
A Novel Square-Expanded-Matrix-Rotation

(SEMR) Cryptography Method

Suyash Kandele, Veena Anand
Department of Computer Science and Engineering

National Institute of Technology Raipur, India

Abstract—The proposed algorithm is a symmetric algorithm.

It employs a key of 8-bit. The algorithm focuses on breaking the

input string into a large number of small sized square matrices,

whose size varies from 1x1 to 9x9. On each square matrix, we

first apply displacement method, which changes the position of

characters in the string, and then add expanded matrix, which

hides the number of occurrences and values of characters. In

each iteration, the value of key gets updated on the basis of the

characters encountered in the string encrypted so far. Thus, the

key becomes more complicated after every step, thereby

increasing the strength of encryption and also making its

decryption more difficult. The diverse operations performed on

different parts of the string makes it excessively complicated.

The proposed algorithm is highly unpredictable and, therefore,

changes dynamically with the variation in string length and

string characters.

Keywords—Square Matrix; Matrix Manipulation; Expanded

Matrix; Remainder Processing; Rotation Operation;

I. INTRODUCTION

With the immense development in the usage and users of
Internet over the two decades, the security of data has
emerged as a crucial aspect along with increasing the
efficiency. The data cannot be sent on a shared medium
without the covering of tough cryptography system. The
development of new techniques is unable to surpass the rate of
attack on the already existing systems. Thus, there is a call for
the development of highly complex and fickle mechanism that
could change on its own to provide enhanced protection to the
priceless data.

In the present work, the author has used several
methodology derived from the combination of numerous basic
operations and functions. The focus is to reduce the chances of
anticipation by the intruders; who are growing in numbers and
technology; by changing the structure of statement and the
sequence of the elements, and varying the frequency and value
of characters. The method is divided into several iterations and
the key used here updates itself to form a more complex key
after every iteration.

II. BASIC TERMINOLOGY

A. Square Matrix

Square Matrix is a 2-dimensional array that has same
number of columns as the number of rows. Its size is denoted
by NxN where, N is number of rows as well as number of
columns.

B. Matrix Manipluation

Matrix Manipulation comprises of a series of operations
performed on square matrix to modify it.

C. Magic Matrix

Magic Matrix is a square matrix possessing the special
property in which the elements are arranged in such a way that
the sum of elements of each column, of each row and of the
two diagonals is equal.

D. Expanded Matrix

Expanded Matrix of size NxN is a special square matrix
created in this method from magic matrix of size (N-2)x(N-2)
by performing some shift operations on magic matrix and
assigning some calculated value to the new positions
introduced during shifting.

E. Remainder Processing

Remainder Processing constitutes of a series of operations
performed on the remainder elements.

F. XOR Operation

Here, the bitwise XOR operation is performed on various
numbers. When the two bits are identical, the result is
evaluated to zero, otherwise to one.

G. Left Rotation Operation

Here, the Left Rotation operation is performed on the 8-bit
numbers. Left Rotation by 1-bit causes the MSB (Most
Significant Bit) to be shifted to LSB (Least Significant Bit)
and all other bits to be shifted to 1-position to the left, i.e.
towards MSB.

H. Right Rotation Operation

Here, the Right Rotation operation is performed on the 8-
bit numbers. Right Rotation by 1-bit causes the LSB (Least
Significant Bit) to be shifted to MSB (Most Significant Bit)
and all other bits to be shifted to 1-position to the right, i.e.
towards LSB.

III. PROPOSED ENCRYPTION ALGORITHM

Step-1
Input the plain text PLAIN_TEXT and the key, KEY.

Step-2

Convert each element of the input string PLAIN_TEXT into

its corresponding ASCII value and calculate its length, LEN.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1366

Step-3

Set the values:

i. REM_LEN = LEN

ii. PREV_GEN = KEY

Step-4

If REM_LEN>81, then

Goto Step-5.

Else

If REM_LEN>7, then

Goto Step-6.

Else

Goto Step-8.

Step-5

Perform following operations.

i. Calculate:

a. S = sum of digits in REM_LEN

b. M = smallest digit in REM_LEN greater than 0

c. N = S + M

ii. Convert N into a single digit number.

iii. Goto Step-7.

Step-6

Calculate:

N = floor (square_root (REM_LEN / 2))

Step-7

Perform Matrix Manipulation.

i. Store the value of N in the

array MAT_SIZE.

ii. Extract (N*N) values from

PLAIN_TEXT and store

them diagonally-upward-

left-to-right from top-left

corner to right-bottom

corner in the square matrix

TEMP_MAT.

iii. Calculate NEXT_GEN by performing XOR between

all the elements of TEMP_MAT.

iv. Perform XOR on calculated NEXT_GEN with KEY.

v. Perform XOR on all elements in the matrix

TEMP_MAT with PREV_GEN.

vi. Set PREV_GEN =

NEXT_GEN.

vii. If the N is Odd, then

Read the elements of

TEMP_MAT

diagonally -downward-

left-to-right from top-

right corner to left-

bottom corner and store

in an array TEMP_ARR.

