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Abstract— In this paper, the initial and boundary value 

problems are solved by Galerkin weighted residual method. In 

the case of initial value problem, accuracy of Galerkin method is 

shown over exact solution. Accuracy is also continued to improve 

over the solutions by some standard numerical methods. It is 

shown that there is an astonishing accuracy of the Galerkin’s 

approximation method with even two terms in the case of initial 

value problem. Again In the cases of boundary value problem, 

some aspects of boundary problem are shown in solving them by 

Galerkin weighted residual approximation method. In this 

situation, the result of our calculation shows that basis 

functions are very dense in a space containing the actual 

solution. Galerkin finite element method is also 

introduced in solving boundary value problem. Resulting 

accuracy is also tested. Galerkin finite element method is 

found to be so effective that in this method an extraordinary 

accuracy is achieved with modest effort.    

 

Keywords— Galerkin weighted residual, Galerkin finite element 

method, initial value problem, boundary value problem. 

I.  INTRODUCTION   

 In Mathematics, Engineering and other branches of science, 

differential equations are used to model problems. Most of the 

problems require the solution to an initial value problem that 

is the solution to a differential equation that that satisfies a 

given condition. But in some cases arise in real life situations; 

the differential equation that models the problem is so 

complicated that, there is rarely a solution. In such cases, 

where an analytic solution is not possible, one must have to 

adopt one of the two ways, namely ( i) to simplify the 

differential equation to one that that can be solved exactly and 

(ii) to use methods for approximating the solution of the 

original problem. There are various procedures for obtaining a 

numerical solution to a differential equation. These methods 

can be separated into three basic groupings, namely (i) the 

finite difference method, (ii) the variational method and iii) 

the method that weight a residual. Our aim is to solve an initial 

value problem by Galerkin weighted residual approximation 

method. 

 Several problems arising in science and engineering 

are modeled by differential equations that involve conditions 

that are specified at more than one point. Such types of 

problems are called boundary-value problems.  The crucial 

distinction between initial value problems and boundary value 

problems is that in the former case we are able to start an 

acceptable solution at its beginning (initial values) and just 

march it along by numerical integration to its end (final 

values), while in the case of boundary value problem, 

boundary conditions at the starting point do not determine a 

unique solution to start with a random choice among the 

solutions that satisfy these incomplete starting boundary 

conditions is almost certain not to satisfy the boundary 

conditions at the other specified points. There are three 

standard methods for solving two point boundary value 

problems, namely shooting method, finite difference method 

and projection method. Among these, finite difference method 

is popular one. Our assumption is that the differential equation 

is linear.  

 The finite difference method approximates the 

derivatives in the governing differential equation using 

difference equation. The variational approach involves the 

integral of a function that produces a number. Each function 

produces a new number. The function that produces the lowest 

number has the additional property of satisfying a specific 

differential equation. The weighted residual methods also 

involve an integral. In these methods, an approximate solution 

is substituted into the differential equation. Since the 

approximate solution does not satisfy the differential equation, 

therefore an error term or a residual results. Weighted residual 

method requires that the inner product of the residual and each 

of the weighted functions must be zero. There are several 

processes to choice weighted functions. Galerkin’s method is 

one of them. In order to solve to solve ordinary differential 

equations by Galerkin method the following terms are very 

essential to describe. 

 The finite element method is another numerical 

technique that gives approximate solutions to differential 

equations that model problems arising in physics and 

engineering. As in simple finite difference schemes, the finite 

element method requires a problem defined in geometrical 

space (or domain), to be subdivided into a finite number of 

smaller regions. The early work on numerical solution of 
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boundary-valued problems can be traced to the use of finite 

difference schemes. The beginnings of the finite element 

method actually stem from these early numerical methods and 

the frustration associated with attempting to use finite 

difference methods on more difficult, geometrically irregular 

problems [17]. The first publications in finite element method 

appeared in 1950´s with the works written by [1, 6, and 20]. 

These were used to solve problems in structural analysis. 

