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Abstract - Most of the published work on impulsive noise and 

its models is based on parametric modelling techniques. Even 

though these techniques are good in that they represent the 

noise using some parameters like the variance and mean, they 

have a big shortcoming in that their mathematical expressions 

that determine the underlying distribution are fixed. The 

fixed form of many parametric distributions therefore 

introduces rigidity in the form that the noise probability 

density function and cumulative distribution function may 

take. Thus, fitting measured noise data using parametric 

distributions may result in an overestimation of the actual 

data structure that may lead to some of the salient features of 

the noise distribution being missed. To overcome the rigidity 

associated with parametric estimators, the use of 

nonparametric techniques is necessary. In this paper, a novel 

application of nonparametric kernel density estimators to 

develop reference models of the power line noise measured in 

low voltage indoor power networks in both time and 

frequency domain is presented. Nonparametric kernel density 

techniques estimate the underlying distribution of the noise 

directly from the measured data, without imposing any 

restrictions or making any assumptions as to the particular 

form of the data structure. As such, no fixed parameters are 

used to model the data, and therefore the data is modelled as 

it is. The kernel density method is the most efficient and 

popular nonparametric estimator. In fact almost all 

nonparametric algorithms are asymptotically kernel methods. 

It is continuous and overcomes the challenges of the other 

popular but primitive nonparametric estimator; the 

histogram. This estimator is very good going by the models 

developed and the validation results obtained. The objectives 

of this paper are: 

1. To present the definitions and features of nonparametric 

kernel density estimators as a stochastic and probabilistic 

modeling tool. 

2. To proof that the said estimator is actually very suitable 

for modeling of power line noise, more so as a reference 

(baseline) modeling technique. 

3. To introduce this wonderful technique to the PLC 

research community and therefore stimulate further 

research in line with the findings in this paper as well as 

exploration of other nonparametric estimators. 

 

Key words: Powerline Communication, Kernel Density, 

Powerline Noise. 

 

1. PLC IMPULSIVE NOISE MODELS 

This subsection revisits PLC impulsive noise models briefly. 

Noise in PLC systems falls into three main categories: impulsive 

noise, coloured background noise and narrowband interference. 

Asynchronous impulsive noise that is periodic to the frequency of 

the mains power, as well as narrowband and coloured background 

noises that usually tend to remain stationary for  periods that 

range between seconds and minutes or even hours, and therefore 

are generally classified as background noise. However, impulsive 

noise that is asynchronous with the mains frequency, and 

synchronous impulsive noise that is periodic with the mains 

frequency are time variant from microseconds to milliseconds. 

The spectral density of the noise power rises significantly during 

impulsive events and may result in bit or burst errors during 

transmission of data [1-6].  

Since narrowband interference is mainly ingressed into the 

network, its effect on the system performance is not as severe as 

compared to the other two. On the other hand, background noise 

is stationary and can be modelled as a classical Gaussian process. 

Additionally, impulsive noise; in all its three sub-classes poses the 

greatest threat to the performance of the PLC channel. This type 

of noise has been modelled using different parametric models; 

but, the most commonly used ones are the two-term mixture 

Gaussian model and the Middleton’s class-A impulsive noise 

model [5-13]. In two recent publications by Shongwe et al. [14, 

15], a comprehensive study/survey of impulsive noise and its 

models was presented. 

 Even though the two-term mixture Gaussian model is simple and 

is used frequently in the analysis of PLC systems [16-18], it is 

deficient in that it does not provide a very accurate representation 

of the true impulse noise. Another parametric model, the 

Middleton’s class-A impulsive noise model, which is also widely 

used and counters the shortcomings of this model, is discussed 

next. This is a rather simple model based on a Poisson-Gaussian 

process and incorporates both background and impulsive noise, 

and was first suggested in [19]. Due to its slightly higher accuracy 

in the modelling and characterization of the real impulsive noise, 

this model has been employed by several authors in their analysis 

of the performance of impulsive systems [20-22].  However, this 

model was not designed for PLC systems and also does not tell us 

whether or not the noise is impulsive in the time domain.  

