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Abstract— This work studies the nonlinear equation that 

models the diffusion and reaction in porous catalysts, which is of 

great importance in chemical engineering. The proposal is to 

obtain an approximate analytical expression that adequately 

describes the phenomenon considered. In order to find such 

approximation, we propose to use Laplace transform homotopy 

perturbation method (LT-HPM). It is observed in this analysis 

that the proposed solution is compact and easy to evaluate and 

involves polynomial functions of only five terms, which is ideal 

for practical applications. We find that the square residual error 

(S.R.E) of our solutions is in the range [10E-18, 10E-6] and this 

requires only fourth order approximation of the proposed 

method. 

 

Keywords— Homotopy perturbation metho; Laplace 

transform; nonlinear differential equations; porous catalysts 

diffusion and reaction. 

I.  INTRODUCTION  

A relevant problem is the prediction of diffusion and 

reaction rates in porous catalysts, in the general case which the 

reaction rate depends nonlinearly on concentration [1]. 

Problems like the one mentioned, give rise to the search of 

solutions to nonlinear differential equations but unfortunately, 

solving this kind of equations is a difficult task. As a matter of 

fact, most of the times, it can only be get an approximate 

solution to such problems. With the end to approach various 

types of nonlinear problems, have been proposed several 

methods as an alternative to classical methods, such as 

variational approaches [2-5], tanh method [6], exp-function [7, 

8], Adomian’s decomposition method [1,9-14], parameter 

expansion [15], homotopy perturbation method [16-42], 

homotopy analysis method [43-45], and perturbation method 

[46,47] among others. Also, some exact solutions have been 

reported in [48].  

Laplace Transform (LT) has been relevant in mathematics, 

both for its theoretical and practical interest, in particular 

because LT let to solve many problems in science and 

engineering, in a simpler way in comparison with other 

techniques [41,42,49].  The use of LT for nonlinear ordinary 

differential equations has focused on approximate solutions; 

reference [38] combined Homotopy Perturbation Method 

(HPM) and LT and denominated this method as LT-HPM, 

with the purpose to get precise solutions for these equations. 

Nevertheless, LT-HPM has been employed above all to solve 

problems with initial conditions [29,38,39].  For the above, 

this work presents LT-HPM method, in order to find 

approximate solutions for the second order nonlinear ordinary 

differential equation, that models a relevant problem in 

chemical engineering with, mixed boundary conditions 

[41,42]. 

Problems with boundary conditions on infinite intervals 

belong to problems on semi-infinite domains [29,40]; 

nevertheless, in this article we present a different approach to 

solve them.  

II. HPM METHOD 

 

With the purpose to understand how HPM works, we will 

present the following nonlinear problem [17,18] 

( ) ( ) 0,A u f r− =       r ,                  (1) 

which obeys the boundary conditions 

( , / ) 0, .B u u n r  =                    
(2) 

Where A symbolizes a differential operator, B  is a 

boundary operator, ( )f r is a known function and  is the 

domain boundary for .  Besides A  can be divided into two 

operators L  and N , where L  is linear and N nonlinear; in 

such a way that (1) can be expressed as follows  

( ) ( ) ( ) 0L u N u f r+ − = .                  (3) 

In general terms, a homotopy is constructed in accordance 

with [17,18] 

0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0,H U p p L U L u p L U N U f r= − − + + − =

[0,1],p  r                            (4) 

or 

0 0
( , ) ( ) ( ) [ ( ) ( ) ( )] 0,H U p L U L u p L u N U f r= − + + − =  

[0,1], ,p r                         
 (5) 

where p is known as homotopy parameter, with values 

within of interval 0 to 1, while 
0u approximates the solution 

of (3) regarding  the boundary conditions of the problem. 

Considering that solution for (4) or (5) is expressed in 

terms of p as 

 2

0 1 2 ...U v v p v p= + + +                        (6) 

Then, after substituting (6) into (5) and equating terms 

with identical powers of ,p  there can be evaluated the 

functions
0 1 2, , ,...    
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Finally, considering the limit value 1p → , a solution for 

(1) is obtained as follows  

0 1 2 3...U v v v v= + + +
                      

  (7)                                                                                                    

III. LT-HPM METHOD 

 

Next, it is shown how to employ the proposed method to 

calculate approximate solutions of Differential Equations 

such as (3) [29,38,39,41,42].  