Some decades later, Zienkiewicz and Cheung, Oden and 

Wellford, Chung and Baker among other publications, treated 

the heat transfer and fluid flow problems solutions involving 

solution of Laplace and Poisson equations [21, 12, 5 and 2].  

A vigorous mathematical discussion is given by Johnson [10], 

and programming the finite element method is described by 

Smith [18]. The mathematical basis of the finite element 

method first lies with the classical Rayleigh-Ritz and 

variational calculus procedures introduced by Rayleigh [14] 

and Ritz [16]. Recent descriptions of the method are discussed 

in [4, 11, 8, 9, 15, 19, 3 and 7]. Most practitioners of the finite 

element method now employ Galerkin's method to establish 

the approximations to the governing equations. Instead of 

going into rigorous treatment about this Galerkin finite 

element, we only intend to show in this article is that why this 

method is so effective. 

II. GOVERNING EQUATIONS 

A. Initial Value Problems 

We consider the general equation of initial value problems of 

the first ordered as 

),( yxf
dx

dy
  subject to the initial condition 00 )( yxy  , 

where nxxx 0  . 

To keep the discussion simple while meaningful a general 

formulation, we consider the following initial value problems 

of the first ordered as 

1 y
dx

dy
                                                  (1) 

 subject to the initial condition 0)0( y                    (2)      

where 10  x  .   

B. Boundary value problems 

We consider the general equation of boundary value problems 

of the first ordered as 

),,(
2

2

yyxf
dx

yd
  subject to the boundary condition

)()( 00 nxyyxy  , where nxxx 0  . 

Again to keep the discussion simple while meaningful a 

general formulation, we again consider the following initial 

value problems of the first ordered as  

01
2

2

 y
dx

yd
                                                          (3) 

subject to the boundary condition  

)1(0)0( yy                       (4) 

III. METHODS 

A. Galerkin’s weighted Method 

In this method, an approximating function called the trial 

function is substituted in the given differential equation and 

the result is called the residual. It is mentioned that the result 

will not be zero since an approximation function is substituted. 

The residual is then weighted and the integral of the product, 

taken over the domain, is set to zero. An advantage of this 

method is that it works with the governing equations of the 

problem and does not require a functional. 

 Galerkin’s Requirements 

 Let us solve the linear differential equation fuL )(  

by choosing basis function j . Then approximating the 

actual solution u~  by a linear combination of these 

functions 



N

j

jjcu
1

~   for all values of jc  the 

approximate u~  satisfies. 

 The residual fuLR  )~(  must be orthogonal to the 

basis element  N .,.........,, 321  used in the 

approximation. 

  i.e., 0, Ri , where fcLR
N

j

jj 












 

1

  

 Hence  





N

j

ijiji fcR
1

0,,, 

. 

B. Galerkin finite element method 

The finite element method is a numerical technique that gives 

approximate solutions to differential equations that model 

problems arising in physics and engineering. As in simple 

finite difference schemes, the finite element method requires a 

problem defined in geometrical space (or domain), to be 

subdivided into a finite number of smaller regions (a 

mesh).This method  is based on the idea of building a 

complicated object with simple blocks, or dividing a 

complicated object into small and manageable pieces. It’s 

provides a greater flexibility to model complex geometries 

than finite difference and finite volume methods do. It has 

been widely used in solving structural, mechanical, heat 

transfer, and fluid dynamics problems as well as problems of 

other disciplines. The finite element method has grown out of 

Galerkin’s method, emerging as a universal method for the 

solution of differential equations. Much of the success of the 

finite element method can be contributed to its generality and 

simplicity, allowing a wide range of differential equations 

from all areas of science to be analyzed and solved within a 

common framework. Another contributing factor to the 

success of the finite element method is the flexibility of 

formulation, allowing the properties of the discretization to be 

controlled by the choice of finite element approximating 

spaces. Historically, all major practical advances of the finite 

element method have taken place since the early 1950s in 

conjunction with the development of digital computers. 

However, interest in approximate solutions of field equations 
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dates as far back in time as the development of the classical 

field theories themselves. The work of Rayleigh [14] and Ritz 

[16] on vibrational methods and the weighted-residual 

approach taken by B. G. Galerkin and others form the 

theoretical framework to the finite element method. 