Another very flexible model that has recently featured in the study 

of impulsive inference/noise is the alpha stable distribution. This 

distribution is characterized by tails that are much fatter/longer 

than those of the Gaussian distribution, a characteristic 

synonymous with impulsive processes, like PLC noise. It is also 

more flexible than the other two parametric noise models 

described above.  This distribution is able to capture the impulsive 

nature of the noise and can model very extreme cases; ranging 

from very impulsive noise cases to pure background noise since 

the Gaussian distribution is one of the limiting cases [4, 13, 23, 

24]. This distribution is defined by its characteristic function ∅(𝑡), 

given by [4, 13, 23, 24]: 

∅(𝑡) = 𝑒𝑥𝑝{𝑗𝛿𝑡 − 𝛾𝛼|𝑡|𝛼[1 + 𝑗𝛽𝑠𝑖𝑔𝑛(𝑡)𝜔(𝑡, 𝛼)]}     (1) 
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Where, 

𝜔 (𝑡, 𝛼) = {
𝑡𝑎𝑛

𝜋𝛼

2
,    𝛼 ≠ 1

2

𝜋
log|𝑡| ,    𝛼 = 1

                              (2) 

𝑠𝑖𝑔𝑛(𝑡) = {

1        𝑓𝑜𝑟 𝑡 > 0
0       𝑓𝑜𝑟  𝑡 = 0
−1   𝑓𝑜𝑟 𝑡 < 0

                              (3) 

And: −∞ < 𝛿 < ∞, 𝛾 > 0, 0 < 𝛼 ≤ 2, 

−1 ≤ 𝛽 ≤ 1                                                          (4) 

𝛼 is the characteristic index or exponent, 𝛿 is the location 

parameter, 𝛾 is the dispersion or scale parameter and 𝛽 is the 

symmetry parameter. 

The impulsive noise models discussed above, and virtually all 

literature on noise modelling in PLC systems is based on 

parametric methods. A few parameters, expressed in fixed 

parametric mathematical equations are used in all the cases to 

describe the noise distribution. These parametric methods 

therefore introduce rigidity in the particular structure that the 

noise distribution may take. Thus, if these models are fitted 

straight to some measured noise data, as seen in [10] for example, 

the resultant models are just approximations to the measurements 

and may actually miss out on some of the salient features of the 

measured data distribution in most cases. Nonparametric density 

estimators are able to overcome the rigidity associated with 

parametric methods. To this end, in this paper, we introduce an 

alternative reference power line noise modelling framework that 

is based on nonparametric kernel density estimation techniques. 

The density estimate is obtained straight from the data itself and 

therefore “hugs” the measured data almost 100%. Thus, these 

models are seen as reference models of the measured noise 

distribution, and give an actual feel of any data distribution. Also, 

kernel density methods are the most accurate and widely used 

nonparametric estimators. This modelling framework is applied to 

measured noise characteristics and found to produce very good 

baseline results. 

2. NONPARAMETRIC DENSITY ESTIMATION 

Existing PLC noise models, including the ones discussed in 

Subsection 1 are based on parametric statistical distributions. This 

is to say that the estimation of the probability density function 

(pdf) that defines a set of noise data is done via a fixed set of 

parameters, which introduces rigidity in the particular shape that a 

data structure can take. As such, these fixed parameters mean that 

a data set structure can only take an approximate parametric 

distribution fit. The function 𝑓(𝑥) is assumed to belong to some 

distributions that are parametric like Gamma, Rayleigh, 

Lognormal, Erlang, Gaussian and Exponential, among others. 

With the parametric data modelling technique, the estimation of 

the parameters that relate the data to a particular distribution is 

usually the main task. Some error analysis to validate the 

assumption is then done. For instance, if the Gaussian distribution 

is used to model some data set, then the estimator would be given 

by: 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒

(𝑥−𝜇)^2
2𝜎2⁄

  ,     𝑥𝜖𝑅              (5) 

where, 𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   and 𝜎2 =

1

𝑛
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 . Parametric data 

modelling is fine as long as the distribution that is assumed to fit 

the data is correct or not seriously wrong at the very least. This 

method is quite easy to apply in many cases, and gives rise to 

relatively stable estimates. But, the fixed forms of the parametric 

distributions render them rigid, and this comes across as the 

biggest disadvantage of this data modelling technique. The data 

can only be trained to take on a particular structure whose final 

outcome is fixed.   This would imply that in most of the cases, key 

aspects of the data structure like skewness, actual tail 

probabilities, peakiness and bimodality may be missed out and 

therefore a misinterpretation of the underlying data distribution 

occurs. For instance, the Gaussian estimator above gives rise to 

models that are symmetrical and dome-shaped,  and therefore this 

renders it inappropriate for modelling data that is bimodal, heavily 

tailed, and/or skewed [8, 25].  