With this end, LT-HPM uses the same steps of basic 

HPM until (5); next it is applied LT on both sides of (5), to 

get 

 0 0( ) ( ) [ ( ) ( ) ( )] 0.L U L u p L u N U f r − + + − =      (8) 

After employing the differential property of LT, it is 

obtained [49] 

 

  

1 2 ( 1)

0 0

(0) (0) ... (0)

( ) ( ) ( ) ( ) ,

n n n nU s U s U U

L u pL u p N U f r

s − − − − − − − =

 − + − +
    (9) 

or 

  

1 2 ( 1)

0 0

(0) (0) .. (0)1
( )

( ) ( ) ( ) ( )

n n n

n

s U s U U
U

s L u pL u p N U f r

− − − + + +  
 =   

+ − + − +   

      (10)  

After employing inverse Laplace transform to previous 

equation, we get 

  

1 2 ( 1)

1

0 0

(0) (0) .. (0)1

( ) ( ) ( ) ( )

n n n

n

s U s U U
U

s L u pL u p N U f r

− − −

−
  + + +   

=     
+ − + − +     

(11) 

If the solutions of (3) can be written as  

0

,n

n

n

U p v


=

=                              (12) 

then after substituting (12) into (11), yields in  

 1 2 ( 1)

1

0

0 0

n=0

1
(0) (0) .. (0)

.
1

( ) ( ) ( ) ( )

n n n

n

n

n

n n

nn

s U s U U
s

p

L u pL u p N p f r
s





− − −


−


=

  
+ + +  

  
=   

    +  − + − +          




 (13) 

The comparison of coefficients with the same power 

of p results in 

(14) 

Considering the following values for the initial 

approximation: 
1

0 0 1 1(0) , (0) ,.., (0) ;n

nU u U U  −

−
= = = =  the exact 

solution is obtained in accordance with the following limit 

value 
0 1 2

1
lim ...
p

u U   
→

= = + + +        

IV. PROBLEM FORMULATION 

In accordance with [1,44], let us consider a coupled 

diffusion and reaction porous catalyst pellets. We will study 

the case where the reaction rate depends nonlinearly on 

concentration; in such a way that it is possible to envisage the 

system as a solid material with pores through which the 

reactants and products diffuse. For the sake of simplicity, the 

system is conceived as simple diffusion by employing an 

effective constant diffusion coefficient
eD . 

The mass balance on a volume of the aforementioned 

medium is mathematically expressed by [1,44].  

2 ( )e

Y
D Y r Y

t


=  −


,                           (14) 

where, Y is the chemical reactant concentration, ( )r Y  the 

rate of reaction per unit volume, and t  is the time. 

Next [1,44,50], we will study the steady one dimensional 

case, 0
Y

t


=


, in such a way that (14) is expressed as: 

2

2
( ) 0e

d Y
D r Y

dX
− = ,                            (15) 

where X is the diffusion distance. 

We will assume that the system is limited by plane 

boundaries at 0X = and X L= , so that the side 0X = , is 

impermeable (vanishing mass flux) and that X L=  is held a 

constant concentration
sY y= , therefore  

0

0, ( ) ,s

X

dY
Y L y

dX =

 
= = 

 

                      (16) 

Next, we consider the case where the reaction rate per 

unit volume ,r  is given as a power law function of the 

concentration [1,44,50]. 
nr kY= ,                                   (17) 

in this equation n is called the reaction order and the constant 

k  is a function of temperature (the admitted range of the 

reaction order is 1n  − ).  

Finally, for a suitable solution, we express (15)-(17), in 

terms of the following dimensionless variables. 