Else

Read the elements of

TEMP_MAT diagonally

–upward-right-to-left

from top-right corner to

left-bottom corner and store in an array

TEMP_ARR.

viii. Create Expanded Matrix EXP_MAT of size NxN by

following steps:

a. Create a magic matrix of size (N–2)x(N–2).

b. Shift the elements below the auxiliary diagonal of

the magic matrix by one position to downward

direction and by one position to right direction and

store into EXP_MAT. Set the value of newly

introduced positions to zero.

c. Shift the elements below the main diagonal of the

EXP_MAT by one position to downward direction

and the elements above the main diagonal by one

position to right direction and store into

EXP_MAT. Set the value of newly introduced

positions to zero.

d. For each element a[i][j] in the matrix EXP_MAT

that has its value zero, assign it the value (i
2
 + j

3
).

ix. Read the Expanded Matrix EXP_MAT in row major

order and store in 1-dimensional array EXP_ARR.

x. Add the corresponding elements of EXP_ARR to

TEMP_ARR.

xi. If the value of element of EXP_ARR is Even

Left rotate the element of TEMP_ARR by 1-bit.

Else

Right rotate the element of TEMP_ARR by 1-bit.

xii. Append the array TEMP_ARR at the end of cipher text

CIPHER_TEXT.

xiii. Set REM_LEN = REM_LEN – (N * N)

xiv. Goto Step-4.

Step-8

Perform Remainder Manipulation.

i. Create a magic matrix MAG_MAT of size 3x3.

ii. If the number of remainder elements is Odd, then

a. Read the elements of

magic matrix

MAG_MAT diagonally

–downward-left-to-right

from top-right corner to

left-bottom corner and

store in 1-dimensional

array MAG_ARR.

b. If element of MAG_ARR is Odd, then

Store the square of the element in

MAG_ARR.

Else,

Store the cube of element.

Else,

a. Read the elements of

magic matrix

MAG_MAT diagonally–

upward – right – to – left

from top-right corner to

left-bottom corner and

store in 1-dimensional

array MAG_ARR.

b. If element of MAG_ARR is Even, then

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1367

Store the square of the element in

MAG_ARR.

Else,

Store the cube of element.

iii. Perform XOR operation between the remainder

elements REM and MAG_ARR and store the result in

REM.

iv. If the element in REM is at even position, then

Right rotate the element by (8–position) bits.

Else

Left rotate the element by (8–position) bits.

v. Perform XOR operation on REM with KEY.

vi. Append the array REM at the end of cipher text

CIPHER_TEXT.

Step-9

Print the CIPHER_TEXT.

IV. EXAMPLE OF ENCRYPTION ALGORITHM

Step-1
Consider the entered PLAIN_TEXT is :

KEY is 77.

Step-2
Here, the ASCII equivalent of the PLAIN_TEXT is [84
104 105 115 32 105 115 32 97 32 115 97
109 112 108 101 32 115 116 114 105 110 103
44 32 119 104 105 99 104 32 105 115 32 98
101 105 110 103 32 117 115 101 100 32 116
111 32 116 101 115 116 32 116 104 101 32
114 101 115 117 108 116 115 32 97 110 100
32 101 102 102 105 99 105 101 110 99 121 32
111 102 32 97 110 32 67 114 121 112 116
111 103 114 97 112 104 121 32 65 108 103 111
114 105 116 104 109 46]
Length of string, LEN = 109

Step-3
In this example,

REM_LEN = 109
PREV_GEN = 77

1
st
 Iteration
Step-4
 REM_LEN = 109
 REM_LEN>81 : TRUE
 Goto Step-5

 Step-5
 S = 1 + 0 + 9 = 10
 M = 1
 N = 10 + 1 = 11
N = 1 + 1 = 2

 Step-7
i. MAT_SIZE = [2]
ii. TEMP_ARR = [84 104 105 115]

iii. NEXT_GEN = 38
iv. NEXT_GEN = 107
v. PREV_GEN = 77

vi. PREV_GEN = 107
vii. TEMP_ARR = [36 62 25 37]

viii.

ix. EXP_ARR = [2 9 5 12]
x. TEMP_ARR = [38 71 30 49]
xi. TEMP_ARR = [76 163 15 98]
xii. CIPHER_TEXT = [76 163 15 98]
xiii. REM_LEN = 105
xiv. Goto Step-4.

2
nd

 Iteration
Step-4
REM_LEN = 105
REM_LEN>81 : TRUE
Goto Step-5

Step-5
S = 1 + 0 + 5 = 6
M = 1
N = 6 + 1 = 7

Step-7
i. MAT_SIZE = [2 7]
ii. TEMP_ARR = [32 105 115 32 97 32 115

97 109 112 108 101 32 115 116 114 105
110 103 44 32 119 104 105 99 104 32
105 115 32 98 101 105 110 103 32 117
115 101 100 32 116 111 32 116 101 115
116 32]

iii. NEXT_GEN = 110
iv. NEXT_GEN = 35
v. PREV_GEN = 107

vi. PREV_GEN = 35

TEMP_MAT =

75 24 75 27 31 75 2
2 10 6 24 71 75 5

75 10 75 12 3 2 14
24 14 5 8 14 24 4
7 2 2 9 30 31 14

25 3 75 75 75 31 31
28 24 12 15 75 24 75

TEMP_MAT =

32 115 32 112 116 32 105
105 97 109 115 44 32 110
32 97 32 103 104 105 101

115 101 110 99 101 115 111
108 105 105 98 117 116 101
114 104 32 32 32 116 116
119 115 103 100 32 115 32

EXP_MAT =
2 9
5 12

BASE = 0

TEMP_MAT =
25 36
37 62

TEMP_MAT =
84 105

104 115

This is a sample string, which is being used to test the

results and efficiency of an Cryptography Algorithm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1368

vii. TEMP_ARR = [2 75 5 31 75 14 27 71
2 4 75 24 3 24 14 24 6 12 14 31
31 75 10 75 8 30 31 75 2 10 5 9
75 24 75 14 2 75 75 24 2 75 15
7 3 12 25 24 28]

viii.