C. Finite difference method 

The finite difference method for the solution of a two point 

boundary value problem consists in replacing the derivatives 

occurring in the differential equation by means of their finite 

difference approximations and then solving the resulting linear 

system of equations by a standard procedure.  

D. Discontinuous Galerkin weighted method 

The Discontinuous Galerkin weighted method is somewhere 

between a finite element and a finite volume method and has 

many good features of both. It provides a practical framework 

for the development of high-order accurate methods using 

unstructured grids. The method is well suited for large-scale 

time-dependent computations in which high accuracy is 

required [13]. An important distinction between the 

Discontinuous Galerkin weighted (DGW) method and the 

usual finite-element method is that in the Discontinuous 

weighted Galerkin (DGW) method the resulting equations are 

local to the generating element. The solution within each 

element is not reconstructed by looking to neighboring 

elements. Its compact formulation can be applied near 

boundaries without special treatment, which greatly increases 

the robustness and accuracy of any boundary condition 

implementation.  

IV. SOLUTIONS 

A. Analytical solution of initial value problem 

The analytic solution of the Eq. (1) subject to the condition (2) 

is given by  

 
xexy 1)(                             (5) 

B. Solution of initial value problem by Galerkin weighted 

method 

Let us use the basic functions 

                  
................,.........,,, 432 xxxx

 
Each of which satisfies the condition .0)0( y  

Let the trial solution be  





N

j

jj xcy
1

~
                                                             (6) 

The residual for this trial solution is  




 
N

j

jj

j xjxcR
1

1 )(1                                   (7) 

Imposing Galerkin’s requirement, we have  




 
N

j

jji

j

i xjxxcx
1

1 0),(1,  

This equation yields N equations k 

1

1
)

1

1
(

1 







 ijiji

j
c

N

j

j ,                           (8) 

where, Ni ........,,.........3,2,1 . 

We have solved the equations bAc   for the unknown jc  

with the help of the MATLAB routine. 

Accuracy will continue to improve over the solutions of the 

differential equation by two standard numerical methods, 

namely Euler’s method and Range-Kutta method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Solution curves by Galerkin’s, Euler and Range-

Kutta method for N=1. 

 

Fig.2. Solution curves by Galerkin’s, Euler and Range-Kutta 

method for N=2. 

Fig.3. Solution curves by Galerkin’s, Euler and 

Range-Kutta method for N=3. 
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Since our aim is estimate a comparison and to show accuracy 

of our problem by Galerkin weighted residual method with  

the exact solution  and those obtained by the two standard 

methods mentioned above, so instead of going into giving 

detail description about these methods, only MATLAB routine 

in the respective cases are given.   

C. Analytical solution of boundary value problem 

 

Analytic solution of boundary value problem of Eq. (3) 

imposing the condition eq. (4), we get  

)1cos1(
1sin

sin
cos1)( 

x
xxy               (9) 

 

D.   Solution of boundary value problem by Galerkin 

weighted method 

We employ as usual the basis functions 
1 jj

j xx , where Nj ,........,3,2,1 .  

Each of the basis function satisfies both the boundary 

conditions given by Eq. (3). 

We assume the trial solution of the problem prescribed by Eq. 

(3) as     





N

j

jjcy
1




                                                           (10) 

The residual for this trial solution is given by 

1
11

 


N

j

jj

N

j

jj ccR                                   (11) 

Imposing Galerkin’s requirement, we have 

 
 


N

j

i

N

j

jijjij cc
1 1

1,,      

As Sobolev matrix  





 jijiS  ,,  

Eq. (11) then can be written as 

   


1

0
1

1

0
1

1

0
dxdxcdxc i

N

j

jij

N

j

jij 

 

or,

2

1

1

1

3

1

2

2

1

1

1

)1)(1(

2

1

1 























































 ii

jiji

jiji

ji

ji

jiij

ji

ij

c
N

j

j

 

where, .......,..........3,2,1 Ni             

To obtain Galerkin approximate solution of the given 

boundary value problem, the unknown jc  must have to be 

determined. The values of jc are yields MATLAB routine.  