( )
, ( ) ,

s

X Y X
x y x

L y
= =                        (18) 

so that we get the following differential equation 

 2 0ny m y − = ,                             (19) 

with boundary conditions 

(0) 0, (1) 1.y y = =                        (20) 

where prime denotes from here on, differentiation respect 

to x , and the Thiele modulus m is defined by 

( )
1/ 2

2 1 .n

s em kL y D−=                      (21) 

Next, it is possible to express the boundary value problem 

(19)-(20) in terms of the initial value problem [45]. 
2 0, (0) , (0) 0,ny m y y A y − = = =          (22) 

liable to the additional condition (1) 1,y =  besides Adenotes 

the concentration of the reactant on the boundary at 0x = and 

 ( )0 1 1 2 ( 1)

0 0

1
: (0) (0) .. (0)) ( ) ,n n n

n
p s U s U U L u

s
 − − − −  

=  + + + +   
  

 

( ) ( )1 1

1 0 0

1
: ( ) ( ) ,

n
p N L u f r

s
 −   

=   − +  
  

 

 2 1

2 0 1

1
: ( , ) ,

n
p N

s
  −   

=    
  

 

 3 1

3 0 1 2

1
: ( , , ) ,

n
p N

s
   −   

=    
  

 

 

 1

0 1 2

1
: ( , , ,..., ) ,j

j jn
p N

s
    −   

=    
  
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it is an unknown parameter to be determined as a part of the 

solution of the problem. 

As a matter of fact, the problem as it is expressed in (22) 

will result particularly useful for application of LT-HPM 

algorithm. We will see that, this method is able to obtain very 

accurate and handy approximations. Also it calculates A , 

from the condition (1, ) 1.y A =  

V. APPLICATION OF LT-HPM TO OBTAIN HANDY 

SOLUTIONS FOR THE NONLINEAR CHEMICAL 

EQUATION UNDER STUDY 

By convenience of this study, we will consider 

equivalently the system (22) , expressed in the most complete 

form 
2 0, ( 1),

(0) , (0) 0, (1) 1.

ny m y n

y A y y

 − =  −

= = =

                (23) 

Next, we will analyze the following representative case 

studies. 

A. Case studies 1 and 2 

Reaction order 2n = , 

Thiele modulus 0.3m = and 0.6m = . 

 

After identifying 

( ) ( )L y y x= ,                              (24) 
2 2( ) yN y m= − ,                           (25) 

we propose the following homotopy equation 
2 2

0(1 )( ) 0p y y p y m y   − − + − = 
,            (26) 

or  
2 2

0 0 .y y p y m y   = + − +                   (27) 

Applying LT to (27) we obtain 

 2 2

0 0( ) .y y p y m y    =  + − + 
                (28) 

Next, in accordance with [49], we rewrite (28) as follows
 

( )( )2 2 2

0 0( ) (0) (0)s Y s sy y y p y m y  − − =  + − + ,    (29) 

where ( ) ( ( ))Y s y x=  . 

Taking into account that (0) 0y = , it is possible to rewrite 

(29) as 

( )( )2 2 2

0 0( )s Y s sA y p y m y − =  + − + ,        (30) 

where (0)A y= . 

After solving for ( )Y s and applying 1−  we get 

( )( )( )1 2 2

0 02

1
( )

A
y x y p y m y

s s

−  
 =  +  + − + 

 
.         (31) 

In according with the propose method, we will assume 

that the solution for (23) is expressed as 

0

( ) n

n
n

y x p 


=

=  ,                       (32) 

Next, we will choose  

0( )x A = ,                             (33) 

as the first approximation for the solution of (23) that 

fulfills the condition (0) 0.y =   

Substituting (32) and (33) into (31), we obtain 

( )( )( ) 2
1 2 2

0 0 0 1 22

0

1
..

n

n

n

A
p y p y m p p

s s
   



−

=

 =  +  + − + + + +
  (34) 

After equating terms with the same powers of p , it is 

obtained 

0
:p  1

0
( )

A
x

s


−
=  ,                                              (35) 

1
:p ( ) 2 1 2

1 02

1
( )x m

s
 

−
=  

 
 
 

,                          (36) 

2
:p ( ) 2 1

2 0 12

1
( ) 2x m

s
  

−
=  

 
 
 

,                      (37) 

3
:p ( ) 2 1 2

3 1 0 22

1
( ) 2x m

s
   

−
=   +

 
 
 

,               (38) 

4
:p ( ) 2 1

4 0 3 1 22

1
( ) 2 2x m

s
    

−
=   +

 
 
