size and

increasing the amount of computation per processor

increases efficiency with fixed machine size. It should

possible to keep the efficiency fixed by increasing both the

size of the problem and the number of processor

simultaneously .Two Scalability metrics are used

1)

Number of threads

2)

Number of terms

Execution Time: Execution time is used to estimate the

parallel execution time for each thread to well utilize the

processor

in solving the problem.

For

calculating Average

Execution time for each thread we run parallel program of

Harmonic progression Series three times for each number of

terms.

CPU Utilization: CPU Utilization show the utilized

percentage of the each core or CPU of the system.CPU

Utilization is needed to monitor via the system monitor to

determine whether or not it met the criteria intended.

IV.

RESULT

AND DISCUSSION

The Parallel results are discussed based on Average

Execution Time and CPU Utilization factor using the

algorithm in performing the algorithm.

69

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20329

A.

Average Execution Time

After the execution of parallel program for the

different number of threads and for the different number of

terms we

analyze the average execution time for each thread

which is given in following tables.

1) The average execution time for each thread in 100

numbers of terms.

 Table 1: Analyze data for 100 terms

Number of threads

Average Execution

time

(in second)

2

0.006704

4

0.001704

8

0.0020944

16

0.00366976

32

0.0037854

 Figure 1: Average Execution time for 100 terms

2) The average execution time for each threads in 1000

number of terms.

 Table 2: Analyze data for 1000 terms

Number of threads

Average Execution

time

(in second)

2

0.050578

4

0.0870763

8

0.034989

16

0.0357324

32

0.692207

Figure 2: Average Execution time for 1000 terms

3) The average execution time for each threads in 10000

number of term.

Table 3: Analyze data for 10000 terms

Figure 3: Average execution time for 10000 terms

4) The average execution time for each threads in

 100000

number of term.

Table 4: Analyze data for 100000 terms

Number of threads

Average Execution

time(in second)

2

8.27771

4

5.4542087

8

8.0280277

16

8.086431

32

8.156544

Figure 4: Average execution time for 100000 terms

Here we have implemented

the addition of Harmonic

Progression series 1+1/2+1/3+……….+1/100 in parallel

environment at different number of threads likes 2, 4,8,16

and 32

threads. It is observe that in starting when we

Number of threads

Average Execution

time(in second)

2

0.788442

4

0.513684

8

0.7770706

16

0.77374

32

0.7807707

70

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20329

increase number of thread from 2

to 4 execution time

decreases, but as we increase number of threads above

4execution

time starts increasing, instead of

decreasing. 32

number of threads time taken is even more than

the time

taken by 2 threads. After observation by the graph it is

found that:



4 is the optimum number of threads for 100,

10000,100000 cycles.



16 is the optimum number of threads for 1000

cycles.

5)

The optimum number of threads for each number of

terms

Number of terms

Optimum number of

threads

100

4

1000

4

10000

16

100000

4

Here optimum

number of threads for parallel

execution of H.P. series

is equal to the number of cores in

the system where they implemented. Since we are running

on quad core machine that is there are 4 cores available.

At one time only 4 threads run parallel. Upon increasing

no of thread beyond the certain limits, communication

overhead occurs and therefore execution time increase that

means we should parallelize a problem optimally.

B.

CPU Utilization

The main objective is to fully utilize the CPU to its

utmost potential. Therefore, CPU Utilization needs to be

monitored via the system monitor to determine whether or not

it met the criteria intended. Following figure describes the

CPU utilization factor when executing the parallel algorithm

on quad core processor respectively.

1)

CPU Utilization in 1000000 terms for 2 threads

Figure

1: CPU

Utilization in percentage for 2

threads

2) CPU Utilization in 1000000 terms for 4 threads

 Figure 2: CPU Utilization in percentage for 4 threads

3) CPU Utilization in 1000000 terms for 8 threads

Figure 3: CPU Utilization in percentage for 8 threads

4) CPU Utilization in 1000000 terms for 16 threads

Figure 4: CPU Utilization in percentage for 16 threads

5) CPU Utilization in 1000000 terms for 32 threads

Figure

5: CPU Utilization in percentage for 32 threads

CPU utilization has shown the utilized percentage of

each core or CPU of the system on the execution of our

problem.