ix. EXP_ARR = [2 17 24 1 8 15 344 17

12 5 7 14 220 15 23 5 36 13 134
14 16 4 6 13 80 13 20 22 10 12
52 13 150 21 3 11 44 12 19 21 252
9 50 11 18 25 2 9 392]

x. TEMP_ARR = [4 92 29 32 83 29 115 88
14 9 82 38 223 39 37 29 42 25 148
45 47 79 16 88 88 43 51 97 12 22
57 22 225 45 78 25 46 87 94 45 254
84 65 18 21 37 27 33 164]

xi. TEMP_ARR = [8 46 58 16 166 142 230
44 28 132 41 76 191 147 146 142 84
140 41 90 94 158 32 44 176 149 102
194 24 44 114 11 195 150 39 140 92
174 47 150 253 42 130 9 42 146 54
144 73]

xii. CIPHER_TEXT = [76 163 15 98 8 46 58
16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73]

xiii. REM_LEN = 56
xiv. Goto Step-4.

3
rd

 Iteration
Step-4
REM_LEN = 56
REM_LEN>81 : FALSE
REM_LEN>7 :TRUE
Goto Step-6

Step-6
N = floor (square_root (56 / 2))
 = floor (square_root (28))
 = floor (5.291)
 = 5

Step-7
i. MAT_SIZE = [2 7 5]

ii. TEMP_ARR = [116 104 101 32 114 101 115
117 108 116 115 32 97 110 100 32 101
102 102 105 99 105 101 110 99]

iii. NEXT_GEN = 38
iv. NEXT_GEN = 107
v. PREV_GEN = 35

vi. PREV_GEN = 107
vii. TEMP_ARR = [71 87 69 70 77 74 70

79 69 77 87 81 66 64 64 75 86 70
70 3 3 74 80 3 80]

viii.

ix. EXP_ARR = [2 8 1 6 126 8 12 5 68

6 3 5 36 5 7 4 24 5 80 2 26
4 9 2 150]

x. TEMP_ARR = [73 95 70 76 203 82 82
84 137 83 90 86 102 69 71 79 110 75
150 5 29 78 89 5 230]

xi. TEMP_ARR = [146 190 35 152 151 164 164
42 19 166 45 43 204 162 163 158 220
165 45 10 58 156 172 10 205]

xii. CIPHER_TEXT = [76 163 15 98 8 46 58
16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73 146 190 35 152
151 164 164 42 19 166 45 43 204 162
163 158 220 165 45 10 58 156 172 10
205]

xiii. REM_LEN = 31
xiv. Goto Step-4.

4
th

 Iteration
Step-4
REM_LEN = 31
REM_LEN>81 : FALSE
REM_LEN>7 :TRUE
Goto Step-6

EXP_MAT =

2 8 1 6 126
8 12 5 68 6
3 5 36 5 7
4 24 5 80 2

26 4 9 2 150

BASE =
8 1 6
3 5 7
4 9 2

TEMP_MAT =

87 70 70 87 71
75 81 79 77 69
3 86 66 69 74

80 3 70 64 77
80 3 74 70 64

TEMP_MAT =

116 101 101 116 100
104 114 108 110 102
32 117 97 102 105

115 32 101 99 110
115 32 105 101 99

EXP_MAT =

2 17 24 1 8 15 344
17 12 5 7 14 220 15
23 5 36 13 134 14 16
4 6 13 80 13 20 22

10 12 52 13 150 21 3
11 44 12 19 21 252 9
50 11 18 25 2 9 392

BASE =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1369

Step-6
N = floor (square_root (31 / 2))
 = floor (square_root (15.5))
 = floor (3.937)
 = 3

Step-7
i. MAT_SIZE = [2 7 5 3]
ii. TEMP_ARR = [121 32 111 102 32 97 110

32 67]

iii. NEXT_GEN = 28
iv. NEXT_GEN = 81
v. PREV_GEN = 107

vi. PREV_GEN = 81
vii. TEMP_ARR = [10 4 75 18 75 40 75 5

13]

viii.

ix. EXP_ARR = [2 9 28 5 12 31 10 17 36]
x. TEMP_ARR = [12 13 103 23 87 71 85

22 49]
xi. TEMP_ARR = [24 134 206 139 174 163 170

11 98]
xii. CIPHER_TEXT = [76 163 15 98 8 46 58

16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73 146 190 35 152
151 164 164 42 19 166 45 43 204 162
163 158 220 165 45 10 58 156 172 10
205 24 134 206 139 174 163 170 11 98]

xiii. REM_LEN = 22
xiv. Goto Step-4.

5
th

 Iteration
 Step-4

REM_LEN = 22
REM_LEN>81 : FALSE
REM_LEN>7 :TRUE
Goto Step-6

Step-6
N = floor (square_root (22 / 2))
 = floor (square_root (11))
 = floor (3.317)
 = 3

Step-7
i. MAT_SIZE = [2 7 5 3 3]
ii. TEMP_ARR = [114 121 112 116 111 103

114 97 112]

iii. NEXT_GEN = 100
iv. NEXT_GEN = 41
v. PREV_GEN = 81

vi. PREV_GEN = 41
vii. TEMP_ARR = [54 33 48 35 62 33 40

35 37]

viii.

ix. EXP_ARR = [2 9 28 5 12 31 10 17 36

]
x. TEMP_ARR = [56 42 76 40 74 64 50

52 73]
xi. TEMP_ARR = [112 21 152 20 148 32 100

26 146]
xii. CIPHER_TEXT = [76 163 15 98 8 46 58

16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73 146 190 35 152
151 164 164 42 19 166 45 43 204 162
163 158 220 165 45 10 58 156 172 10
205 24 134 206 139 174 163 170 11 98
112 21 152 20 148 32 100 26 146]

xiii. REM_LEN = 13
xiv. Goto Step-4.