 

,         (39) 

The solutions for
0
( ),x

1
( ),x

2
( ), ..x are 

0
:p

0
( )x A = ,                                (40)  

1
:p

2 2 2

1
( )

2

m A x
x = ,                       (41) 

4 3

2 4

2
: ( )

12

m A
p x x = ,                       (42) 

6 4

3 6

3
: ( )

72

m A
p x x = ,                        (43)  

8 5

4 8

4
: ( )

504

m A
p x x =

,                         (44) 

By substituting solutions (40)-(44) into (32) results in a 

fourth order approximation   
2 2 2 4 3 6 4 8 5

4 6 8
( )  .

2 12 72 504

m A x m A m A m A
y x A x x x= + + + +  

(45)  

Next, we will consider separately the cases of Thiele 

modulus 0.3m = and 0.6m= . 

With the purpose to find A , we require that (45) 

satisfies (1, ) 1y A = , for 0.3m = , so that we obtain 

 0.958090536681.A =                         (46)  

In the same way for 0.6m = , we get 

0.859724737059.A =                         (47)   

Substituting  (46) into (45), we obtain             
2

4 6

7 8

( ) 0.958090536681 0.0413071864415

0.000593640366398 0.00000853141825856

1.05092628403 10 .

y x x

x x

x
−

= +

+ +

+ 

     (48) 

On the other hand, by substituting (47) into (45), we get      
2

4 6

8

( ) 0.859724737059 0.133042792232

0.00686281077415 0.000354007691298

0.0000156522429935 .

y x x

x x

x

= +

+ +

+

         (49) 
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B. Case studies 3 and 4 

Next we will study the cases  

Reaction order 1n = − , 

Thiele modulus 0.3m = and 0.6m = . 

In this case we identify from (23)  

( ) ( )L y y x= ,                              (50) 

2 1( ) yN y m −= − ,                             (51) 

Next, we propose  

 2 1

0
(1 )( ) 0p y y p y m y

−  − − + − = ,           (52) 

or  
2 1

0 0
.y y p y m y

−  = + − +                  (53) 

Applying L.T. to (53)   

 2 1

0 0
( ) .y y p y m y

−   =  + − +    

Using the differential property of LT 

( )( )2 2 1

0 0
( ) (0) (0)s Y s sy y y p y m y

−  − − =  + − + ,    (54) 

where ( ) ( ( ))Y s y x=  . 

From condition (0) 0y = , (54) is simplified as  

( )( )2 2 1

0 0
( )s Y s sA y p y m y

− − =  + − + ,                 (55) 

with (0).A y=  

After solving for ( )Y s and applying 
1−

 we get  

( )( )( ) 1 2 1

0 02

1
( )

A
y x y p y m y

s s

− − =  +  + − + .   (56) 

Next, we will assume that 

0

( )
n

n
n

y x p 


=

=  ,                        (57) 

and  

0
( ) .x A =                              (58) 

After substituting (58), (57) into (56) 

( )( )( ) 1
1 2 2

0 0 0 1 22

0

1
..

n

n

n

A
y p y m p p

s s

p

  



−
−



=

  +  + − + + + +

=
  

(59) 

Equating terms with the same powers of p terms we get 

0
:p  1

0
( )

A
x

s


−
=  ,                                             (60) 

1
:p ( ) 2 1 1

1 02

1
( )x m

s
 

− −
=  

 
 
 

,                        (61) 

2
:p  2 1 1

2 2 2

1
( )x m

s A




− −
=  

  
   
   

,                       (62) 

3
:p

2

2 1 1 2

3 2 3 2

1
( )x m

s A A

 


−
=   −

   
    
   

,              (63) 

4
:p

3

2 1 3 1 2 1

4 2 2 3 4

21
( )x m

s A A A

   


−
=   − + −

   
    
   

(64) 

… 

The solution for equations (60)-(64)
 
yields in 

0
:p

0
( )x A = ,                                (65)  

1
:p

2 2

1
( )

2

m x
x

A
 = ,                           (66) 

4

2 4

2 3
: ( )

24

m
p x x

A
 = − ,                     (67) 

6 6

3

3 5
: ( )

144

m x
p x

A
 = ,                            (68)  

8 8

4

4 7

25
: ( )

8064

m x
p x

A
 = − ,                      (69) 

… 

and so on.  