 

If we set 1N , then the value of the unknown with the help 

of the above MATLAB routine is obtained as 2778.1 c  

and then the Galerkin approximate solution is obtained as  

)(2778.~ 2xxy  . 

For 5.0x , we have first approximate solution as 

06945.~
1 y , whereas the exact solution given by Eq. (28) 

of the given boundary value problem for that point yields 

  139493927.05.0 y  

Comparison with the exact solution the error in the computed 

solution by Galerkin method is 0.07004. 

Again if we set 2N , then the values of the unknowns with 

the help of the above MATLAB routine are obtained as 

1924.1 c  and 1707.2 c , and then the Galerkin 

approximate solution is obtained as  

)(1707.)(1924.~ 322 xxxxy  . 

For 5.0x , the second approximate solution is given by 

1054375.~
2 y . 

In this case the error is 0.034. 

Similarly the other approximate solutions are obtained some 

of them are given in Table 1. 

Fig.4. Solution curves by Galerkin’s, Euler and Range-

Kutta method for N=50. 

Fig.5. Solution curves by Galerkin’s, Euler and Range-

Kutta method for N=100. 
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E. Solution of boundary value problem by finite difference 

method 

 With 5.0h , use the finite-difference method to determine 

the value of  5.0y . It is shown that its exact solution of Eq. 

(3) is given by  

                                     xxxy sin
1sin

1cos1
cos1


 , 

from which, we obtain   139493927.05.0 y . 

Here 1nh . Then the given boundary value problem 

discretized as finite difference method can be written as 

01
2

2

11 
 

i

iii y
h

yyy
                             (12) 

and the Eq. (12) after simplification gives 

                  ,2 2

1

2

1 hyyhy iii            (13) 

where 1...,,3,2,1  ni  

which together with the boundary conditions 00 y  and 

0ny , comprises a system of   1n  equations for the 

 1n  unknowns 0y , 
1y , 

2y , …, ny . 

Choosing                   
2

1
h  (i.e. 2n ), the above system 

becomes 

4

1

4

1
2 210 








 yyy . 

With  020  yy , this gives 

  ...142857142.0
7

1
5.01  yy  

Comparison with the exact solution given above shows that 

the error in the computed solution is 00336.0 . 

On the other hand, if we choose 
4

1
h  (i.e. 4n ), we 

obtain the three equations: 

16

1

16

31
210  yyy  

16

1

16

31
321  yyy  

,
16

1

16

31
432  yyy  

where 040  yy . Solving the system we obtain 

  ,140311804.0
449

63
5.02  yy  

the error in which is 00082.0 . Since the ratio of the two 

errors is about 4 , it follows that the order of convergence is 
2h . The results of our calculation in respective cases are 

tabulated in shown Table 2. 

 

 

 

Table 1: Comparison of our calculated value with 

exact value. 
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Table 2: Comparison of our calculated value with 

exact value. 
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a
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 o
f 

y
 Computed value of y  by Finite difference 

method. 
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F. Solution of boundary value problem by Galerkin finite 

element method 

Divide the interval ]1,0[  into equal subintervals, each of 

length  .1
N

x    

For 1,,.........3,2,1  Nj , we take the piecewise linear 

basis function j  that is zero off the open interval

))1(,)1(( xjxj   but has value 1 at xj  as shown in 

the Fig. 6. 

 

                                     

 

 

 

 

Fig.6. Basis functions with small support. 

 
 

Fig.6. Basis functions with small support. 

 

 

Let us assume the piecewise linear trial solution  







1

1

N

j

jjcy                                                             (14) 

This trial solution gives the residual. 