6
th

 Iteration
Step-4
REM_LEN = 13
REM_LEN>81 : FALSE
REM_LEN>7 :TRUE
Goto Step-6

Step-6
N = floor (square_root (13 / 2))
 = floor (square_root (6.5))
 = floor (2.549)
 = 2

Step-7
i. MAT_SIZE = [2 7 5 3 3 2]
ii. TEMP_ARR = [104 121 32 65]

iii. NEXT_GEN = 112
iv. NEXT_GEN = 61
v. PREV_GEN = 41

vi. PREV_GEN = 61

TEMP_MAT =
65 9
80 104

TEMP_MAT =
104 32
121 65

EXP_MAT =
2 9 28
5 12 31

10 17 36

BASE = 0

TEMP_MAT =
35 33 54
40 62 48
37 35 33

TEMP_MAT =
114 112 103
121 111 97
116 114 112

EXP_MAT =
2 9 28
5 12 31

10 17 36

BASE = 0

TEMP_MAT =
18 4 10
75 75 75
13 5 40

TEMP_MAT =
121 111 97
32 32 32

102 110 67

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1370

vii. TEMP_ARR = [9 104 65 80]

viii.

ix. EXP_ARR = [2 9 5 12]
x. TEMP_ARR = [11 113 70 92]
xi. TEMP_ARR = [22 184 35 184]
xii. CIPHER_TEXT = [76 163 15 98 8 46 58

16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73 146 190 35 152
151 164 164 42 19 166 45 43 204 162
163 158 220 165 45 10 58 156 172 10
205 24 134 206 139 174 163 170 11 98
112 21 152 20 148 32 100 26 146 22
184 35 184]

xiii. REM_LEN = 9
xiv. Goto Step-4.

7

th
 Iteration
Step-4
REM_LEN = 9
REM_LEN>81 : FALSE
REM_LEN>7 :TRUE
Goto Step-6

Step-6
N = floor (square_root (9 / 2))
 = floor (square_root (4.5))
 = floor (2.121)
 = 2

Step-7
i. MAT_SIZE = [2 7 5 3 3 2 2]
ii. TEMP_ARR = [108 103 111 114]

iii. NEXT_GEN = 22
iv. NEXT_GEN = 91
v. PREV_GEN = 61

vi. PREV_GEN = 91
vii. TEMP_ARR = [82 79 81 90]

viii.

ix. EXP_ARR = [2 9 5 12]
x. TEMP_ARR = [84 88 86 102]
xi. TEMP_ARR = [168 44 43 204]
xii. CIPHER_TEXT = [76 163 15 98 8 46 58

16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73 146 190 35 152
151 164 164 42 19 166 45 43 204 162

163 158 220 165 45 10 58 156 172 10
205 24 134 206 139 174 163 170 11 98
112 21 152 20 148 32 100 26 146 22
184 35 184 168 44 43 204]

xiii. REM_LEN = 5
xiv. Goto Step-4.

8
th

 Iteration
Step-4
REM_LEN = 5
REM_LEN>81 : FALSE
REM_LEN>7 : FALSE
Goto Step-8

Step-8

REM = [105 116 104 109 46]

i.
ii. MAG_ARR[216 1 49 0 25 2 3 9 4

]
iii. REM = [177 117 89 109 55]
iv. REM = [216 213 43 214 185]
v. REM = [149 152 102 155 244]
vi. CIPHER_TEXT = [76 163 15 98 8 46 58

16 166 142 230 44 28 132 41 76 191
147 146 142 84 140 41 90 94 158 32
44 176 149 102 194 24 44 114 11 195
150 39 140 92 174 47 150 253 42 130
9 42 146 54 144 73 146 190 35 152
151 164 164 42 19 166 45 43 204 162
163 158 220 165 45 10 58 156 172 10
205 24 134 206 139 174 163 170 11 98
112 21 152 20 148 32 100 26 146 22
184 35 184 168 44 43 204 149 152 102
155 244]

Step-9
The CIPHER_TEXT is

V. PROPOSED DECRYPTION ALGORITHM

Step-1
Input the cipher text CIPHER_TEXT and the key, KEY.

Step-2

Convert each element of CIPHER_TEXT into its

corresponding ASCII value and calculate its length, LEN.

Step-3

Set the values:

i. REM_LEN = LEN

ii. PREV_GEN = KEY

L£.:¦æ,)L¿T)Z^,°fÂ,r

Ã'\®/ý* *6•I¾#¤¤*¦-+Ì¢£Ü¥-

:¬

ÍÎ®£ª

bpd¸#¸¨,+Ìfô

MAG_MAT(3x3) =
8 1 6
3 5 7
4 9 2

EXP_MAT =
2 9
5 12

BASE = 0

TEMP_MAT =
81 82
90 79

TEMP_MAT =
108 111
103 114

EXP_MAT =
2 9
5 12

BASE = 0

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1371

Step-4

If REM_LEN>81, then

Goto Step-5.

Else

If REM_LEN>7, then

Goto Step-6.

Else

Goto Step-8.

