# A Novel Square-Expanded-Matrix-Rotation (SEMR) Cryptography Method 

Suyash Kandele, Veena Anand<br>Department of Computer Science and Engineering<br>National Institute of Technology Raipur, India


#### Abstract

The proposed algorithm is a symmetric algorithm. It employs a key of 8-bit. The algorithm focuses on breaking the input string into a large number of small sized square matrices, whose size varies from 1x1 to $9 x 9$. On each square matrix, we first apply displacement method, which changes the position of characters in the string, and then add expanded matrix, which hides the number of occurrences and values of characters. In each iteration, the value of key gets updated on the basis of the characters encountered in the string encrypted so far. Thus, the key becomes more complicated after every step, thereby increasing the strength of encryption and also making its decryption more difficult. The diverse operations performed on different parts of the string makes it excessively complicated. The proposed algorithm is highly unpredictable and, therefore, changes dynamically with the variation in string length and string characters.


Keywords-Square Matrix; Matrix Manipulation; Expanded Matrix; Remainder Processing; Rotation Operation;

## I. Introduction

With the immense development in the usage and users of Internet over the two decades, the security of data has emerged as a crucial aspect along with increasing the efficiency. The data cannot be sent on a shared medium without the covering of tough cryptography system. The development of new techniques is unable to surpass the rate of attack on the already existing systems. Thus, there is a call for the development of highly complex and fickle mechanism that could change on its own to provide enhanced protection to the priceless data.

In the present work, the author has used several methodology derived from the combination of numerous basic operations and functions. The focus is to reduce the chances of anticipation by the intruders; who are growing in numbers and technology; by changing the structure of statement and the sequence of the elements, and varying the frequency and value of characters. The method is divided into several iterations and the key used here updates itself to form a more complex key after every iteration.

## II. Basic Terminology

## A. Square Matrix

Square Matrix is a 2-dimensional array that has same number of columns as the number of rows. Its size is denoted by NxN where, N is number of rows as well as number of columns.

## B. Matrix Manipluation

Matrix Manipulation comprises of a series of operations performed on square matrix to modify it.

## C. Magic Matrix

Magic Matrix is a square matrix possessing the special property in which the elements are arranged in such a way that the sum of elements of each column, of each row and of the two diagonals is equal.

## D. Expanded Matrix

Expanded Matrix of size NxN is a special square matrix created in this method from magic matrix of size ( $\mathrm{N}-2$ ) $\mathrm{x}(\mathrm{N}-2)$ by performing some shift operations on magic matrix and assigning some calculated value to the new positions introduced during shifting.

## E. Remainder Processing

Remainder Processing constitutes of a series of operations performed on the remainder elements.

## F. XOR Operation

Here, the bitwise XOR operation is performed on various numbers. When the two bits are identical, the result is evaluated to zero, otherwise to one.

## G. Left Rotation Operation

Here, the Left Rotation operation is performed on the 8 -bit numbers. Left Rotation by 1-bit causes the MSB (Most Significant Bit) to be shifted to LSB (Least Significant Bit) and all other bits to be shifted to 1-position to the left, i.e. towards MSB.

## H. Right Rotation Operation

Here, the Right Rotation operation is performed on the 8bit numbers. Right Rotation by 1-bit causes the LSB (Least Significant Bit) to be shifted to MSB (Most Significant Bit) and all other bits to be shifted to 1-position to the right, i.e. towards LSB.

## III. Proposed Encryption Algorithm

Step-1
Input the plain text PLAIN_TEXT and the key, KEY.
Step-2
Convert each element of the input string PLAIN_TEXT into its corresponding ASCII value and calculate its length, LEN.

## Step-3

Set the values:
i. REM_LEN = LEN
ii. PREV_GEN = KEY

## Step-4

If REM_LEN $>81$, then
Goto Step-5.
Else
If REM_LEN>7, then
Goto Step-6.
Else
Goto Step-8.

## Step-5

Perform following operations.
i. Calculate:
a. $\quad \mathrm{S}=$ sum of digits in REM_LEN
b. $\quad \mathrm{M}=$ smallest digit in REM_LEN greater than 0
c. $\quad \mathrm{N}=\mathrm{S}+\mathrm{M}$
ii. Convert N into a single digit number.
iii. Goto Step-7.

## Step-6

Calculate:

$$
\mathrm{N}=\text { floor }(\text { square_root }(\text { REM_LEN / } 2 \text { ) ) }
$$

## Step-7

Perform Matrix Manipulation.
i. Store the value of N in the array MAT_SIZE.
ii. Extract $(N * N)$ values from PLAIN_TEXT and store them diagonally-upward-left-to-right from top-left corner to right-bottom corner in the square matrix
 TEMP_MAT.
iii. Calculate NEXT_GEN by performing XOR between all the elements of TEMP_MAT.
iv. Perform XOR on calculated NEXT_GEN with KEY.
v. Perform XOR on all elements in the matrix TEMP_MAT with PREV_GEN.
vi. Set PREV_GEN = NEXT_GEN.
vii. If the N is Odd, then

Read the elements of TEMP_MAT diagonally -downward-left-to-right from topright corner to leftbottom corner and store in an array TEMP_ARR. Else

Read the elements of TEMP_MAT diagonally -upward-right-to-left from top-right corner to

left-bottom corner and store in an array TEMP_ARR.
viii. Create Expanded Matrix EXP_MAT of size NxN by following steps:
a. Create a magic matrix of size $(\mathrm{N}-2) \mathrm{x}(\mathrm{N}-2)$.
b. Shift the elements below the auxiliary diagonal of the magic matrix by one position to downward direction and by one position to right direction and store into EXP_MAT. Set the value of newly introduced positions to zero.
c. Shift the elements below the main diagonal of the EXP_MAT by one position to downward direction and the elements above the main diagonal by one position to right direction and store into EXP_MAT. Set the value of newly introduced positions to zero.
d. For each element $\mathrm{a}[\mathrm{i}][\mathrm{j}]$ in the matrix EXP_MAT that has its value zero, assign it the value $\left(\mathrm{i}^{2}+\mathrm{j}^{3}\right)$.
ix. Read the Expanded Matrix EXP_MAT in row major order and store in 1-dimensional array EXP_ARR.
x. Add the corresponding elements of EXP_ARR to TEMP_ARR.
xi. If the value of element of EXP_ARR is Even Left rotate the element of TEMP_ARR by 1-bit. Else

Right rotate the element of TEMP_ARR by 1-bit.
xii. Append the array TEMP_ARR at the end of cipher text CIPHER_TEXT.
xiii. Set REM_LEN = REM_LEN - ( $\mathrm{N} * \mathrm{~N})$
xiv. Goto Step-4.