The residual for this trial solution is given by 

1
11

 


N

j

jj

N

j

jj ccR                                    (15) 

Imposing Galerkin’s requirement, we have 
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01,,
1 1

 
 

N

j

i

N

j

jijjij cc       (16) 

The piecewise linear interpolation (14) has zero second 

derivative almost everywhere, therefore, our Eq. (16) will then 

be reduced to the simple form as 

 1,iGc  ,                                                   (17) 

where G  is the Gramian and is given by 

 jiG  ,                                                        (18) 

Equation (17) finds the best fit to the horizontal line 1y . It 

is not solving the given boundary value problem prescribed by 

the Eqs. (11) and (12). This same failure will always occur 

when using piecewise linear trial functions j  to solve second 

order problems. 

One way to view this failure is that the approach does not take 

into account the Dirac delta functions that should arise when 

differentiating these basis functions j  twice. Another view is 

that we must not ask so much of solutions-they need not be so 

differentiable.  Rather than requiring the solution satisfies the 

classical statement of the problem given by Eq. (11). We only 

require that the solution holds when projected into finite 

dimensional subspaces, i.e. satisfies the weak condition 

  1,,,   yy                                 (19) 

for any test function   with square-integrable derivative and 

zero boundary values. By integrating by parts, we throw one 

derivative onto the test function.  

 

Thus the weak restatement of our Galerkin problem is given 

by Eqs. (11) and (12)  is 
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1

1

1

1,,,
N

j

iji

N

j

jjij cc  ,    (20) 

where  1,,.........3,2,1  Ni . 

The Eq. (20) can be written as 

)1,()( icSG  ,                                          (21) 

where S  represent Sobolev matrix and is given by 

 jijiS  ,, .                             (22) 

Because all the basis functions j  are translates of one 

another, G  and S are easy to compute. A framework so of 

such finite element problems is given below. 

otherwise

jiif

jiif
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and .
1

1,
N

i                                                        (25) 

 

Thus equation (20) becomes the tri-diagonal system 
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N

c

c

c

N
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                                                       (26) 

Implementation of the above system is given by the MATLAB 

routine. 

V. DISCUSSION OF THE RESULT AND 

CONCLUSION 

Galerkin’s approximation weighted residual method for the 

solution of initial value problem is investigated. In each case 

the result of our calculation is shown graphically. Figs. 1-5 

indicate that there is an astonishing accuracy of the Galerkin’s 

approximation method with that of exact method. After two 

terms, Figs. 3-5 show that each of the solution curve obtained 

by exact solution overlaps on the curves that are extracted by 

our calculation in respective cases of interest. Accuracy is also 

tested over some standard numerical approximation methods. 

Fig.8. Solution curves by Galerkin’s and finite difference 

methods for N=3. 
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Galerkin’s finite element solution of boundary value problem 

is investigated. In each case the result of our calculation is 

shown graphically. Figs. 7-8 indicate that there is an 

astonishing accuracy of the Galerkin’s approximation method 

with that of exact method. Figures 9-10 show that each of the 

solution curve obtained by exact solution overlaps on the 

curves that are extracted by our calculation in respective cases 

of interest. Accuracy is also tested over some standard 

numerical approximation methods. Therefore, we may 

conclude that the basis functions are dense in a space 

containing the actual solution. 

Two point Boundary value problems are solved by Galerkin 

method. The accuracy of our calculated values is compared 

with the results obtained by exact solution and finite 

difference method. The errors are also estimated in the 

respective cases. They are given in Tables 1 and 2. The results 

show that the accuracy obtained by the finite-difference 

method depends upon the width of the subinterval chosen and 

also on the order of the approximations. As h  is reduced, the 

accuracy increases but the number of equations to be solved 

also increases. Whereas, in the case of Galerkin method, the 

accuracy depends upon the number of basis functions chosen. 

It is shown that even third approximation yields an astonishing 

accuracy. There is only one problem of this is method that 

more computations are needed for more choice of basis 

functions. The same conclusion can be drawn here in the case 

of boundary value problem as is drawn in the case of initial 

value problem. 

Finally the conclusion can be drawn that the Galerkin finite 

element method is so effective that, in this method such an 

extraordinary accuracy is achieved with modest effort.     
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Fig.9. Solution curves by Galerkin’s and finite 

difference methods for N=5. 

 

Fig.10. Solution curves by Galerkin’s and finite 

difference methods for N=7. 
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