Step-5

Perform following operations.

i. Calculate:

a. S = sum of digits in REM_LEN

b. M = smallest digit in REM_LEN greater than 0

c. N = S + M

ii. Convert N into a single digit number.

iii. Goto Step-7.

Step-6

Calculate,

N = floor (square_root (REM_LEN / 2))

Step-7

Perform Matrix Manipulation.

i. Store the value of N in an array MAT_SIZE.

ii. Extract (N*N) values from CIPHER_TEXT and store

them in array TEMP_ARR.

iii. Create Expanded Matrix EXP_MAT of size NxN by

following steps:

a. Create a magic matrix of size (N–2)x(N–2).

b. Shift the elements below the auxiliary diagonal of

the magic matrix by one position to downward

direction and by one position to right direction and

store into EXP_MAT. Set the value of newly

introduced positions to zero.

c. Shift the elements below the main diagonal of the

EXP_MAT by one position to downward direction

and the elements above the main diagonal by one

position to right direction. Set the value of newly

introduced positions to zero.

d. For each element a[i][j] in the matrix EXP_MAT

that has its value zero, assign it the value (i
2
 + j

3
).

iv. Read the Expanded Matrix EXP_MAT in row major

order and store in 1-dimensional array EXP_ARR.

v. If the value of element of EXP_ARR is Even, then

Right rotate the element of TEMP_ARR by 1-bit.

Else

Left rotate the element of TEMP_ARR by 1-bit.

vi. Subtract the corresponding elements of EXP_ARR

from TEMP_ARR.

vii. If the N is Odd, then

Read the elements of

TEMP_ARR and store

into TEMP_MAT

diagonally-downward-

left-to-right from top-

right corner to left-

bottom corner.

Else

Read the elements of

TEMP_ARR and store

into TEMP_MAT

diagonally-upward-right

-to-left from top-right

corner to left-bottom

corner.

viii. Perform XOR on all elements in the matrix

TEMP_MAT with PREV_GEN.

ix. Calculate NEXT_GEN by performing XOR between

all the elements of TEMP_MAT.

x. Perform XOR on calculated

NEXT_GEN with KEY.

xi. Read the square matrix

TEMP_MAT diagonally-

upward-left-to-right from

top-left corner to right-

bottom corner and store in

array TEMP_ARR.

xii. Set PREV_GEN = NEXT_GEN.

xiii. Append the array TEMP_ARR at the end of plain text

PLAIN_TEXT.

xiv. Set REM_LEN = REM_LEN – (N * N)

xv. Goto Step-4.

Step-8

Perform Remainder Manipulation

i. Perform XOR operation on REM with KEY.

ii. If the element in REM is at even position, then

Left rotate the element by (8–position) bits.

Else

Right rotate the element by (8–position) bits.

iii. Create a magic matrix MAG_MAT of size 3x3.

iv. If the number of remainder

elements is Odd, then

a. Read the elements of

magic matrix

MAG_MAT diagonally

–downward-left-to-right

from top-right corner to

left-bottom corner and

store in 1-dimensional

array MAG_ARR.

b. If element of MAG_ARR is Odd, then

Store the square of the element in

MAG_ARR.

Else,

Store the cube of element.

Else,

a. Read the elements of

magic matrix

MAG_MAT diagonally

–upwards-right-to-left

from top-right corner to

left-bottom corner and

store in 1-dimensional

array MAG_ARR.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1372

b. If element of MAG_ARR is Even, then

Store the square of the element in

MAG_ARR.

Else,

Store the cube of element.

v. Perform XOR operation between the remainder

elements REM and MAG_ARR and store the result in

REM.

vi. Append the array REM at the end of plain text

PLAIN_TEXT.

Step-9

Print the PLAIN_TEXT.

VI. FLOWCHART OF ENCRYPTION ALGORITHM

The flowchart of encryption algorithm is:

Fig. 1. Flowchart of Encryption Algorithm

 Start

Input plain text PLAIN_TEXT and key KEY

Convert each element of PLAIN_TEXT into its ASCII

value and calculate length LEN

Set REM_LEN = LEN, PREV_GEN = KEY

If

REM_LEN

>81

If

REM_LEN

>7

Calculate

S = sum of

digits in

REM_LEN

M = smallest

digit in

REM_LEN

(M>0)

N = S + M

Calculate

N=floor(sq_rt(

REM_LEN/2))

Process

remaining

elements

according to

Remainder

Processing

Append the

output array

at the end of

CIPHER_TE

XT

Convert N

into a single

digit number

Store the value of N in an array

MAT_SIZE

Extract N
2
 values from

PLAIN_TEXT and store them

diagonally-upward-left-to-right

from top-left corner to right-

bottom corner in the square matrix

TEMP_MAT

Apply Matrix Manipulation on

TEMP_MAT

Append the output array at the end

of CIPHER_TEXT

Set REM_LEN=REM_LEN-N*N

Output the
CIPHER_TEXT

Stop

Yes

No

No

Yes

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1373

The flowchart of Remainder Processing for Encryption is:

Fig. 3. Flowchart of Remainder Processing for Encryption

The flowchart of Matrix Manipulation for encryption is:

Fig. 2. Flowchart of Matrix Manipulation for Encryption

Start

Input square matrix TEMP_MAT

Calculate NEXT_GEN by performing XOR between all

the elements of TEMP_MAT. Perform XOR operation on

calculated NEXT_GEN with KEY

Performing XOR on all elements of TEMP_MAT with

PREV_GEN

If

N is

Odd

Read the elements of

TEMP_MAT

diagonally-

downward-left-to-

right from top-right

corner to left-bottom

corner and store in

array TEMP_ARR

Read the elements of

TEMP_MAT

diagonally-upward-

right-to-left from

top-right corner to

left-bottom corner

and store in array

TEMP_ARR

Create Expanded Matrix EXP_MAT of size NxN

Read the matrix EXP_MAT in row major order and store

in array EXP_ARR.