## Step-8

Perform Remainder Manipulation.
i. Create a magic matrix MAG_MAT of size $3 \times 3$.
ii. If the number of remainder elements is Odd, then
a. Read the elements of magic matrix MAG_MAT diagonally -downward-left-to-right from top-right corner to left-bottom corner and store in 1-dimensional array MAG_ARR.

b. If element of MAG_ARR is Odd, then

Store the square of the element in MAG_ARR.
Else,
Store the cube of element.
Else,
a. Read the elements of magic matrix MAG_MAT diagonallyupward - right - to - left from top-right corner to left-bottom corner and store in 1-dimensional
 array MAG_ARR.
b. If element of MAG_ARR is Even, then

Store the square of the element in MAG_ARR.
Else,
Store the cube of element.
iii. Perform XOR operation between the remainder elements REM and MAG_ARR and store the result in REM.
iv. If the element in REM is at even position, then Right rotate the element by ( 8 -position) bits.
Else
Left rotate the element by (8-position) bits.
v. Perform XOR operation on REM with KEY.
vi. Append the array REM at the end of cipher text CIPHER_TEXT.

## Step-9

Print the CIPHER_TEXT.

## IV. EXAMPLE OF ENCRYPTION ALGORITHM

## Step-1

Consider the entered PLAIN_TEXT is :
This is a sample string, which is being used to test the results and efficiency of an Cryptography Algorithm.

KEY is 77.

## Step-2

Here, the ASCII equivalent of the PLAIN_TEXT is [ 84 $\begin{array}{lllllllllll}104 & 105 & 115 & 32 & 105 & 115 & 32 & 97 & 32 & 115 & 97\end{array}$ $\begin{array}{lllllllllll}109 & 112 & 108 & 101 & 32 & 115 & 116 & 114 & 105 & 110 & 103\end{array}$ $\begin{array}{llllllllllll}44 & 32 & 119 & 104 & 105 & 99 & 104 & 32 & 105 & 115 & 32 & 98\end{array}$ $\begin{array}{lllllllllll}101 & 105 & 110 & 103 & 32 & 117 & 115 & 101 & 100 & 32 & 116\end{array}$ $\begin{array}{lllllllllll}111 & 32 & 116 & 101 & 115 & 116 & 32 & 116 & 104 & 101 & 32\end{array}$ $\begin{array}{lllllllllll}114 & 101 & 115 & 117 & 108 & 116 & 115 & 32 & 97 & 110 & 100\end{array}$ $\begin{array}{llllllllllll}32 & 101 & 102 & 102 & 105 & 99 & 105 & 101 & 110 & 99 & 121 & 32\end{array}$ $\begin{array}{lllllllllll}111 & 102 & 32 & 97 & 110 & 32 & 67 & 114 & 121 & 112 & 116\end{array}$ $\begin{array}{llllllllllll}111 & 103 & 114 & 97 & 112 & 104 & 121 & 32 & 65 & 108 & 103 & 111\end{array}$ $\left.\begin{array}{llllll}114 & 105 & 116 & 104 & 109 & 46\end{array}\right]$
Length of string, LEN $=109$

## Step-3

In this example,
REM_LEN = 109
PREV_GEN $=77$

## $1^{\text {st }}$ Iteration

Step-4
REM_LEN $=109$
REM_LEN>81 : TRUE
Goto Step-5

## Step-5

$\mathrm{S}=1+0+9=10$
$\mathrm{M}=1$
$\mathrm{N}=10+1=11$
$\mathrm{N}=1+1=2$

## Step-7

i. MAT_SIZE $=[2]$
ii. $\quad$ TEMP_ARR $=\left[\begin{array}{llll}84 & 104 & 105 & 115\end{array}\right]$

$$
\text { TEMP_MAT }=\left[\begin{array}{cc}
84 & 105 \\
104 & 115
\end{array}\right]
$$

iii. NEXT_GEN $=38$
iv. NEXT_GEN = 107
v. $\quad$ PREV_GEN $=77$

$$
\text { TEMP_MAT }=\left[\begin{array}{ll}
25 & 36 \\
37 & 62
\end{array}\right]
$$

vi. $\quad$ PREV_GEN $=107$
vii. TEMP_ARR $=\left[\begin{array}{llll}36 & 62 & 25 & 37\end{array}\right]$
viii.

$$
\mathrm{BASE}=[0]
$$

$$
\text { EXP_MAT }=\left[\begin{array}{cc}
2 & 9 \\
5 & 12
\end{array}\right]
$$

ix. $\quad E X P \_A R R=\left[\begin{array}{llll}2 & 9 & 5 & 12\end{array}\right]$
x. TEMP_ARR $=\left[\begin{array}{llll}38 & 71 & 30 & 49\end{array}\right]$
xi. TEMP_ARR $=\left[\begin{array}{llll}76 & 163 & 15 & 98\end{array}\right]$
xii. CIPHER_TEXT $=\left[\begin{array}{llll}76 & 163 & 15 & 98\end{array}\right]$
xiii. REM_LEN = 105
xiv. Goto Step-4.

```
2 nd Iteration
    Step-4
    REM_LEN = 105
    REM_LEN>81:TRUE
    Goto Step-5
```


## Step-5

```
\(S=1+0+5=6\)
\(\mathrm{M}=1\)
\(\mathrm{N}=6+1=7\)
```


## Step-7

i. $\quad$ MAT_SIZE $=\left[\begin{array}{ll}2 & 7\end{array}\right]$
ii. TEMP_ARR $=\left[\begin{array}{lllllll}32 & 105 & 115 & 32 & 97 & 32 & 115\end{array}\right.$ $\begin{array}{llllllllll}97 & 109 & 112 & 108 & 101 & 32 & 115 & 116 & 114 & 105\end{array}$ $\begin{array}{llllllllll}110 & 103 & 44 & 32 & 119 & 104 & 105 & 99 & 104 & 32\end{array}$ $\begin{array}{llllllllll}105 & 115 & 32 & 98 & 101 & 105 & 110 & 103 & 32 & 117\end{array}$ $\begin{array}{llllllllll}115 & 101 & 100 & 32 & 116 & 111 & 32 & 116 & 101 & 115\end{array}$ 11632 ]
TEMP_MAT $=\left[\begin{array}{ccccccc}32 & 115 & 32 & 112 & 116 & 32 & 105 \\ 105 & 97 & 109 & 115 & 44 & 32 & 110 \\ 32 & 97 & 32 & 103 & 104 & 105 & 101 \\ 115 & 101 & 110 & 99 & 101 & 115 & 111 \\ 108 & 105 & 105 & 98 & 117 & 116 & 101 \\ 114 & 104 & 32 & 32 & 32 & 116 & 116 \\ 119 & 115 & 103 & 100 & 32 & 115 & 32\end{array}\right]$
iii. NEXT_GEN $=110$
iv. NEXT_GEN $=35$
v. PREV_GEN = 107