To address the rigidity concerns associated with parametric 

distributions, nonparametric methods are used. These methods 

estimate the probability density straight from the raw data without 

any prior assumptions as to the characteristic structure for the 

underlying distribution. As such, no fixed parameters are used to 

model the data, and therefore the data is modelled as it is. The 

histogram was the only known nonparametric density estimation 

technique until the 1950s, when meaningful progress was made in 

both spectral density estimation and density estimation. However, 

the histogram suffers from serious shortcomings that include the 

sharp transitions (discontinuities) between the bins, which results 

in a step-like data structure that is usually difficult to interpret, as 

well as an exponential growth in bin numbers with the number of 

dimensions, and that the data structure also depends on the bins’ 

start and end points. For many practical cases, these shortcomings 

render histograms useless, and they are therefore only useful in 

quick visualizations of data in both one and two dimensions.  

On the other hand, smooth nonparametric density estimation 

methods like kernel density estimators overcome the drawbacks 

associated with the histogram. One of the earliest papers on kernel 

density estimators is by Rosenblatt in 1956 [26].  The kernel 

density estimator is motivated as an averaged shifted histogram 

limiting case. Some of the techniques that can be applied in 

demonstrating its superior qualities, as well as providing a deeper 

understanding of it include numerical analysis and finite 

differences, smoothing by convolution and orthogonal series 

approximations. In fact almost all nonparametric algorithms are 

asymptotically kernel methods, a fact that was clearly 

demonstrated by Walter and Blum [27] and later proven in a 

rigorous way by Terrell and Scott [28]. The kernel density 

estimator for a random variable 𝑛  is given as [28-30]: 

𝑓(𝑛) =
1

𝑘ℎ
∑ 𝐾 (

𝑛 − 𝑋𝑖

ℎ
)

𝑘

𝑖=1

                     (6) 

where 𝑘 is the number of data points, ℎ is the smoothing 

parameter, also referred to as the bandwidth or window width, 𝑋𝑖 

is the 𝑖th data point and 𝐾(∙) is the kernel function. The kernel 

function is symmetric in most cases which means that 𝐾(𝑢) =
𝐾(−𝑢). A second order kernel function is defined by the 

following properties [28-30]: 

∫ 𝐾(𝑢)𝑑𝑢 = 1
+∞

−∞

                                      (7) 

∫ 𝑢𝐾(𝑢)𝑑𝑢 = 0
+∞

−∞

                                   (8) 
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∫ 𝑢2𝐾(𝑢)𝑑𝑢 > 0
+∞

−∞

                                (9) 

From Equations (8) and (9), we conclude that the kernel function 

has a zero first order moment and a finite second one respectively. 

Equation (7) on the hand shows that the kernel function is a true 

pdf. The kernel density estimate, as seen in Equation (6) is 

controlled by two main factors, the kernel function and the 

smoothing parameter. Optimal selection of the bandwidth is the 

most important aspect of modelling using kernel density 

estimators. A very small value of the smoothing parameter results 

in a very peaky (spiky) and spurious under-smoothed density 

estimate that is hard to interpret while a very large value of the 

same parameter results in over-smoothed densities that would 

mask the data structure.  A simple illustration on how the density 

estimation is carried out in the kernel technique is shown in Fig. 1 

below.  From this figure, as well as from Equation (6), we 

conclude that the density estimate is a summation of "bumps" 

centred on every data point in the neighbourhood of the point of 

estimation. The bump’s shape is determined by the kernel 

function while the value of the bandwidth determines how spread 

(wide) they are.  

Figure 1: Kernel density estimation illustration 

 

There are several techniques that are used in the determination of 

the optimal value of the smoothing parameter. These include 

automatic techniques like plug-in and classical methods, and the 

reference to a distribution methodology. Plug-in methods refers to 

those ones that find a pilot estimate of the density using a pilot 

value of the smoothing parameter then use the estimated density 

to determine the error. Classical methods are basically extensions 

of methods used in parametric estimations and they include: least 

squares cross-validation, biased cross-validation, likelihood cross-

validation and indirect cross-validation. Even though these 

optimal smoothing parameter selection methods have been 

explored by many authors, none is considered the best in every 

situation [29]. There are many second order and higher order 

kernels available in literature but some of the common second 

order kernels are shown in Table 1 below. 