In parallel execution each core of the system are equally

utilized .We can say that multicore system is fully

utilized by parallel execution of the program.

C.

Scalability

In

this paper, we divide H.P. series into number of

threads like 2, 4, 6, 8, 16, and 32 to perform the sum of

Harmonic Progression series into different number of terms.

It shows the scalability with respect to number of threads

and terms.

V.

CONCLUSION &

FUTURE WORK

In this work effect of parallelization on execution time

was studied, addition of harmonic series was done, by using

threads. Thread is an independent smallest unit of

71

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20329

processing that can be scheduled by operating system. The

problem was divided into increasing number of threads

and

terms. It was found that upon increasing the number of

threads (parallelization) time is increasing. This is

probability because of small configuration of micro

computers which include desktop; laptop ,another reason

may be use of OpenMP which has very limited facility of

parallelization. Small time also spends in overhead

communication. It may be possible that on mini and

mainframe computer along parallel operating system and

parallel compiler upon increasing parallelization time may

reduce. We conclude that for best performance when

number of threads should be equal to the number of cores.

If any programs are running on quad core processor

without thread then it is as good as running a program on

single core computer. To make use of quad core computer

he should used 4 threads in suitable environment like

OpenMP or any other equivalent.

VI.

FUTURE WORK

The future work can be computation may be made for

arithmetic progression series, geometric progression series

also. This may be extended to binomial series, sequential

series integration series another type of complex series like

sine series, cosine series etc.

REFERENCES

[1]

Greg Slabaugh, Richard Boyes, Xiaoyun Yang, “Multicore Image

Processing with OpenMP”

[2] B. Barney, Introduction to ParallelComputing. Retrieved from

LawrenceLivermore National Laboratory:

 https://computing.llnl.gov/tutorials/parallel_comp/, 2010..

[3] C.Lin And L.Snyder, “Principles Of Parallel Programming”, Pearson
International, 2009.

[4] Noor

Elaiza Abdul Khalid, Siti Arpah Ahmad, Noorhayati Mohamed
Noor,Ahmad Firdaus Ahmad Fadzil, Mohd Nasir Taib,

“Analysis

Of Parallel Multicore Performance On Sobel Edge Detector”

Isbn: 978-1-61804-019-0.

[5] Yong Luo, “Shared Memory Vs. Message Passing: The

Comops

Benchmark Experiment” 1060-3425/98 1998 Ieee.

[6] D. A. Mallón, G. L. Taboada, C. Teijeiro, J. Touriño, B. B. Fraguela, A.

Gómez, R. Doallo And J. C. Mouriño " Performance Evaluation Of
Mpi, Upc And Openmp On Multicore Architectures" Europvm/Mpi

Lncs 5759, Springer Berlin Heidelberg Pp.174-184 , 2009.

[7] Alaa Ismail, El-Nashar,“Parallel Performance Of Mpi Sorting

Algorithms On Dual–Core Processor Windows-Based Systems”

International Journal Of Distributed And Parallel Systems (Ijdps)
Vol.2, No.3, May 2011.

[8] Https://En.Wikipedia.Org/Wiki/Multi-Core_Processor.As Retrieve On
Date 28/06/13.

[9]Http://Cplus.About.Com/Od/Glossar1/G/Multithreading.Htm. As
Retrieve On Date 28/06/13.

[10]Hamacher, Vranesic,And Zaki “Computer Org

Http://Ltcconline.Net/Greenl/Courses/103b/Seqseries/Seqser.Htmani

zation” Tmh.

11] Ashish Kumar,K Sudipta Achary, Motahar Reza “A Parallel Algorithm

To Compute Shortest Path Between Two Node In A Graph Using

Openmp”,National Conference On High Performance Computing

&Simulation(Nchpcs)18
th

To 19
th

Jan 2013,Isbn:978-93-

82208-55-6.

[12]Http://Msdn.Microsoft.Com/En-

s/Library/Ff649143.Aspx. Retrive

on 05/07/2013.

72

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20329

