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Abstract— This work studies the nonlinear equation that
models the diffusion and reaction in porous catalysts, which is of
great importance in chemical engineering. The proposal is to
obtain an approximate analytical expression that adequately
describes the phenomenon considered. In order to find such
approximation, we propose to use Laplace transform homotopy
perturbation method (LT-HPM). It is observed in this analysis
that the proposed solution is compact and easy to evaluate and
involves polynomial functions of only five terms, which is ideal
for practical applications. We find that the square residual error
(S.R.E) of our solutions is in the range [10E-18, 10E-6] and this
requires only fourth order approximation of the proposed
method.

Keywords— Homotopy perturbation metho; Laplace
transform; nonlinear differential equations; porous catalysts
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l. INTRODUCTION

A relevant problem is the prediction of diffusion and
reaction rates in porous catalysts, in the general case which the
reaction rate depends nonlinearly on concentration [1].
Problems like the one mentioned, give rise to the search of
solutions to nonlinear differential equations but unfortunately,
solving this kind of equations is a difficult task. As a matter of
fact, most of the times, it can only be get an approximate
solution to such problems. With the end to approach various
types of nonlinear problems, have been proposed several
methods as an alternative to classical methods, such as
variational approaches [2-5], tanh method [6], exp-function [7,
8], Adomian’s decomposition method [1,9-14], parameter
expansion [15], homotopy perturbation method [16-42],
homotopy analysis method [43-45], and perturbation method
[46,47] among others. Also, some exact solutions have been
reported in [48].

Laplace Transform (LT) has been relevant in mathematics,
both for its theoretical and practical interest, in particular
because LT let to solve many problems in science and
engineering, in a simpler way in comparison with other
techniques [41,42,49]. The use of LT for nonlinear ordinary
differential equations has focused on approximate solutions;
reference [38] combined Homotopy Perturbation Method
(HPM) and LT and denominated this method as LT-HPM,
with the purpose to get precise solutions for these equations.
Nevertheless, LT-HPM has been employed above all to solve
problems with initial conditions [29,38,39]. For the above,

this work presents LT-HPM method, in order to find
approximate solutions for the second order nonlinear ordinary
differential equation, that models a relevant problem in
chemical engineering with, mixed boundary conditions
[41,42].

Problems with boundary conditions on infinite intervals
belong to problems on semi-infinite domains [29,40];
nevertheless, in this article we present a different approach to
solve them.

I. HPMMETHOD

With the purpose to understand how HPM works, we will
present the following nonlinear problem [17,18]

A(u)—f(r)=0, reQ, 1)
which obeys the boundary conditions
B(u,ou/on)=0, rerl. (2)

Where Asymbolizes a differential operator, B is a
boundary operator, f(r)is a known function and T is the
domain boundary for 2 . Besides A can be divided into two
operators L and N, where L is linear and N nonlinear; in
such a way that (1) can be expressed as follows

Lu)+N(@u)—f(r)=0. (3)

In general terms, a homotopy is constructed in accordance
with [17,18]

HU, p) = (- p)[LU) - L(up)l+ p[LU) +NU) - f(r)] =0,
pel0,1], reQ 4)

or
HU, p)=LU)-Lu,)+ p[Lu,)+NU) - (1] =0,
pe[0l], reQ, (5)
where pis known as homotopy parameter, with values
within of interval 0 to 1, while u approximates the solution

of (3) regarding the boundary conditions of the problem.
Considering that solution for (4) or (5) is expressed in
terms of D as
U=V, +V,p+V,p° +... (6)
Then, after substituting (6) into (5) and equating terms
with identical powers of p, there can be evaluated the

functions v, v, v,, ...
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Finally, considering the limit value p —1, a solution for
(1) is obtained as follows
U=V, +V, +V, +V;... @)

. LT-HPM METHOD

Next, it is shown how to employ the proposed method to
calculate approximate solutions of Differential Equations
such as (3) [29,38,39,41,42].