$$
\text { TEMP_MAT }=\left[\begin{array}{ccccccc}
75 & 24 & 75 & 27 & 31 & 75 & 2 \\
2 & 10 & 6 & 24 & 71 & 75 & 5 \\
75 & 10 & 75 & 12 & 3 & 2 & 14 \\
24 & 14 & 5 & 8 & 14 & 24 & 4 \\
7 & 2 & 2 & 9 & 30 & 31 & 14 \\
25 & 3 & 75 & 75 & 75 & 31 & 31 \\
28 & 24 & 12 & 15 & 75 & 24 & 75
\end{array}\right]
$$

vi. $\quad$ PREV_GEN $=35$
vii. TEMP_ARR $=\left[\begin{array}{lllllllll}2 & 75 & 5 & 31 & 75 & 14 & 27 & 71\end{array}\right.$ $\begin{array}{llllllllllll}2 & 4 & 75 & 24 & 3 & 24 & 14 & 24 & 6 & 12 & 14 & 31\end{array}$ $\begin{array}{llllllllllll}31 & 75 & 10 & 75 & 8 & 30 & 31 & 75 & 2 & 10 & 5 & 9\end{array}$ $\begin{array}{lllllllllll}75 & 24 & 75 & 14 & 2 & 75 & 75 & 24 & 2 & 75 & 15\end{array}$ $\left.\begin{array}{llllll}7 & 3 & 12 & 25 & 24 & 28\end{array}\right]$
viii.

$$
\text { BASE }=\left[\begin{array}{ccccc}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{array}\right]
$$

EXP_MAT $=\left[\begin{array}{ccccccc}2 & 17 & 24 & 1 & 8 & 15 & 344 \\ 17 & 12 & 5 & 7 & 14 & 220 & 15 \\ 23 & 5 & 36 & 13 & 134 & 14 & 16 \\ 4 & 6 & 13 & 80 & 13 & 20 & 22 \\ 10 & 12 & 52 & 13 & 150 & 21 & 3 \\ 11 & 44 & 12 & 19 & 21 & 252 & 9 \\ 50 & 11 & 18 & 25 & 2 & 9 & 392\end{array}\right]$
ix. $\quad E X P \_A R R=\left[\begin{array}{llllllll}2 & 17 & 24 & 1 & 8 & 15 & 344 & 17\end{array}\right.$ $\begin{array}{lllllllllll}12 & 5 & 7 & 14 & 220 & 15 & 23 & 5 & 36 & 13 & 134\end{array}$ $\begin{array}{lllllllllll}14 & 16 & 4 & 6 & 13 & 80 & 13 & 20 & 22 & 10 & 12\end{array}$ $\begin{array}{lllllllllll}52 & 13 & 150 & 21 & 3 & 11 & 44 & 12 & 19 & 21 & 252\end{array}$ $\left.\begin{array}{llllllll}9 & 50 & 11 & 18 & 25 & 2 & 9 & 392\end{array}\right]$
x. TEMP_ARR $=\left[\begin{array}{llllllll}4 & 92 & 29 & 32 & 83 & 29 & 115 & 88\end{array}\right.$ $\begin{array}{lllllllllll}14 & 9 & 82 & 38 & 223 & 39 & 37 & 29 & 42 & 25 & 148\end{array}$ $\begin{array}{lllllllllll}45 & 47 & 79 & 16 & 88 & 88 & 43 & 51 & 97 & 12 & 22\end{array}$ $\begin{array}{lllllllllll}57 & 22 & 225 & 45 & 78 & 25 & 46 & 87 & 94 & 45 & 254\end{array}$ $\left.\begin{array}{llllllll}84 & 65 & 18 & 21 & 37 & 27 & 33 & 164\end{array}\right]$
xi. TEMP_ARR $=\left[\begin{array}{lllllll}8 & 46 & 58 & 16 & 166 & 142 & 230\end{array}\right.$ $\begin{array}{llllllllll}44 & 28 & 132 & 41 & 76 & 191 & 147 & 146 & 142 & 84\end{array}$ $\begin{array}{llllllllll}140 & 41 & 90 & 94 & 158 & 32 & 44 & 176 & 149 & 102\end{array}$ $\begin{array}{llllllllll}194 & 24 & 44 & 114 & 11 & 195 & 150 & 39 & 140 & 92\end{array}$ $\begin{array}{llllllllll}174 & 47 & 150 & 253 & 42 & 130 & 9 & 42 & 146 & 54\end{array}$ 14473 ]
xii. CIPHER_TEXT $=\left[\begin{array}{lllllll}76 & 163 & 15 & 98 & 8 & 46 & 58\end{array}\right.$ $\begin{array}{llllllllll}16 & 166 & 142 & 230 & 44 & 28 & 132 & 41 & 76 & 191\end{array}$ $\begin{array}{llllllllll}147 & 146 & 142 & 84 & 140 & 41 & 90 & 94 & 158 & 32\end{array}$ $\begin{array}{llllllllll}44 & 176 & 149 & 102 & 194 & 24 & 44 & 114 & 11 & 195\end{array}$ $\begin{array}{llllllllll}150 & 39 & 140 & 92 & 174 & 47 & 150 & 253 & 42 & 130\end{array}$ $\left.\begin{array}{llllll}9 & 42 & 146 & 54 & 144 & 73\end{array}\right]$
xiii. REM_LEN $=56$
xiv. Goto Step-4.

```
\(3^{\text {rd }}\) Iteration
    Step-4
    REM_LEN \(=56\)
    REM_LEN>81: FALSE
    REM_LEN>7 :TRUE
    Goto Step-6
```

    Step-6
    \(\mathrm{N}=\) floor ( square_root (56/2))
    \(=\) floor (square_root (28))
    = floor (5.291)
    \(=5\)
    