2.1 BANDWIDTH SELECTION FOR KERNEL DENSITY 

ESTIMATORS 

Kernel density estimation effectiveness as a modelling tool is 

dependent on the choice of the smoothing parameter more than 

even the choice of the kernel function itself. The value of the 

smoothing parameter determines the biasness and the variance of 

the estimated model.  

Table 1: Common kernel functions 

 

 

Kernel function 

 

 

Mathematical expression, 𝐾(𝑢) 

Epanechnikov 

𝐾(𝑢) = {

3

4√5
(1 −

1

5
𝑢2) , −√5 ≤ 𝑢 ≤ √5

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                     

 

Triangular 
𝐾(𝑢) = {

(1 − |𝑢|), −1 ≤ 𝑢 ≤ 1                 
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                  

 

Gaussian 
𝐾(𝑢) =

1

√2𝜋
𝑒

−(
𝑢2

2 )
, −∞ < 𝑢 < ∞ 

Rectangular 

𝐾(𝑢) = {

1

2
, −1 ≤ 𝑢 ≤ 1                           

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                    
 

 

If the value of the chosen smoothing parameter is very small 

compared to the optimal one, the resulting model is usually under-

smoothed and very spiky, and therefore difficult to interpret. On 

the other hand, high values of the smoothing parameter results in 

density estimates that are over-smoothed, and therefore obscure 

the data structure. In practical applications, an optimal choice of 

the smoothing parameter is done based on the kernel function, 

number of data samples, as well as their variance. The common 

method used to determine a “rough estimate” of the optimal 

smoothing parameter is Silverman’s rule of thumb [31, 32] which 

assumes that the function  f (n) is one of the standard 

distributions. For the Normal distribution with mean 𝜇 and 

variance 𝜎2, the roughness of the kernel function K(u), 𝑅(𝑓′′), is 

given by [33]: 
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𝑅(𝑓′′) =
3

8𝜎5√𝜋
                                          (10)                                                                   

If the kernel density estimator and the form of f (n) are known, the 

optimal bandwidth can be chosen. For the Gaussian kernel case, 

the respective values of R(K) and 𝜇2 
2 (𝐾)  are calculated to be 

(2√𝜋)
−1

 and 1 respectively, and the optimal bandwidth is given 

by [25, 31]: 

ℎ𝑜𝑝𝑡 = 𝜎(4 3𝑘⁄ )
1
5                                  (11) 

where 𝜎 is the standard deviation. The value of hopt is quickly 

calculated by estimating 𝜎 from the observed data.  

If the size of the sample data is small and the data density is close 

to the normal distribution, another bandwidth expression is used 

[34]: 

ℎ𝑜𝑝𝑡 = 0.79(𝑞̂3 − 𝑞̂1)𝑘
−1
5                                (12) 

where 𝑞̂3 and 𝑞̂1 are respectively the third quartile and the first 

quartile of the sample data. When the data density is not close to 

the normal distribution, the following expression is used: 

ℎ𝑜𝑝𝑡 = 0.9 min (𝜎̂,
𝑞̂3−𝑞̂1

1.349
) 𝑘

−1

5                      (13)                                                        

where 𝜎̂ is the standard deviation of the sample data.  All in all, 

extensive modelling with kernel density estimators shows that 

there is no single  

plug-in formula that is applicable in all situations. Usually, simple 

plug-in formulas are available for the “first rough estimate” of the 

smoothing parameter from the data set, from which other 

validation and goodness of fit tests can be applied to obtain the 

optimal model. To this end, the error between the kernel model 

and the measured data can be minimized with respect to the 

kernel under consideration. Silverman showed that the optimal 

kernel is Epanechnikov kernel. Thus, the efficiency of any kernel 

is estimated by comparing it to that of the Epanechnikov kernel. 

But, in our modeling with kernel density estimators, we found out 

that the results obtained are almost the same as long as the 

optimization of all the models is carried out appropriately. The 

optimal bandwidths and efficiencies of some common kernel 

functions are given in Table 2. The value of sample variance σ is 

estimated from the sample data with k observations. 