Add corresponding elements of EXP_ARR to

TEMP_ARR

If the

value of element

in EXP_ARR is

Even

Right rotate

the element of

TEMP_ARR

by 1-bit

Left rotate the

element of

TEMP_ARR

by 1-bit

Output the array TEMP_ARR

Stop

Yes No

Yes No

Start

Input remainder elements REM

Create magic matrix of size 3x3

If

N is

Odd

Read the elements of

magic matrix

diagonally-upward-

right-to-left from

top-right corner to

left-bottom corner

and store in array

MAG_ARR

Read the elements of

magic matrix

diagonally-

downward-left-to-

right from top-right

corner to left-bottom

corner and store in

array MAG_ARR

If value of

element in

MAG_ARR is

Even

If value of

element in

MAG_ARR is

Odd

Store the

cube of

element

Store the

square of

element

Store the

square of

element

Store the

cube of

element

Perform XOR on remainder elements REM with

MAG_ARR

If

element is at Even

position
 Left rotate

element by

(8-position)

bits

Right rotate

element by

(8-position)

bits

Perform XOR on remainder elements REM with KEY

Output the remainder elements

Stop

Yes No

Yes No No Yes

Yes No

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1374

VII. FLOWCHART OF DECRYPTION ALGORITHM

The flowchart of decryption algorithm is:

Fig. 4. Flowchart of Decryption Algorithm

Start

Input cipher text CIPHER_TEXT and key KEY

Convert each element of CIPHER_TEXT into its

ASCII value and calculate length LEN

Set REM_LEN = LEN, PREV_GEN = KEY

Calculate

S = sum of

digits in

REM_LEN

M = smallest

digit in

REM_LEN

(M>0)

N = S + M

If

REM_LEN

>81

If

REM_LEN

>7

Process

remaining

elements

according to

Remainder

Processing

Append the

output array

at the end of
PLAIN_TEXT

Calculate

N=floor(sq_rt(

REM_LEN/2))

Convert N

into a single

digit number

Store the value of N in an array

MAT_SIZE

Extract N
2
 values from

CIPHER_TEXT and store them

in array TEMP_ARR

Apply Matrix Manipulation on

TEMP_ARR

Append the output array at the

end of PLAIN_TEXT

Set REM_LEN=REM_LEN-N*N

Output the
PLAIN_TEXT

Stop

Yes

No

No

Yes

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1375

The flowchart of Remainder Processing for Decryption is :

Fig. 6. Flowchart of Remainder Processing for Decryption

The flowchart of Matrix Manipulation for Decryption is:

Fig. 5. Flowchart of Matrix Manipulation for Decryption

Start

Input array TEMP_ARR

Create Expanded Matrix EXP_MAT of size NxN

Read the matrix EXP_MAT in row major order and store

in array EXP_ARR

If the

value of element

in EXP_ARR is

Even

Left rotate the

element of

TEMP_ARR

by 1-bit

Right rotate

the element of

TEMP_ARR

by 1-bit

Subtract corresponding elements of EXP_ARR from

TEMP_ARR

Read the elements

of TEMP_ARR and

store into

TEMP_MAT

diagonally-upward-

right-to-left from

top-right corner to

left-bottom corner

Read the elements

of TEMP_ARR and

store into

TEMP_MAT

diagonally-downward-

left-to-right from

top-right corner to

left-bottom corner

If

N is

Odd

Performing XOR on all elements of TEMP_MAT with

PREV_GEN

Calculate NEXT_GEN by performing XOR between all

the elements of TEMP_MAT. Perform XOR operation on

calculated NEXT_GEN with KEY

Read the square matrix TEMP_MAT diagonally-upward-

left-to-right from top-left corner to right-bottom corner and

store in array TEMP_ARR

Output the array TEMP_ARR

Stop

Yes No

Yes No

Start

Input remainder elements REM

Perform XOR on remainder elements REM with KEY

Right rotate

element by

(8-position)

bits

Left rotate

element by

(8-position)

bits

If

element is at Even

position

Create magic matrix of size 3x3

If

N is

Odd

Read the elements

of magic matrix

diagonally-

downward-left-to-

right from top-

right corner to

left-bottom corner

and store in an

array MAG_ARR

Read the elements

of magic matrix

diagonally-

upward-right-to-

left from top-right

corner to left-

bottom corner and

store in an array

MAG_ARR

If value of

element in

MAG_ARR is

Odd

Store the

cube of

element

Store the

square of

element

Store the

cube of

element

Store the

square of

element

Perform XOR between the remainder elements REM and

MAG_ARR

Output the remainder elements

Stop

Yes No

Yes No

No Yes No Yes

If value of

element in

MAG_ARR is

Even

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1376

VIII. RESULT

On applying the proposed algorithm on different strings of

varying length, the results obtained are astounding and

noteworthy. The structure of statements in the plain text has

been drastically changed. Some examples of the string length,

key used, and encryption time are summarized in the table 1.