## Step-7

i. MAT_SIZE $=\left[\begin{array}{lll}2 & 7 & 5\end{array}\right]$
ii. $\quad$ TEMP_ARR $=\left[\begin{array}{lllllll}116 & 104 & 101 & 32 & 114 & 101 & 115\end{array}\right.$ $\begin{array}{llllllllll}117 & 108 & 116 & 115 & 32 & 97 & 110 & 100 & 32 & 101\end{array}$ $\left.\begin{array}{lllllllll}102 & 102 & 105 & 99 & 105 & 101 & 110 & 99\end{array}\right]$

$$
\text { TEMP_MAT }=\left[\begin{array}{ccccc}
116 & 101 & 101 & 116 & 100 \\
104 & 114 & 108 & 110 & 102 \\
32 & 117 & 97 & 102 & 105 \\
115 & 32 & 101 & 99 & 110 \\
115 & 32 & 105 & 101 & 99
\end{array}\right]
$$

iii. NEXT_GEN $=38$
iv. NEXT_GEN = 107
v. PREV_GEN $=35$

$$
\text { TEMP_MAT }=\left[\begin{array}{ccccc}
87 & 70 & 70 & 87 & 71 \\
75 & 81 & 79 & 77 & 69 \\
3 & 86 & 66 & 69 & 74 \\
80 & 3 & 70 & 64 & 77 \\
80 & 3 & 74 & 70 & 64
\end{array}\right]
$$

vi. $\quad$ PREV_GEN $=107$
vii. TEMP_ARR $=\left[\begin{array}{lllllll}71 & 87 & 69 & 70 & 77 & 74 & 70\end{array}\right.$ $\begin{array}{lllllllllll}79 & 69 & 77 & 87 & 81 & 66 & 64 & 64 & 75 & 86 & 70\end{array}$ $\left.\begin{array}{lllllll}70 & 3 & 3 & 74 & 80 & 3 & 80\end{array}\right]$

$$
\text { BASE }=\left[\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right]
$$

viii.

$$
\text { EXP_MAT }=\left[\begin{array}{ccccc}
2 & 8 & 1 & 6 & 126 \\
8 & 12 & 5 & 68 & 6 \\
3 & 5 & 36 & 5 & 7 \\
4 & 24 & 5 & 80 & 2 \\
26 & 4 & 9 & 2 & 150
\end{array}\right]
$$

ix. $\quad \mathrm{EXP} \_\mathrm{ARR}=\left[\begin{array}{lllllllll}2 & 8 & 1 & 6 & 126 & 8 & 12 & 5 & 68\end{array}\right.$ $\begin{array}{llllllllllll}6 & 3 & 5 & 36 & 5 & 7 & 4 & 24 & 5 & 80 & 2 & 26\end{array}$ $\left.\begin{array}{llll}4 & 9 & 2 & 150\end{array}\right]$
x. $\quad$ TEMP_ARR $=\left[\begin{array}{lllllll}73 & 95 & 70 & 76 & 203 & 82 & 82\end{array}\right.$ $\begin{array}{lllllllllll}84 & 137 & 83 & 90 & 86 & 102 & 69 & 71 & 79 & 110 & 75\end{array}$ $\left.\begin{array}{lllllll}150 & 5 & 29 & 78 & 89 & 5 & 230\end{array}\right]$
xi. TEMP_ARR $=\left[\begin{array}{lllllll}146 & 190 & 35 & 152 & 151 & 164 & 164\end{array}\right.$ $\begin{array}{llllllllll}42 & 19 & 166 & 45 & 43 & 204 & 162 & 163 & 158 & 220\end{array}$ $\left.\begin{array}{llllllll}165 & 45 & 10 & 58 & 156 & 172 & 10 & 205\end{array}\right]$
xii. CIPHER_TEXT $=\left[\begin{array}{lllllll}76 & 163 & 15 & 98 & 8 & 46 & 58\end{array}\right.$ $\begin{array}{llllllllll}16 & 166 & 142 & 230 & 44 & 28 & 132 & 41 & 76 & 191\end{array}$ $\begin{array}{llllllllll}147 & 146 & 142 & 84 & 140 & 41 & 90 & 94 & 158 & 32\end{array}$ $\begin{array}{llllllllll}44 & 176 & 149 & 102 & 194 & 24 & 44 & 114 & 11 & 195\end{array}$ $\begin{array}{llllllllll}150 & 39 & 140 & 92 & 174 & 47 & 150 & 253 & 42 & 130\end{array}$ $\begin{array}{llllllllll}9 & 42 & 146 & 54 & 144 & 73 & 146 & 190 & 35 & 152\end{array}$ $\begin{array}{llllllllll}151 & 164 & 164 & 42 & 19 & 166 & 45 & 43 & 204 & 162\end{array}$ $\begin{array}{llllllllll}163 & 158 & 220 & 165 & 45 & 10 & 58 & 156 & 172 & 10\end{array}$ 205 ]
xiii. REM_LEN = 31
xiv. Goto Step-4.

```
\(4^{\text {th }}\) Iteration
    Step-4
    REM_LEN = 31
    REM_LEN>81: FALSE
    REM_LEN>7 :TRUE
    Goto Step-6
```

```
Step-6
\(\mathrm{N}=\) floor (square_root (31/2))
    \(=\) floor ( square_root ( 15.5 ) )
    = floor (3.937)
\[
=3
\]
```


## Step-7

i. $\quad$ MAT_SIZE $=\left[\begin{array}{llll}2 & 7 & 5 & 3\end{array}\right]$
ii. $\quad$ TEMP_ARR $=\left[\begin{array}{lllllll}121 & 32 & 111 & 102 & 32 & 97 & 110\end{array}\right.$ 3267 ]

$$
\text { TEMP_MAT }=\left[\begin{array}{ccc}
121 & 111 & 97 \\
32 & 32 & 32 \\
102 & 110 & 67
\end{array}\right]
$$

iii. NEXT_GEN $=28$
iv. NEXT_GEN $=81$
v. $\quad$ PREV_GEN $=107$

$$
\text { TEMP_MAT }=\left[\begin{array}{ccc}
18 & 4 & 10 \\
75 & 75 & 75 \\
13 & 5 & 40
\end{array}\right]
$$

vi. PREV_GEN = 81
vii. TEMP_ARR $=\left[\begin{array}{llllllll}10 & 4 & 75 & 18 & 75 & 40 & 75 & 5\end{array}\right.$ 13 ]
viii.