With this end, LT-HPM uses the same steps of basic
HPM until (5); next it is applied LT on both sides of (5), to
get

S{L(U)— L(uy)+ plL(u))+NU)—f (r)]} =0. (8

After employing the differential property of LT, it is

obtained [49]

$"3I{U}-s""U(0)-s"?U'(0)—...-U"P(0) =

N )
3{L(uy) - pL(Up) + p[-NU) + f (N]},
or
<0y [ s"U(0) +s"2U'(0) +..+U "D (0) (10)
N )_[?") +3{L(U,) - PL(U,) + P[-NU) + f (0]}

After employing inverse Laplace transform to previous
equation, we get

- (1) s" U (0) +s"2U'(0) +..+ U (0) (11)
=3 —

s" ) |+3{L(uy) - pL(U,) + p[-N(U) + f (N]}
If the solutions of (3) can be written as

U=3pv, 12)
n=0
then after substituting (12) into (11), yields in
(si"]{s"flu ©)+5™U'(0)+.+U ()] (13)

-
2Py, =57
n=0

+(Sinj5{L(u0)— pL(uy)+ p{—N( i p'v,)+ f(r)}} .

The comparison of coefficients with the same power
of P results in
p°:v, :3*1{ (s"U(0)+s" V() +..+U Y (0))+S{L(u0)})},

)
Jatne- L)+ 1))

(1)
piiv;=3 {(S—HJJ{N(Vovvll‘/z""'vj)}}’

solution is obtained in accordance with the following limit

value u=IlimU =v, +v, +v, +...
p—l

IV. PROBLEM FORMULATION

In accordance with [1,44], let us consider a coupled
diffusion and reaction porous catalyst pellets. We will study
the case where the reaction rate depends nonlinearly on
concentration; in such a way that it is possible to envisage the
system as a solid material with pores through which the
reactants and products diffuse. For the sake of simplicity, the
system is conceived as simple diffusion by employing an

effective constant diffusion coefficient De .

The mass balance on a volume of the aforementioned
medium is mathematically expressed by [1,44].
%Y D,V —r(Y), (14)

where, Y is the chemical reactant concentration, r(y) the

rate of reaction per unit volume, and t is the time.
Next [1,44,50], we will study the steady one dimensional

case, &Y _ g, in such a way that (14) is expressed as:
d?y
D " :O! (15)
Srveinli\d

where X is the diffusion distance.

We will assume that the system is limited by plane
boundaries at X =0and X =L, so that the side X =0, is
impermeable (vanishing mass flux) and that X =L is held a
constant concentrationy =y, therefore

dy
—| =0, YL)=y,,
Em L=y,
Next, we consider the case where the reaction rate per
unit volume, is given as a power law function of the
concentration [1,44,50].

(16)

r=ky" (17)
in this equation n is called the reaction order and the constant
K is a function of temperature (the admitted range of the
reaction order is n>-1).

Finally, for a suitable solution, we express (15)-(17), in
terms of the following dimensionless variables.

X=£, y(x)zw, (18)
L ys
so that we get the following differential equation
y'—m’y" =0, (19)
with boundary conditions
y'(0)=0, y@®=1. (20)

where prime denotes from here on, differentiation respect
to X, and the Thiele modulus m is defined by

m=(ky*/D,) " (21)

(14) Next. it i .
— . L ext, it is possible to express the boundary value problem

appf(:)(:(ri]rsr:g'([eirc:gg the following values for the initial (19)-(20) in terms of the initial value problem [45].

. " 2.,N _ _ ! —

U@©O)=U, =, U'(0)=c,..U(0)=c,,; the exact y'-my"=0, y@=A y(0)=0 (22
liable to the additional condition y(1) =1, besides Adenotes
the concentration of the reactant on the boundary at x =0and
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it is an unknown parameter to be determined as a part of the
solution of the problem.

As a matter of fact, the problem as it is expressed in (22)
will result particularly useful for application of LT-HPM
algorithm. We will see that, this method is able to obtain very

accurate and handy approximations. Also it calculates A,
from the condition y(1, A) =1.

V. APPLICATION OF LT-HPM TO OBTAIN HANDY
SOLUTIONS FOR THE NONLINEAR CHEMICAL
EQUATION UNDER STUDY

By convenience of this study, we will consider
equivalently the system (22) , expressed in the most complete
form

y'—m?y" =0, (n>-1), (23)
y@=A y'(0)=0 y@D=1

Next, we will analyze the following representative case
studies.