TABLE I. RESULTS OF SEMR ENCRYPTION ALGORITHM

Length of String Key Time (in seconds)

8 11 0.267490

109 77 0.583583

150 241 0.691474

200 227 0.832776

250 245 0.933613

300 149 1.061114

On changing the key for the same input string, the resultant

cipher text is completely modified and cannot be correlated,

but the encryption time does not change by a significant

amount. This proves the dynamism of this algorithm. Some

examples of the plain text “This is very secret message.” with

different keys, encryption time and the resultant cipher text

are summarized in the table 2.

TABLE II. RESULTS OF SEMR ENCRYPTION ALGORITHM ON VARYING

KEY

Key
Time (in

seconds)
Cipher Text

29 0.379354 ì¾²'Eþ¿%h`¨^¢7¼®%:¶•+Ý

69 0.335716
\

â)n£´Ø¿3·Ä¾¦ªîÕIsÞ

119 0.378893 @æÆRP´¦Ö®´»²·p£Üç{A·ì

159 0.379310

ñÿ·h

þ
eÚÚeçcã2Áïf?4©_

209 0.332850
uàEûcÙ• õ

•éç¿%ÐGÓzAÝçJ

249 0.348509 %ÌëYËW7Í]±é»íúðouÜSRiõÏ9b

On plotting the time taken for encryption of each character of
the string of a particular length, against the length of the
string, we obtain the above Time per Character Graph.

On plotting the time taken for encryption of the string, of
small length, against different keys used for encryption, we
obtain the above Key-Time Graph.

Fig. 9. Key-Time Graph

0

5

10

15

20

25

30

35

40

45

50

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Value of Key

Key-Time Graph

L=2 L=4 L=6

L=8 L=10 L=12

L=14 L=16 L=18

Fig. 8. Time per Character Graph

22.48

12.95

7.54
3.82 3.19 2.89 2.84 2.77 2.69 2.64

0

5

10

15

20

25

1
0

2
0

5
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
2

0
0

1
5

0
0

1
8

0
0

2
0

0
0

T
im

e
(i

n
 m

il
li

se
co

n
d

)

Length of String

Time per Character Graph

The flowchart of Expanded Matrix is:

Fig. 7. Flowchart of Expanded Matrix

Start

Create a magic matrix of size (N–2)x(N–2)

Shift the elements below the auxiliary diagonal of the

magic matrix by one position to downward direction and

by one position to right direction and store into

EXP_MAT. Set the value of newly introduced positions 0.

Shift the elements below the main diagonal of the

EXP_MAT by one position to downward direction and the

elements above the main diagonal by one position to right

direction and store into EXP_MAT. Set the value of newly

introduced positions 0.

For each element a[i][j] in the matrix EXP_MAT that has

its value zero, assign it the value (i
2
 + j

3
).

Stop

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1377

IX. CONCLUSION

In the proposed work, we have introduced a new technique
of breaking the string into numerous parts before performing
encryption. The strings which can directly break into the
square matrix have been processed in such a way that they do
not form the pit-holes in the algorithm or compromise with the
security. The string, being broken into parts and having been
separately encrypted, does not form a peculiar pattern that
could be easy to recognize. The method of reading and placing
the data into the matrices is different and changes rapidly,
since it is not mere row-major order or column-major order.
The frequency and value of characters is altered by using
expanded matrix. The use of diagonal upward direction and
diagonal downward direction is random and the creation of
expanded matrix is unexpected and is impossible to be
guessed even by hit and trial method. The key received from
the user is used to hide the characters after performing some
manipulation of the key. If wrong key is used, it would be
impossible to break the cipher. On changing the key, the
algorithm will dynamically change on itself. The encryption,
and therefore, decryption of the successive matrices is linked,
hence, until the present matrix is decoded perfectly, the next
matrix cannot be decoded. The use of left and right rotation
changes the data completely. Various diverse operations being
executed on the string, changes the structure of the sentence.

The placement of the steps and operations is done in such
a way that, mixing of all the steps is complicated and is
therefore difficult to guess. Even if the different steps and
operations are identified, placing them in correct order is very
crucial and is therefore complex. The conditions applied at
various steps allow the procedure to follow different set of
steps for different strings.

X. FUTURE SCOPE

This algorithm introduces a technique of breaking the string
into small pieces before performing any operation, and is itself
sufficient to provide the confidentiality at reasonable
computation rates. The algorithm may be manipulated by
changing several calculations, conditions and operations to
make a stronger, more reliable and highly erratic algorithm.

REFERENCES

[1] Vishwa Gupta, Gajendra Singh, and Ravindra Gupta, “A Hyper
Modern Cryptography Algorithm to Improved Data Security: HMCA,”
International Journal of Computer Science & Communication
Networks, vol 1(3), ISSN: 2249-5789, pp. 258-263.

[2] Vishwa Gupta, Gajendra Singh, and Ravindra Gupta, “Advance
cryptography algorithm for improving data security,” International
Journal of Advanced Research in Computer Science and Software
Engineering, ISSN: 2277 128X, vol. 2, issue 1, January 2012.

[3] Manas Paul, and Jyotsna Kumar Mandal, “A Universal Bit Level Block
Encoding Technique Using Session Based Symmetric Key
Cryptography to Enhance the Information Security,” International
Journal of Advanced Information Technology (IJAIT), vol. 2 no.2, pp.
29-40, April 2012.

[4] Manas Paul, and Jyotsna Kumar Mandal, “A General Session Based Bit
Level Block Encoding Technique Using Symmetric Key Cryptography
to Enhance the Security of Network Based Transmission,” International
Journal of Computer Science, Engineering and Information Technology
(IJCSEIT), vol. 2 no. 3, pp. 31-42, June 2012.