By substituting (65)-(69) into (57) we obtain a handy 

eight order approximation   
2 2 4 6 8

4 6 8

3 5 7

25
( )  .

2 24 144 8064

m x m m m
y x A x x x

A A A A
= + − + − (70

)  

We will consider separately the cases of Thiele modulus 
0.3m = and 0.6m = . 

To calculate the value of A , we solve the algebraic 

equation (1) 1y =  from (70), and use 0.3m =  so that we 

obtain 

 0.953172744786A =                     (71) 

In the same way for 0.6m = , we get 

0.779378540012.A =                       (72) 

Substituting  (71) into (70), we obtain            
2

4 6

7 8

( ) 0.953172744786 0.0472107498314

0.000389725596578 0.00000643438374400

2.03404017857 10 .

y x x

x x

x−

= +

− +

− 

    (73) 

After substituting (72) into (70), we obtain       
2

4 6

8

( ) 0.779378540012 0.230953241281

0.0114063955916 0.00112668572799

0.0000520714285714 .

y x x

x x

x

= +

− +

−

 (74) 

C. Case studies 5 and 6 

Reaction order 1/ 2n = , 

Thiele modulus 0.3m = and 0.6m = . 

In this case, from (23)  

( ) ( )L y y x= .                                (75) 
2 1/ 2( ) yN y m= − ,                                 (76) 

Since a similar procedure is followed to the previous 

cases, we only  present the relevant results 

In this case we obtain the following handy eight order 

approximation. 
2 2 4 6 8

4 6 8
( )  .

2 48 115201440

m Ax m m m
y x A x x x

AA
= + + − +     

(77) 

Case 0.3m =   

0.955836657231.A =                          (78) 

By substituting (78) into (77) results in  
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2

4 7 6

9 8

( ) 0.955836657231 0.0439951046242

0.00016875 5.17813292968 10

5.95845791947 10 .

y x x

x x

x

−

−

= +

+ − 

+ 

    (79) 

Case 0.6m = .  

0.833045373527.A =                           (80) 

After substituting (80) into (77), we get 
2

4 6

8

( ) 0.833045373527 0.164288374824

0.0027 0.0000354985555505

0.00000175020478636 .

y x x

x x

x

= +

+ −

+

    (81) 

VI. DISCUSSION 

This article introduced LT-HPM in order to get handy 

accurate approximate solutions for the problem with mixed 

boundary conditions that describes the problem of the 

diffusion and reaction in porous catalysts. Such as it is 

explained in [1], the understanding of this process it turns out 

relevant for the chemical engineer due to its applications in 

the design and operation of catalytic reactors. It should be 

mentioned that this problem has been successfully attacked 

for several authors. Thus, [1] found an approximate solution 

for (23), by using the Adomian decomposition method for 

some values of n  order and Thiele modulus m . Although 

Adomian is a powerful tool, the process of obtaining its 

polynomial solutions are not straightforward for practical 

applications. On the other hand [44] showed the application 

of homotopy analysis method HAM, to get the approximate 

solution of the nonlinear model (23), for the cases of 

0.5,n = 2, and 4, for several values of m . Although in 

general HAM is very accurate, its expressions use to be long 

and cumbersome, as to be used in practical applications thus, 

[44] proposed approximations of 6th, 15th, 20th, 35th, and 

50th order. What is more, [50] went beyond, this article 

showed that, this model is exactly solvable in terms of Gauss 

hypergeometric function. The main advantage of this paper is 

that the hypergeometric function is well known, although its 

study it is not elementary. [45] employed HAM to investigate 

in all detail the case 1.n = −  The solutions obtained are very 

long, and correspond to 30 th and 50 th order approximations 

of HAM, even though this paper obtained multiple solutions 

for this case. Unlike of the above studies, the goal of this 

article is to show the manner of getting handy approximate 

solutions for nonlinear problems like (23), through the use of 

LT-HPM. In fact, Figure (1), Figure (2), and Figure (3) show 

the accuracy of LT-HPM for the problem under study. 