A. Case studies 1 and 2
Reaction order n=2,
Thiele modulus m=0.3andm=0.6.

After identifying

L(Y)=Y"(x), (24)
N(y) =-m?y?, (25)
we propose the following homotopy equation
@-p)y" -y +p[y -m?y*]=0, (26)
or
y' =Yg+ p[-yg+miy? . (27)
Applying LT to (27) we obtain
3(y") =S{yg+ p[—yg+m2y2]}. (28)

Next, in accordance with [49], we rewrite (28) as follows
SY () -sy(0) - y'(0) = 3(y; + p(-ys +m*y?)).  (29)
where Y (s) = 3(y(x)) .
Taking into account that y'(0) =0, it is possible to rewrite
(29) as
SZY(S)—SA=S(yg+ p(—yg+m2y2)), (30)
where A= y(0).
After solving fory (s) and applying 3~

y(x) = {A L«n+p(%+mWﬁ»} (31)

In according with the propose method, we will assume
that the solution for (23) is expressed as

! we get

1 y ) ) 2
Z p v, =3 {7+:J(yn+ p( Y, +m (Vo+ pv,+p V2+..) ))} (34)
After equating terms with the same powers of p, it is
obtained

p v, (X) = 3{?} (39)

s’
, 1
pv,(x)=m'S {(—Js(zv } (37)
s
3 2 71 {( 1 ) }
piv,(X)=m3I §| — v +2vv (38)

v, (%)

[ L5 2 2
=mJ S—Z J( vV, +2vy, ), (39)

The solutions forv, (x), v,(X), v,(X),..are

p’ v, (x)=A, (40)
p v 0 = A (1)
2
p v, (X) = x*, (42)
P’ v, (x) = x°, (43)
4 . _ mBAS 8
p v, (X) = -~ X 7 (44)

By substituting solutions (40)-(44) into (32) results in a
fourth order approximation
m’A’x" m'A’ m°A’ m°A°
y(x) = A+ + X'+ x* + x°.
2 12 72 504
(45)
Next, we will consider separately the cases of Thiele
modulus m=0.3and m=0.6.
With the purpose to find A, we require that (45)
satisfies y(1, A) =1, form = 0.3, so that we obtain

A =0.958090536681. (46)
In the same way form = 0.6, we get
A =0.859724737059. 47

Substituting (46) into (45), we obtain
y(x) = 0.958090536681 + 0.0413071864415x"

+0.000593640366398x" +0.00000853141825856x°  (48)

X)=3 pv
y(x) nZO PV, (32) +1.05092628403x107 X°.
Next, we will choose On the other hand, by substituting (47) into (45), we get
vo(X)=A, (33) y(X) = 0.859724737059 + 0.133042792232x"
as the first _a_pprox'lmatlon for the solution of (23) that +0.00686281077415x" + 0.000354007691298x° (49)
fulfills the condition y'(0) =0. \
Substituting (32) and (33) into (31), we obtain +0.0000156522429935x.
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B. Case studies 3 and 4
Next we will study the cases
Reaction ordern = -1,
Thiele modulus m =0.3and m=0.6.
In this case we identify from (23)

L) =Yy"(9), (50)
N(y)=-m7y", (51)
Next, we propose
@-py -y)+p[y -my']=o, (52)
or
y'=yi+p[ -y +miy . (53)

Applying L.T. to (53)
Sy =3{y +p[ -y +miy* ]}
Using the differential property of LT
sY(s)-sy(0) - y'(0) = 3(y, + p(-y, +m’y™)), (54)
where Y (s) = 3(y(x)) .
From condition y'(0) = 0, (54) is simplified as
s°Y(s)-sA= S(y(')'+ p(—y;’+m2y’1)), (55)
with A = y(0).
After solving forY (s) and applying 3™ we get

y(x) =3 {§+Siz(5(yo”+ p(-y+ mzyl)))}- (56)
Next, we will assume that

wn=§wn, (57)

and
v,(X)=A (58)
After substituting (58), (57) into (56)

o0

n
Z pv, =
n=0

1 A 1 " ” 2 2 =
3 {—+—Z:§(yu+p(—yc+m (Vﬂ+pV1+pV2+..) ))}

S S
(59)
Equating terms with the same powers of P terms we get

0 S A
P iv,(x)=3 {—} (60)

S

1 2~-1 1 -1
p' v (X) =m’S {(—z)s(vo )} (61)
S

2 - {( 1) (_Vl }
P iv,(X)=m3I 5| = (S| — |¢ (62)
S A

P v, (X) = A, (65)
P iv,(x) = mx (66)
2A
P’ v, (X)=— il -x', (67)
24A
p’ v, (x) = m X5 , (68)
144A
X 25m°x°
p v, (x)=- ~ (69)
8064 A

and so on.
By substituting (65)-(69) into (57) we obtain a handy
eight order approximation
mx* m , m
y(x) = A+ - - X
2A  24A