 
Table 2: Common kernel efficiencies and bandwiths plug-in formulae 

Kernel Efficiency (%) Optimal bandwidth 

Epanechnikov 100 2.34𝜎

𝑘
1
5

 

Triangular 98.6 2.58𝜎

𝑘
1
5

 

Gaussian 95.1 1.06𝜎

𝑘
1
5

 

Rectangular 93 1.84𝜎

𝑘
1
5

 

 

3. KERNEL DENSITY LOW VOLTAGE POWER LINE NOISE 

MODELING 

Noise in power lines is complex and cannot be modelled and 

characterized using pure mathematical derivations. This is the 

reason why almost all existing noise models are derived from 

measurements. Two sample measurements (among thousands that 

we used in our modelling) both in frequency and time domains 

are shown below in Figures 2 and 3 respectively. The noise 

measurement setup is shown in Figure 4. 

 

Figure 2: Electromagnetic laboratory (Room 501) frequency domain noise 
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Figure 3: Radio Frequency laboratory (Room R01) time domain noise 
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Figure 4: Noise measurement set up schematic 
 

In order to capture the random concentration of the noise 

distribution across different frequency bands in the frequency 

domain or the voltage level variation concentration (which is an 

indicator of the impulse power), statistical tools need to be 

employed to model and characterize the noise into certain 

probability density functions (pdfs) and cumulative frequency 

distributions (cdfs).  This is crucial because, with the 

corresponding parameters derived from the noise measurements 

for the pdf or cdf plot, we can then give a full statistical 

description of the overall noise characteristics. As pointed out 

earlier, the models presented in Subsection 2 are rigid and hence 

are unsuitable for the reference modelling (initial fitting) of power 

line noise. In this research work therefore, we introduce a flexible 

modelling tool for the power line noise measured in this study, 

based on the novel application of nonparametric kernel density 

estimators for the modelling of PLC noise. 

The four kernels shown in Table 1 above are used in the 

derivation of simple nonparametric models that expresses the 

noise characteristics in form of some tractable mathematical 

forms. These models are optimized through an error-based 

optimization procedure. The determination of the optimum kernel 

models is based on the optimal choice of the bandwidth. The 

model optimization procedure developed in this study follows an 

iterative methodology that is described below: 

1. From the bandwidth plug-in formula for each kernel as 

shown in Table 1, determine the first rough estimate of the 

bandwidth. 

2. Derive the kernel models for each kernel and compute the 

error between the measured and modelled pdf. 

3. Choose a slightly larger or smaller value of the bandwidth 

and repeat step 2. 

4. Compare the errors calculated in step 2 and 3, and choose a 

smaller or larger value of the bandwidth.  

5. Repeat step 2 to 4 until the error computed is minimum, 

determined when the otherwise diminishing error starts 

increasing. 

6. The bandwidth that gives the minimum error is the optimal 

value. 

Different global measures of accuracy can be used in the 

optimization of the kernel density estimates, but in this study we 

chose the mean integral square error (MISE), which is by far the 

most popular error criteria used in ensuring accurate results with 

kernel modelling. 

From the basic definition of the MISE, we have: 

𝑀𝐼𝑆𝐸 = 𝐸[ ∫ [𝑓(𝑛) − 𝑓∗(𝑛)]2

∞

−∞

𝑑𝑘]           (14) 

Where 𝑓(𝑛) is the measured pdf values and 𝑓∗(𝑛) is the kernel 

model values. The asymptotic MISE (AMISE) is given by: 

𝑀𝐼𝑆𝐸(𝑓) =
𝑅(𝐾)

𝑘ℎ
+

1

4
ℎ4𝜇2 

2 𝑅(𝑓′′)               (15) 

where k is  the size of the sample data,  𝑅(𝐾) = ∫ 𝐾2(𝑢) 𝑑𝑢 is the 

roughness of K(u), 𝜇2 
2 (𝐾) = ∫(𝑢2𝐾(𝑢))

2
𝑑𝑢  is the second 

moment squared of the pdf defined by the kernel K(u), and  

𝑅(𝑓′′) = ∫(𝑓′′(𝑛))2 𝑑𝑛 is a roughness measure.  A bias-variance 

trade-off ensures that the MISE obtained is minimum.  Assuming 

the second derivative of the density is square integrable and 

absolutely continuous, then by a Taylor series expansion of 

𝑓(𝑛 − 𝑦ℎ) about 𝑛 we obtain: 
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𝑓(𝑛 − 𝑦ℎ) = 𝑓(𝑛) − ℎ𝑦𝑓′(𝑛) +
1