$$
\mathrm{BASE}=[0]
$$

$$
\text { EXP_MAT }=\left[\begin{array}{ccc}
2 & 9 & 28 \\
5 & 12 & 31 \\
10 & 17 & 36
\end{array}\right]
$$

ix. $\quad$ EXP_ARR $=\left[\begin{array}{lllllllll}2 & 9 & 28 & 5 & 12 & 31 & 10 & 17 & 36\end{array}\right]$
x. $\quad$ TEMP_ARR $=\left[\begin{array}{lllllll}12 & 13 & 103 & 23 & 87 & 71 & 85\end{array}\right.$ 2249 ]
xi. TEMP_ARR $=\left[\begin{array}{lllllll}24 & 134 & 206 & 139 & 174 & 163 & 170\end{array}\right.$ 11 98]
xii. CIPHER_TEXT $=\left[\begin{array}{lllllll}76 & 163 & 15 & 98 & 8 & 46 & 58\end{array}\right.$ $\begin{array}{llllllllll}16 & 166 & 142 & 230 & 44 & 28 & 132 & 41 & 76 & 191\end{array}$ $\begin{array}{llllllllll}147 & 146 & 142 & 84 & 140 & 41 & 90 & 94 & 158 & 32\end{array}$ $\begin{array}{llllllllll}44 & 176 & 149 & 102 & 194 & 24 & 44 & 114 & 11 & 195\end{array}$ $\begin{array}{llllllllll}150 & 39 & 140 & 92 & 174 & 47 & 150 & 253 & 42 & 130\end{array}$ $\begin{array}{llllllllll}9 & 42 & 146 & 54 & 144 & 73 & 146 & 190 & 35 & 152\end{array}$ $\begin{array}{llllllllll}151 & 164 & 164 & 42 & 19 & 166 & 45 & 43 & 204 & 162\end{array}$ $\begin{array}{llllllllll}163 & 158 & 220 & 165 & 45 & 10 & 58 & 156 & 172 & 10\end{array}$ $\left.\begin{array}{lllllllllll}205 & 24 & 134 & 206 & 139 & 174 & 163 & 170 & 11 & 98\end{array}\right]$ xiii. REM_LEN = 22
xiv. Goto Step-4.
$5^{\text {th }}$ Iteration
Step-4
REM_LEN = 22
REM_LEN>81: FALSE
REM_LEN>7 :TRUE
Goto Step-6

## Step-6

$\mathrm{N}=$ floor $($ square_root $(22 / 2))$

$$
\begin{aligned}
& =\text { floor }(\text { square_root }(11)) \\
& =\text { floor }(3.317) \\
& =3
\end{aligned}
$$

## Step-7

i. $\quad$ MAT_SIZE $=\left[\begin{array}{lllll}2 & 7 & 5 & 3 & 3\end{array}\right]$
ii. $\quad$ TEMP_ARR $=\left[\begin{array}{lllllll}114 & 121 & 112 & 116 & 111 & 103\end{array}\right.$ $\left.\begin{array}{lll}114 & 97 & 112\end{array}\right]$

$$
\text { TEMP_MAT }=\left[\begin{array}{ccc}
114 & 112 & 103 \\
121 & 111 & 97 \\
116 & 114 & 112
\end{array}\right]
$$

iii. NEXT_GEN $=100$
iv. NEXT_GEN $=41$
v. $\quad$ PREV_GEN $=81$

$$
\text { TEMP_MAT }=\left[\begin{array}{lll}
35 & 33 & 54 \\
40 & 62 & 48 \\
37 & 35 & 33
\end{array}\right]
$$

vi. PREV_GEN $=41$
vii. TEMP_ARR $=\left[\begin{array}{lllllll}54 & 33 & 48 & 35 & 62 & 33 & 40\end{array}\right.$ $\left.\begin{array}{ll}35 & 37\end{array}\right]$
viii.

$$
\mathrm{BASE}=[0]
$$

EXP_MAT $=\left[\begin{array}{ccc}2 & 9 & 28 \\ 5 & 12 & 31 \\ 10 & 17 & 36\end{array}\right]$
ix. EXP_ARR $=\left[\begin{array}{lllllllll}2 & 9 & 28 & 5 & 12 & 31 & 10 & 17 & 36\end{array}\right.$ ]
x. TEMP_ARR $=\left[\begin{array}{lllllll}56 & 42 & 76 & 40 & 74 & 64 & 50\end{array}\right.$ 5273 ]
xi. $\quad$ TEMP_ARR $=\left[\begin{array}{lllllll}112 & 21 & 152 & 20 & 148 & 32 & 100\end{array}\right.$ 26146 ]
xii. CIPHER_TEXT $=\left[\begin{array}{lllllll}76 & 163 & 15 & 98 & 8 & 46 & 58\end{array}\right.$ $\begin{array}{llllllllll}16 & 166 & 142 & 230 & 44 & 28 & 132 & 41 & 76 & 191\end{array}$ $\begin{array}{llllllllll}147 & 146 & 142 & 84 & 140 & 41 & 90 & 94 & 158 & 32\end{array}$ $\begin{array}{llllllllll}44 & 176 & 149 & 102 & 194 & 24 & 44 & 114 & 11 & 195\end{array}$ $\begin{array}{llllllllll}150 & 39 & 140 & 92 & 174 & 47 & 150 & 253 & 42 & 130\end{array}$ $\begin{array}{llllllllll}9 & 42 & 146 & 54 & 144 & 73 & 146 & 190 & 35 & 152\end{array}$ $\begin{array}{llllllllll}151 & 164 & 164 & 42 & 19 & 166 & 45 & 43 & 204 & 162\end{array}$ $\begin{array}{llllllllll}163 & 158 & 220 & 165 & 45 & 10 & 58 & 156 & 172 & 10\end{array}$ $\begin{array}{llllllllll}205 & 24 & 134 & 206 & 139 & 174 & 163 & 170 & 11 & 98\end{array}$ $\left.\begin{array}{lllllllll}112 & 21 & 152 & 20 & 148 & 32 & 100 & 26 & 146\end{array}\right]$
xiii. REM_LEN $=13$
xiv. Goto Step-4.