25m°
x*. (70

+ 5 X = 7
144N 8064 A

We will consider separately the cases of Thiele modulus
m=0.3and m=0.6.

To calculate the value of A, we solve the algebraic
equation y(1) =1 from (70), and use m=0.3 so that we

obtain

A =0.953172744786 (71)
In the same way for m = 0.6 , we get
A =0.779378540012. (72)

Substituting (71) into (70), we obtain
y(x) =0.953172744786 + 0.0472107498314x°

—0.000389725596578x" +0.00000643438374400%°

—2.03404017857 %107 %®,
After substituting (72) into (70), we obtain
y(x) =0.779378540012 + 0.230953241281x"

—0.0114063955916x" +0.00112668572799x° (74)
—0.0000520714285714x°.

(73)

C. Case studies 5 and 6
Reaction order n=1/2,
Thiele modulus m=0.3and m=0.6.
In this case, from (23)
L(Y)=y"(¥). (75)
N(y) =-m’y”, (76)
Since a similar procedure is followed to the previous
cases, we only present the relevant results
In this case we obtain the following handy eight order
approximation.

mz \/sz m4 ) ms . 8 \
1 vioy y(x)= A+ +—x" = X+ X
o0 =mst [ 2 s e U (63) 2 48 14404/A 11520A
S A A (77)
1 v vy W Case m=0.3

p'iv,(x)=m’3” {(—2) 3(——32 +—E —2)} (64) A =0.955836657231. (78)

s A A By substituting (78) into (77) results in

The solution for equations (60)-(64) yields in
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y(x) = 0.955836657231+ 0.0439951046242x"

+0.00016875x" —5.17813292968x10 7" x*  (79)
+5.95845791947 x107° %,
Case m=0.6.
A = 0.833045373527. (80)

After substituting (80) into (77), we get
y(x) = 0.833045373527 + 0.164288374824x*

+0.0027x* —0.0000354985555505%" (81)
+0.00000175020478636x°.

VI. DISCUSSION

This article introduced LT-HPM in order to get handy
accurate approximate solutions for the problem with mixed
boundary conditions that describes the problem of the
diffusion and reaction in porous catalysts. Such as it is
explained in [1], the understanding of this process it turns out
relevant for the chemical engineer due to its applications in
the design and operation of catalytic reactors. It should be
mentioned that this problem has been successfully attacked
for several authors. Thus, [1] found an approximate solution
for (23), by using the Adomian decomposition method for
some values of n order and Thiele modulus m . Although
Adomian is a powerful tool, the process of obtaining its
polynomial solutions are not straightforward for practical
applications. On the other hand [44] showed the application
of homotopy analysis method HAM, to get the approximate
solution of the nonlinear model (23), for the cases of
n=0.5, 2,and 4, for several values of m . Although in

general HAM is very accurate, its expressions use to be long
and cumbersome, as to be used in practical applications thus,
[44] proposed approximations of 6th, 15th, 20th, 35th, and
50th order. What is more, [50] went beyond, this article
showed that, this model is exactly solvable in terms of Gauss
hypergeometric function. The main advantage of this paper is
that the hypergeometric function is well known, although its
study it is not elementary. [45] employed HAM to investigate
in all detail the case N =—1. The solutions obtained are very
long, and correspond to 30 th and 50 th order approximations
of HAM, even though this paper obtained multiple solutions
for this case. Unlike of the above studies, the goal of this
article is to show the manner of getting handy approximate
solutions for nonlinear problems like (23), through the use of
LT-HPM. In fact, Figure (1), Figure (2), and Figure (3) show
the accuracy of LT-HPM for the problem under study.