2
ℎ2𝑦2𝑓′′(𝑛)

+ 𝑜(ℎ2)                                     (16) 

 
From which, the bias of the density estimate is: 

𝐵𝑖𝑎𝑠 (𝑓(𝑛)) =
ℎ2

2
𝑓′′(𝑛)𝜇2(𝐾) + 𝑂(ℎ2)        (17) 

Also, the estimated function variance is given by: 

𝑉𝑎𝑟 (𝑓(𝑛)) =
1

𝑘ℎ
∫ 𝐾2(𝑦) 𝑓(𝑛 − 𝑦ℎ)𝑑𝑦 −

1

𝑘
(𝐸(𝑓(𝑛)))

2
(18𝑎)                

=
1

𝑘ℎ
∫ 𝐾2(𝑦) {𝑓(𝑛) + 𝑂(1)}𝑑𝑦 =

1

𝑘
{𝑓(𝑛) + 𝑂(1)}2         (18𝑏)   

=
1

𝑘ℎ
𝐾2(𝑦)𝑑𝑦𝑓(𝑛) + 𝑂 (

1

𝑘ℎ
)                   (18𝑐) 

=
1

𝑘ℎ
𝑅(𝐾)𝑓(𝑛) + 𝑂 (

1

𝑘ℎ
)                              (18𝑑) 

Decreasing the bias leads to a very noisy estimate (large variance) 

while decreasing the variance leads to over-smoothed estimates 

(large bias). The variance-bias trade-off ensures consistency in the 

density estimation.  

The time domain and frequency domain results obtained for the 

four kernels from the above procedure are shown in Table 3.  In 

this table, we demonstrate the three special classes in power line 

noise modelling using kernel density estimation, namely: under-

smoothing, optimal smoothing and over-smoothing. The first 

value of the bandwidth for each kernel is an under-smoothed case 

while the second is the optimal value, with last one representing 

an over-smoothed one. The errors for each value of the smoothing 

parameter are shown; where we observe that the optimal 

bandwidth value gives the minimum error.  

Table 3: Power line noise kernel modelling errors 

Kernel Time domain Frequency domain 

h MISE h MISE 

Triangular 0.03 0.0083 0.02 0.0014 

0.21 0.0058 0.481 0.0002 

0.9 0.0077 1.4 0.0008 

Gaussian 0.05 0.0079 0.04 0.0013 

0.163 0.0056 0.423 0.0001 

1.0 0.0078 2.0 0.0011 

Epanechnikov 0.03 0.0081 0.06 0.0012 

0.1841 0.0052 0.445 0.0002 

1.3 0.0078 1.7 0.0010 

Rectangular 0.05 0.0084 0.10 0.0008 

0.189 0.0057 0.512 0.0001 

1.0 0.0076 1.2 0.0015 
 

The minimum error for the optimal time domain models is 

obtained for the Epanechnikov kernel while the same is obtained 

for both the Gaussian and Rectangular kernels respectively for the 

frequency domain.  This means that the kernels are equally 

efficient as long as the optimization is done right. Also we see 

that the error values are quite close across the four kernel used in 

the modelling, from which we conclude that the choice of the 

optimal value of the bandwidth has more weight on the resulting 

density estimate than the kernel function itself.  

The time domain noise kernel model plots are shown in Figs. 5 to 

8, while the frequency domain noise kernel models are shown in 

Figs. 9 to 12. From these noise models, we see that the time 

domain models are quite symmetrical (bell-shaped) while the 

frequency domain ones are clearly not. The frequency domain 

models actually exhibit long tails, with the tail probabilities 

representing the probability of occurrence of the impulsive noise. 

We see that much of the noise spectrum density is concentrated 

between -49.7 dBm and -45.5 dBm. This noise density band 

essentially represents the background noise density in this study. 