## $6^{\text {th }}$ Iteration

Step-4
REM_LEN = 13
REM_LEN>81:FALSE
REM_LEN>7 :TRUE
Goto Step-6

## Step-6

$\mathrm{N}=$ floor (square_root (13/2))

$$
\begin{aligned}
& =\text { floor }(\text { square_root }(6.5)) \\
& =\text { floor }(2.549) \\
& =2
\end{aligned}
$$

## Step-7

i. $\quad$ MAT_SIZE $=\left[\begin{array}{llllll}2 & 7 & 5 & 3 & 3 & 2\end{array}\right]$
ii. $\quad$ TEMP_ARR $=\left[\begin{array}{llll}104 & 121 & 32 & 65\end{array}\right]$

$$
\text { TEMP_MAT }=\left[\begin{array}{ll}
104 & 32 \\
121 & 65
\end{array}\right]
$$

iii. NEXT_GEN = 112
iv. NEXT_GEN = 61
v. PREV_GEN $=41$

$$
\text { TEMP_MAT }=\left[\begin{array}{cc}
65 & 9 \\
80 & 104
\end{array}\right]
$$

vi. PREV_GEN = 61
vii. TEMP_ARR $=\left[\begin{array}{llll}9 & 104 & 65 & 80\end{array}\right]$
viii.

## BASE $=[0]$

EXP_MAT $=\left[\begin{array}{cc}2 & 9 \\ 5 & 12\end{array}\right]$
ix. EXP_ARR = [ $\left.\begin{array}{llll}2 & 9 & 5 & 12\end{array}\right]$
x. TEMP_ARR $=\left[\begin{array}{llll}11 & 113 & 70 & 92\end{array}\right]$
xi. TEMP_ARR $=\left[\begin{array}{llll}22 & 184 & 35 & 184\end{array}\right]$
xii. CIPHER_TEXT $=\left[\begin{array}{lllllll}76 & 163 & 15 & 98 & 8 & 46 & 58\end{array}\right.$ $\begin{array}{llllllllll}16 & 166 & 142 & 230 & 44 & 28 & 132 & 41 & 76 & 191\end{array}$ $\begin{array}{llllllllll}147 & 146 & 142 & 84 & 140 & 41 & 90 & 94 & 158 & 32\end{array}$ $\begin{array}{llllllllll}44 & 176 & 149 & 102 & 194 & 24 & 44 & 114 & 11 & 195\end{array}$ $\begin{array}{llllllllll}150 & 39 & 140 & 92 & 174 & 47 & 150 & 253 & 42 & 130\end{array}$ $\begin{array}{llllllllll}9 & 42 & 146 & 54 & 144 & 73 & 146 & 190 & 35 & 152\end{array}$ $\begin{array}{llllllllll}151 & 164 & 164 & 42 & 19 & 166 & 45 & 43 & 204 & 162\end{array}$ $\begin{array}{llllllllll}163 & 158 & 220 & 165 & 45 & 10 & 58 & 156 & 172 & 10\end{array}$ $\begin{array}{llllllllll}205 & 24 & 134 & 206 & 139 & 174 & 163 & 170 & 11 & 98\end{array}$ $\begin{array}{llllllllll}112 & 21 & 152 & 20 & 148 & 32 & 100 & 26 & 146 & 22\end{array}$ $\left.\begin{array}{lll}184 & 35 & 184\end{array}\right]$
xiii. REM_LEN $=9$
xiv. Goto Step-4.

```
7 Iteration
    Step-4
    REM_LEN = 9
    REM_LEN>81 : FALSE
    REM_LEN>7 :TRUE
    Goto Step-6
    Step-6
    N = floor (square_root (9/2))
        = floor (square_root (4.5))
        = floor (2.121)
        =2
```


## Step-7

i. $\quad$ MAT_SIZE $=\left[\begin{array}{lllllll}2 & 7 & 5 & 3 & 3 & 2 & 2\end{array}\right]$
ii. $\quad$ TEMP_ARR $=\left[\begin{array}{llll}108 & 103 & 111 & 114\end{array}\right]$

$$
\text { TEMP_MAT }=\left[\begin{array}{ll}
108 & 111 \\
103 & 114
\end{array}\right]
$$

iii. NEXT_GEN $=22$
iv. NEXT_GEN $=91$
v. $\quad$ PREV_GEN $=61$

$$
\text { TEMP_MAT }=\left[\begin{array}{ll}
81 & 82 \\
90 & 79
\end{array}\right]
$$

vi. $\quad$ PREV_GEN $=91$
vii. TEMP_ARR $=\left[\begin{array}{llll}82 & 79 & 81 & 90\end{array}\right]$
viii.

$$
\text { BASE }=[0]
$$

EXP_MAT $=\left[\begin{array}{cc}2 & 9 \\ 5 & 12\end{array}\right]$
ix. EXP_ARR $=\left[\begin{array}{llll}2 & 9 & 5 & 12\end{array}\right]$
x. TEMP_ARR $=\left[\begin{array}{llll}84 & 88 & 86 & 102\end{array}\right]$
xi. TEMP_ARR $=\left[\begin{array}{llll}168 & 44 & 43 & 204\end{array}\right]$
xii. CIPHER_TEXT $=\left[\begin{array}{lllllll}76 & 163 & 15 & 98 & 8 & 46 & 58\end{array}\right.$ $\begin{array}{llllllllll}16 & 166 & 142 & 230 & 44 & 28 & 132 & 41 & 76 & 191\end{array}$ $\begin{array}{llllllllll}147 & 146 & 142 & 84 & 140 & 41 & 90 & 94 & 158 & 32\end{array}$ $\begin{array}{llllllllll}44 & 176 & 149 & 102 & 194 & 24 & 44 & 114 & 11 & 195\end{array}$ $\begin{array}{llllllllll}150 & 39 & 140 & 92 & 174 & 47 & 150 & 253 & 42 & 130\end{array}$ $\begin{array}{llllllllll}9 & 42 & 146 & 54 & 144 & 73 & 146 & 190 & 35 & 152\end{array}$ $\begin{array}{llllllllll}151 & 164 & 164 & 42 & 19 & 166 & 45 & 43 & 204 & 162\end{array}$

```
        163}1158 220 165 45 10 10 58 156 172 10 
        205
        112
        184
    xiii. REM_LEN = 5
    xiv. Goto Step-4.
8}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ Iteration
    Step-4
    REM_LEN = 5
    REM_LEN>81:FALSE
    REM_LEN>7 : FALSE
    Goto Step-8
    Step-8
        REM =[[ 105 1116
            MAG_MAT}(3\times3)=[\begin{array}{lll}{8}&{1}&{6}\\{3}&{5}&{7}\\{4}&{9}&{2}\end{array}
    i. i. MAG_ARR[ 216 11 49 0
        ]
    iii. REM = [llllll}17
    iv. REM =[[llllll}21
    v. REM =[[\begin{array}{lllll}{149}&{152}&{102}&{155}&{244}\end{array}]
    vi. CIPHER_TEXT =[\begin{array}{lllllllll}{76}&{163}&{15}&{98}&{8}&{46}&{58}\end{array})
        16
        147
        44
        150
        9
        151
        163 158
        205
        112
        184
        155 244]
```


## Step-9

The CIPHER_TEXT is

Î1̂®£ ${ }^{\text {a }}$
bpds\#;",+Ìfô

## V. Proposed Decryption Algorithm

## Step-1

Input the cipher text CIPHER_TEXT and the key, KEY.