In more precise terms, Figure 1 compares the numerical 

solution of (23) for cases study: 2n = , 0.3m =  and 2n = , 

0.6m =  and approximations (48) and (49). Although the 

mentioned figure, shows the high accuracy of the proposed 

solutions, it was verified by evaluating the square residual 

error (S.R.E) of (48) and (49) given by  ( )2
( )

b

a

R u t dt , 

where a  and b  are two values depending on the given 

problem, the residual is defined by 

( ) ( ) ( )( ) ( ) ( ) ( )R u t L u t N u t f t= + − , and ( )u t  is an 

approximate solution to (3) [16]. The resulting values were 

respectively of 7.75287785167 1610−
 and 

2.37672485412 1010−
, which confirms the high accuracy 

of  LT-HPM. Figure 2, compare numerical solution of (23) 

for 1n = − , 0.3m =  and 1n = − , 0.6m =  with (73) and (74) 

for the same values. We note that the figures appear indeed 

overlapping, while the S.R.E of (73) and (74) are of 

6.10465343999 1010−
, and 0.00000335024984825. 

Finally, the cases 0.5n = , 0.3m =  and 0.5n = , 0.6m = , 

are shown in Figure 3, and the corresponding S.R.E for 

approximations (79) and (81) are scarcely of 
18

4.29941296548 10
−

  and  5.79207356623 1210−

 
respectively.  

It is clear from the above discussion that LT-HPM 

describes a highly accurate way for solving, the nonlinear 

problem (23). On the other hand, is worth to note that our 

proposed solutions (48), (49), (73), (74), (79) and (81) are 

short and simple polynomial functions, ideal for practical 

applications. In all the cases considered we keep the order of 

approximation as four. If more accuracy for solutions is even 

required, one can go on with higher orders in a 

straightforward fashion, following LT-HPM algorithm.  

 Our results ( )y x , indicate the concentration under 

steady conditions. From definition of Thiele modulus m (21), 

we identify the quantity 
1

1
n

s
LKy

−
as a characteristic property 

for reaction, and   
e

D L as a characteristic property for 

diffusion [1,44]. Therefore, the bigger the value of m , the 

bigger in proportion the diffusion respect to reaction 

phenomena and viceversa. From values of S.R.E  one deduce 

that LT-HPM is more accurate for the cases, where the 

diffusion is relatively less important than reaction for a given 

value of n , that is for small values of m . Figure 1, Figure 2, 

and Figure 3, explain the above, noting that the curves with 

larger value of m present a major curvature than those, with 

smaller values, and for the same reason, they are more 

complicated to model. The simplicity and accuracy of the 

proposed method indicates that, unlike other methods, our 

solutions keep the nature of the studied phenomena and on 

the other hand, the reliability of the obtained results for the 

initially unknown values of the concentration of the 

reactant A .  
Finally, future investigations of LT-HPM should follow 

the aim of [45], where the authors obtained multiple solutions 

of (23), for the case  n= - 1. 
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Figure 1 Comparison between numerical solution of (23) for cases 

study: 2n = , 0.3m =  and 2n = , 0.6m =  and LT-HPM 

approximations (48) and (49). 

 

 
Figure 2 Comparison between numerical solution of (23) for cases 

study: 1n = − , 0.3m =  and 1n = − , 0.6m =  and LT-HPM 

approximations (73) and (74). 

 
Figure 3 Comparison between numerical solution of (23) for cases 

study: 0.5n = , 0.3m =  and 0.5n = , 0.6m =  and LT-HPM 

approximations (79) and (81). 

VII. CONCLUSION 

 

From this study we conclude that LT-HPM is a useful tool 

to get accurate and handy solutions for the considered 

problem, which describes the phenomenon of the diffusion 

and reaction in porous catalyst. One of the highlights of this 

work lies in the practical and precise solutions obtained by 

LT-HPM compared to other methods, like HAM and 

Adomian Decomposition Method. We emphasize that one 

advantage of LT-HPM is that it does not require to solve 

several recurrence differential equations like other 

perturbative methods.  Finally it is clear that the proposed 

methodology can be applied equally to other nonlinear 

problems, especially to heat diffusion problems.  
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