It also points to the fact that the background noise has a much 

higher probability of occurrence than impulsive noise, by 

comparing this noise band with the tails of the models. We note 

here that the measured noise is modelled as it is, which means that 

no effort has been made to separate the noise components.  
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Figure 5: Triangular kernel time domain models 
 

 

Figure 6: Gaussian kernel time domain models 
 

 

Figure 7: Epanechnikov kernel time domain noise models 
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Figure 8: Rectangular kernel time domain noise models 

 

 

Figure 9: Triangular kernel frequency domain noise models 

 

 

Figure 10: Gaussian kernel frequency domain noise models 
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Figure 11: Epanechnikov kernel frequency domain noise models 

 

 

Figure 12: Rectangular kernel frequency domain noise models 
 

Even though previously the performance of kernel models has 

traditionally only been evaluated via the MISE,  in this research 

work, we go an extra mile to ascertain the stability and 

consistency of the optimal kernel noise models obtained in both 

time and frequency domains, by applying the Chi-square (𝜒2) 

statistics test. The 𝜒2 statistics are computed as: 

𝜒2 = ∑
[𝑓(𝑥) − 𝑔(𝑥)]2

𝑔(𝑥)
                           (19)

𝑁

𝑖=1

 

where 𝑓(𝑥) is the measured data values, 𝑔(𝑥) is the optimal 

kernel data values, and 𝑁 is the sample data length. A tabulation 

of the different Chi-square test parameters is given in Table 4 

below.  
Table 4: Chi-square test parameters 

Kernel Time domain 

𝜒2 DF CV SL 

Triangular 11.74 250 287.88 0.05 

Gaussian 11.75 250 287.88 0.05 

Epanechnikov 11.77 250 287.88 0.05 

Rectangular 11.62 250 287.88 0.05 

Kernel Frequency domain 

𝜒2 DF CV SL 

Triangular 0.871 300 341.44 0.05 

Gaussian 0.812 300 341.44 0.05 

Epanechnikov 0.862 300 341.44 0.05 

Rectangular 1.01 300 341.44 0.05 
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From the results in Table 4, we see that the computed 𝜒2 values 

for both the time and frequency domains are very close to each 

other for all the four kernels, for the same degrees of freedom 

(DF) and significance level (SL). The 𝜒2 values are also very 

small compared to the critical values (CV). Given that none of the  

𝜒2 values exceeds the CVs, we therefore accept the null 

hypothesis H0 and reject the alternative hypothesis H1 for all the 

cases. Thus, all the models are consistent with the measured data 

and, with a 95% confidence, we can say that there is no 

significance difference between the kernel models obtained with 

the optimum smoothing parameter and the models obtained from 

the measured data. This confirms that kernel models “hug” the 

measured data as close as possible, which means that they can 

even be used as an excellent approximation (reference models) of 

the measured data  density, given the small errors and 𝜒2 values 

obtained in Tables 3 and 4 above. This therefore implies that the 

optimal kernel models can be used as a reference for parametric 

modeling of power line noise. 

 

CONCLUSION 

In this paper, we have presented an alternative technique 

(new approach) for the modeling and characterization of 

power line noise in low voltage indoor power networks. 

The nonparametric kernel density estimator applied models 

the data as it is, and therefore the resultant models can be 

used as a reference/benchmark in the application of 

parametric techniques to model similar noise. An error-

based optimization procedure has been developed and 

applied to derive optimal kernel models, as can be seen in 

the errors in Table 3. We also observe that the optimal 

value of the smoothing parameter has more weight on the 

resulting estimate than the choice of a particular kernel 

function, going by the errors obtained for the various 

optimal kernel models. Also, the models have been tested 

for consistency using the Chi square fitness test. This 

fitness test results further confirm the suitability of kernel 

techniques in the modeling of power line noise. As such 

there is no significant difference between the 𝜒2 values for 

the four kernels for both time and frequency domain cases. 

The computed 𝜒2 values are very small compared to their 

corresponding CVs for the same SL and DF. This is a 

further demonstration of the suitability of this technique for 

nonparametric modeling of low voltage indoor power line 

noise, as long as the correct values of the optimal 

smoothing parameters for the various kernels are used. The 

time domain noise models are dome-shaped and rather 

symmetrical, while the frequency domain ones are clearly 

skewed with long tails (heavy tails), which points to the 

impulsive nature of the measured power line noise. Overall, 

we have studied noise characteristics in an indoor 

environment and proposed simple and tractable models that 

can be benchmarked upon for parametric modeling of 

indoor power line noise. As a future work, we will develop 

parametric models of the measured noise characteristics 

based on very flexible stochastic parametric modeling 

tools, to be benchmarked on the kernel models developed 

here, and validate them appropriately. 
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