## Step-2

Convert each element of CIPHER_TEXT into its corresponding ASCII value and calculate its length, LEN.

## Step-3

Set the values:
i. REM_LEN = LEN
ii. PREV_GEN = KEY

## Step-4

If REM_LEN > 81, then
Goto Step-5.
Else
If REM_LEN>7, then
Goto Step-6.
Else
Goto Step-8.

## Step-5

Perform following operations.
i. Calculate:
a. $\quad \mathrm{S}=$ sum of digits in REM_LEN
b. $\quad \mathrm{M}=$ smallest digit in REM_LEN greater than 0
c. $\quad \mathrm{N}=\mathrm{S}+\mathrm{M}$
ii. Convert N into a single digit number.
iii. Goto Step-7.

## Step-6

Calculate,

$$
\mathrm{N}=\text { floor ( square_root (REM_LEN / } 2 \text { ) ) }
$$

## Step-7

Perform Matrix Manipulation.
i. Store the value of N in an array MAT_SIZE.
ii. Extract $\left(\mathrm{N}^{*} \mathrm{~N}\right)$ values from CIPHER_TEXT and store them in array TEMP_ARR.
iii. Create Expanded Matrix EXP_MAT of size NxN by following steps:
a. Create a magic matrix of size $(\mathrm{N}-2) \mathrm{x}(\mathrm{N}-2)$.
b. Shift the elements below the auxiliary diagonal of the magic matrix by one position to downward direction and by one position to right direction and store into EXP_MAT. Set the value of newly introduced positions to zero.
c. Shift the elements below the main diagonal of the EXP_MAT by one position to downward direction and the elements above the main diagonal by one position to right direction. Set the value of newly introduced positions to zero.
d. For each element $\mathrm{a}[\mathrm{i}][\mathrm{j}]$ in the matrix EXP_MAT that has its value zero, assign it the value $\left(\mathrm{i}^{2}+\mathrm{j}^{3}\right)$.
iv. Read the Expanded Matrix EXP_MAT in row major order and store in 1-dimensional array EXP_ARR.
v. If the value of element of EXP_ARR is Even, then Right rotate the element of TEMP_ARR by 1-bit. Else

Left rotate the element of TEMP_ARR by 1-bit.
vi. Subtract the corresponding elements of EXP_ARR from TEMP_ARR.
vii. If the N is Odd, then Read the elements of TEMP_ARR and store into TEMP_MAT diagonally-downward-left-to-right from topright corner to left-


## Else

Read the elements of TEMP_ARR and store into TEMP_MAT diagonally-upward-right -to-left from top-right corner to left-bottom corner.

viii. Perform XOR on all elements in the matrix TEMP_MAT with PREV_GEN.
ix. Calculate NEXT_GEN by performing XOR between all the elements of TEMP_MAT.
x. Perform XOR on calculated NEXT_GEN with KEY.
xi. Read the square matrix TEMP_MAT diagonally-upward-left-to-right from top-left corner to rightbottom corner and store in
 array TEMP_ARR.
xii. Set PREV_GEN = NEXT_GEN.
xiii. Append the array TEMP_ARR at the end of plain text PLAIN_TEXT.
xiv. Set REM_LEN = REM_LEN $-\left(\mathrm{N}^{*} \mathrm{~N}\right)$
xv. Goto Step-4.

## Step-8

Perform Remainder Manipulation
i. Perform XOR operation on REM with KEY.
ii. If the element in REM is at even position, then Left rotate the element by (8-position) bits. Else

Right rotate the element by ( $8-$ position) bits.
iii. Create a magic matrix MAG_MAT of size $3 \times 3$.
iv. If the number of remainder elements is Odd, then
a. Read the elements of magic matrix MAG_MAT diagonally -downward-left-to-right from top-right corner to left-bottom corner and
 store in 1-dimensional array MAG_ARR.
b. If element of MAG_ARR is Odd, then

Store the square of the element in MAG_ARR.
Else,
Store the cube of element.
Else,
a. Read the elements of magic matrix MAG_MAT diagonally -upwards-right-to-left from top-right corner to left-bottom corner and store in 1-dimensional

b. If element of MAG_ARR is Even, then

Store the square of the element in MAG_ARR. Else,

Store the cube of element.
v. Perform XOR operation between the remainder elements REM and MAG_ARR and store the result in REM.
vi. Append the array REM at the end of plain text PLAIN_TEXT.

## Step-9

Print the PLAIN_TEXT.
VI. Flowchart of Encryption Algorithm

The flowchart of encryption algorithm is:


Fig. 1. Flowchart of Encryption Algorithm

The flowchart of Matrix Manipulation for encryption is:


Fig. 2. Flowchart of Matrix Manipulation for Encryption

The flowchart of Remainder Processing for Encryption is:


Fig. 3. Flowchart of Remainder Processing for Encryption
VII. Flowchart of Decryption Algorithm

The flowchart of decryption algorithm is:


Fig. 4. Flowchart of Decryption Algorithm

The flowchart of Matrix Manipulation for Decryption is:


Fig. 5. Flowchart of Matrix Manipulation for Decryption

The flowchart of Expanded Matrix is:


Fig. 7. Flowchart of Expanded Matrix
VIII. Result

On applying the proposed algorithm on different strings of varying length, the results obtained are astounding and noteworthy. The structure of statements in the plain text has been drastically changed. Some examples of the string length, key used, and encryption time are summarized in the table 1.