In more precise terms, Figure 1 compares the numerical
solution of (23) for cases study: n=2, m=0.3 and n=2,
m = 0.6 and approximations (48) and (49). Although the
mentioned figure, shows the high accuracy of the proposed
solutions, it was verified by evaluating the square residual

error (S.R.E) of (48) and (49) given by ij(u(t))dt,

where a and b are two values depending on the given
problem, the residual is defined by

R(l:(t)) = L(J(t))+ N (l:(t))— f(t), and G(t) is an
approximate solution to (3) [16]. The resulting values were

respectively of 7.75287785167 x 107*° and

2.37672485412x 107 | which confirms the high accuracy
of LT-HPM. Figure 2, compare numerical solution of (23)
forn=-1, m=03 and n=-1, m=0.6 with (73) and (74)
for the same values. We note that the figures appear indeed
overlapping, while the S.R.E of (73) and (74) are of

6.10465343999 x 10 | and 0.00000335024984825.
Finally, the cases n=05, m=0.3 andn=0.5, m=0.6,
are shown in Figure 3, and the corresponding S.R.E for
approximations (79) and (81) are scarcely of

4.29941296548x10™  and 5.79207356623 x 107
respectively.

It is clear from the above discussion that LT-HPM
describes a highly accurate way for solving, the nonlinear
problem (23). On the other hand, is worth to note that our
proposed solutions (48), (49), (73), (74), (79) and (81) are
short and simple polynomial functions, ideal for practical
applications. In all the cases considered we keep the order of
approximation as four. If more accuracy for solutions is even
required, one can go on with higher orders in a
straightforward fashion, following LT-HPM algorithm.

Our results y(X), indicate the concentration under

steady conditions. From definition of Thiele modulus m (21),
we identify the quantity 1/ LKyS”'1 as a characteristic property

for reaction, and D, / L as a characteristic property for

diffusion [1,44]. Therefore, the bigger the value of m, the
bigger in proportion the diffusion respect to reaction
phenomena and viceversa. From values of S.R.E one deduce
that LT-HPM is more accurate for the cases, where the
diffusion is relatively less important than reaction for a given
value of n, that is for small values of m . Figure 1, Figure 2,
and Figure 3, explain the above, noting that the curves with
larger value of m present a major curvature than those, with
smaller values, and for the same reason, they are more
complicated to model. The simplicity and accuracy of the
proposed method indicates that, unlike other methods, our
solutions keep the nature of the studied phenomena and on
the other hand, the reliability of the obtained results for the
initially unknown values of the concentration of the
reactant A .

Finally, future investigations of LT-HPM should follow
the aim of [45], where the authors obtained multiple solutions
of (23), for the case n=- 1.
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‘* Numerical® LT-HPM m=0.6 =—LT-HPM m=0.3
1
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yix) 0.85
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0 0.2 0.4 0.6 0.8 1
X
Figure 1 Comparison between numerical solution of (23) for cases
study: N=2, m=0.3andn=2, m=0.6 and LT-HPM
approximations (48) and (49).

[* Numerical® LT-HPM m=0.6 =— LT-HPM m=0.3

y(x) 0.85

0.80

0.75

0.70
0 0.2 0.4 0.6 0.8 1

X
Figure 2 Comparison between numerical solution of (23) for cases
study: N=-1, m=0.3and N=-1, m=0.6 and LT-HPM
approximations (73) and (74).

— Numerical® LT-HPM m=0.6 — LT-HPM m=0.3|

1

0.95

0.90

»(x) 0.85
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0.70

0 0.2 0.4 0.6 0.8 1

Figure 3 Comparison between numerical solution of (23) for cases
study:N =05, m=0.3and N=0.5, m=0.6 and LT-HPM
approximations (79) and (81).

VII. CONCLUSION

From this study we conclude that LT-HPM is a useful tool
to get accurate and handy solutions for the considered

problem, which describes the phenomenon of the diffusion
and reaction in porous catalyst. One of the highlights of this
work lies in the practical and precise solutions obtained by
LT-HPM compared to other methods, like HAM and
Adomian Decomposition Method. We emphasize that one
advantage of LT-HPM is that it does not require to solve
several recurrence differential equations like other
perturbative methods. Finally it is clear that the proposed
methodology can be applied equally to other nonlinear
problems, especially to heat diffusion problems.
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