[5] Somdip Dey, Joyshree Nath, and Asoke Nath, “An Integrated
Symmetric Key Cryptographic Method – Amalgamation of TTJSA
Algorithm , Advanced Caesar Cipher Algorithm, Bit Rotation and
Reversal Method: SJA Algorithm,” I. J. Modern Education and
Computer Science, DOI: 10.5815/ijmecs.2012.05.01, pp. 1-9, 2012.

[6] Niraj Kumar, Pankaj Gupta, Monika Sahu, and Dr. M A Rizvi,
“Boolean Algebra based Effective and Efficient Asymmetric Key
Cryptography Algorithm: BAC Algorithm,” IEEE, 978-1-4673-5090-
7/13, pp. 250-254, 2013.

[7] Gaurav Bhadra, Tanya Bala, Samik Banik, Asoke Nath, and Joyshree
Nath, “Bit Level Encryption Standard (BLES) :Version-II,” World
Congress on Information and Communication Technologies, IEEE,
978-1-4673-4805-8/12, pp. 121-127, 2012.

[8] Akanksha Mathur, “A Research paper: An ASCII value based data
encryption algorithm and its comparison with other symmetric data
encryption algorithms,” International Journal on Computer Science and
Engineering (IJCSE), ISSN: 0975-3397, vol. 4 no. 09, pp. 1650-1657,
September 2012.

[9] Manas Paul, and Jyotsna Kumar Mandal, “A Novel Symmetric Key
Cryptographic Technique at Bit Level Based on Spiral Matrix
Concept,” International Conference on Information Technology,
Electronics and Communications (ICITEC – 2013), Bangalore, India,
pp. 6-11, March 2013.

[10] Nehal Kandele, and Shrikant Tiwari, “A New Combined Symmetric
Key Cryptography CRDDBT Using – Relative Displacement (RDC)
and Dynamic Base Transformation (DBTC),” International Journal of
Engineering Research & Technology (IJERT), ISSN: 2278-0181, vol. 2
Issue 10, pp. 1597-1603, October - 2013

[11] Subhranil Som, and Mandira Banerjee, “Cryptographic Technique by
Square Matrix and Single Point Crossover on Binary Field,” IEEE,
978-1-4673-2821-0/13, 2013.

[12] Suyash Kandele, and Veena Anand, “A Novel Cyclic-Lower-Upper-
Rectangular (CLUR) Cryptography Method,” International Journal of
Engineering Research & Technology (IJERT), ISSN: 2278-0181, vol. 3
issue 11, pp. 329-335, November 2014.

[13] Ansar Ahemad Shaikh, and Nilesh S Vani, “An Extended Approach for
Securing the Short Messaging Services of GSM using Multi-threading
Elliptical Curve Cryptography,” International Conference on
Communication, Information & Computing Technology (ICCICT),
Mumbai, India, January 2015.

[14] Gaurav Bansod, Nishchal Raval, and Narayan Pisharoty,
“Implementation of a New Lightweight Encryption Design for
Embedded Security,” IEEE Transactions on Information Forensics and
Security, vol. 10 no. 1, pp. 142-151, January 2015.

[15] Jongkil Kim, Willy Susilo, Man Ho Au, and Jennifer Seberry,
“Adaptively Secure Identity-Based Broadcast Encryption With a
Constant-Sized Ciphertext,” IEEE Transactions on Information
Forensics and Security, vol. 10 no. 3, pp. 679-693, March 2015.

[16] Dindayal Mahto, and Dilip Kumar Yadav, “Enhancing Security of One-
Time Password using Elliptic Curve Cryptography with Biometrics for
E-Commerce Applications,” IEEE, 978-1-4799-4445-3/15, 2015.

[17] Subhas Barman, Debasis Samanta, and Samiran Chattopadhyay,
“Revocable Key Generation From Irrevocable Biometric Data for
Symmetric Cryptography,” IEEE, 978-1-4799-4445-3/15, 2015.

[18] Harikrishnan T, and C. Babu, “Cryptanalysis of Hummingbird
Algorithm with Improved Security and Throughput,” International
Conference on VLSI Systems, Architecture, Technology and
Applications (VLSI-SA TA), 978-1-4799-7926-4/15, 2015.

[19] Ali M Alshahrani1, and Stuart Walker, “Tesseract: A 4D symmetric
key container for multimedia security,” IEEE, ISBN: 978-1-4799-6376-
8/15 pp. 139-142, 2015.

[20] Yoon Jib Kim, and Ki-Uk Kyung, “Secured Radio Communication
Based on Fusion of Cryptography Algorithms,” IEEE International
Conference on Consumer Electronics (ICCE), pp. 388-389, 2015.

[21] Lidia Ogiela, and Marek R. Ogiela, “Insider Threats and Cryptographic
Techniques in Secure Information Management,” IEEE Systems
Journal, 2015, in press.

[22] Divyanjali, Ankur, and Trishansh Bhardwaj, “Pseudo Random Bit
Generation Using Arithematic Progression,” Fifth International
Conference on Advanced Computing & Communication Technologies,
2327-0659/15, DOI 10.1109/ACCT.2015.90, pp. 361-366, 2015.

[23] Prachi, Surbhi Dewan, and Pratibha, “Comparative Study of Security
Protocols to Enhance Security over Internet,” Fifth International
Conference on Advanced Computing & Communication Technologies,
IEEE, 2327-0659/15 DOI 10.1109/ACCT.2015.34, pp. 552-556, 2015

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041492

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1378