TABLE I. RESULTS of SEMR Encryption Algorithm

| Length of String | Key | Time (in seconds) |
| :---: | :---: | :---: |
| 8 | 11 | 0.267490 |
| 109 | 77 | 0.583583 |
| 150 | 241 | 0.691474 |
| 200 | 227 | 0.832776 |
| 250 | 245 | 0.933613 |
| 300 | 149 | 1.061114 |

On changing the key for the same input string, the resultant cipher text is completely modified and cannot be correlated, but the encryption time does not change by a significant amount. This proves the dynamism of this algorithm. Some examples of the plain text "This is very secret message." with different keys, encryption time and the resultant cipher text are summarized in the table 2 .

TABLE II. Results of SEMR Encryption Algorithm on varying KEY

| Key | Time (in seconds) | Cipher Text |
| :---: | :---: | :---: |
| 29 | 0.379354 |  |
| 69 | 0.335716 | â)nf ${ }^{\prime} \emptyset_{i} 3 \cdot \ddot{A}^{3} / 44_{1}^{1 a}{ }_{1}$ ÕIsP |
| 119 | 0.378893 |  |
|  |  | ñÿ h |
| 159 | 0.379310 | eÚÚeçcã2Áïf?4@_ |
| 209 | 0.332850 |  |
| 249 | 0.348509 | \%İ̀YËW7Í]さé»íúðouÜSRiõÏ9b |

Time per Character Graph


Fig. 8. Time per Character Graph
On plotting the time taken for encryption of each character of the string of a particular length, against the length of the string, we obtain the above Time per Character Graph.


Fig. 9. Key-Time Graph
On plotting the time taken for encryption of the string, of small length, against different keys used for encryption, we obtain the above Key-Time Graph.

## IX. Conclusion

In the proposed work, we have introduced a new technique of breaking the string into numerous parts before performing encryption. The strings which can directly break into the square matrix have been processed in such a way that they do not form the pit-holes in the algorithm or compromise with the security. The string, being broken into parts and having been separately encrypted, does not form a peculiar pattern that could be easy to recognize. The method of reading and placing the data into the matrices is different and changes rapidly, since it is not mere row-major order or column-major order. The frequency and value of characters is altered by using expanded matrix. The use of diagonal upward direction and diagonal downward direction is random and the creation of expanded matrix is unexpected and is impossible to be guessed even by hit and trial method. The key received from the user is used to hide the characters after performing some manipulation of the key. If wrong key is used, it would be impossible to break the cipher. On changing the key, the algorithm will dynamically change on itself. The encryption, and therefore, decryption of the successive matrices is linked, hence, until the present matrix is decoded perfectly, the next matrix cannot be decoded. The use of left and right rotation changes the data completely. Various diverse operations being executed on the string, changes the structure of the sentence.

The placement of the steps and operations is done in such a way that, mixing of all the steps is complicated and is therefore difficult to guess. Even if the different steps and operations are identified, placing them in correct order is very crucial and is therefore complex. The conditions applied at various steps allow the procedure to follow different set of steps for different strings.

## X. Future Scope

This algorithm introduces a technique of breaking the string into small pieces before performing any operation, and is itself sufficient to provide the confidentiality at reasonable computation rates. The algorithm may be manipulated by changing several calculations, conditions and operations to make a stronger, more reliable and highly erratic algorithm.

## REFERENCES

1] Vishwa Gupta, Gajendra Singh, and Ravindra Gupta, "A Hyper Modern Cryptography Algorithm to Improved Data Security: HMCA," International Journal of Computer Science \& Communication Networks, vol 1(3), ISSN: 2249-5789, pp. 258-263.
[2] Vishwa Gupta, Gajendra Singh, and Ravindra Gupta, "Advance cryptography algorithm for improving data security," International Journal of Advanced Research in Computer Science and Software Engineering, ISSN: 2277 128X, vol. 2, issue 1, January 2012.
[3] Manas Paul, and Jyotsna Kumar Mandal, "A Universal Bit Level Block Encoding Technique Using Session Based Symmetric Key Cryptography to Enhance the Information Security," International Journal of Advanced Information Technology (IJAIT), vol. 2 no.2, pp. 29-40, April 2012
[4] Manas Paul, and Jyotsna Kumar Mandal, "A General Session Based Bit Level Block Encoding Technique Using Symmetric Key Cryptography to Enhance the Security of Network Based Transmission," International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), vol. 2 no. 3, pp. 31-42, June 2012.
[5] Somdip Dey, Joyshree Nath, and Asoke Nath, "An Integrated Symmetric Key Cryptographic Method - Amalgamation of TTJSA Algorithm , Advanced Caesar Cipher Algorithm, Bit Rotation and Reversal Method: SJA Algorithm," I. J. Modern Education and Computer Science, DOI: 10.5815/ijmecs.2012.05.01, pp. 1-9, 2012.
[6] Niraj Kumar, Pankaj Gupta, Monika Sahu, and Dr. M A Rizvi "Boolean Algebra based Effective and Efficient Asymmetric Key Cryptography Algorithm: BAC Algorithm," IEEE, 978-1-4673-5090 7/13, pp. 250-254, 2013
[7] Gaurav Bhadra, Tanya Bala, Samik Banik, Asoke Nath, and Joyshree Nath, "Bit Level Encryption Standard (BLES) :Version-II," World Congress on Information and Communication Technologies, IEEE 978-1-4673-4805-8/12, pp. 121-127, 2012.
[8] Akanksha Mathur, "A Research paper: An ASCII value based data encryption algorithm and its comparison with other symmetric data encryption algorithms," International Journal on Computer Science and Engineering (IJCSE), ISSN: 0975-3397, vol. 4 no. 09, pp. 1650-1657, September 2012.
[9] Manas Paul, and Jyotsna Kumar Mandal, "A Novel Symmetric Key Cryptographic Technique at Bit Level Based on Spiral Matrix Concept," International Conference on Information Technology, Electronics and Communications (ICITEC - 2013), Bangalore, India, pp. 6-11, March 2013
[10] Nehal Kandele, and Shrikant Tiwari, "A New Combined Symmetric Key Cryptography CRDDBT Using - Relative Displacement (RDC) and Dynamic Base Transformation (DBTC)," International Journal of Engineering Research \& Technology (IJERT), ISSN: 2278-0181, vol. 2 Issue 10, pp. 1597-1603, October - 2013
[11] Subhranil Som, and Mandira Banerjee, "Cryptographic Technique by Square Matrix and Single Point Crossover on Binary Field," IEEE, 978-1-4673-2821-0/13, 2013.
[12] Suyash Kandele, and Veena Anand, "A Novel Cyclic-Lower-Upper Rectangular (CLUR) Cryptography Method," International Journal of Engineering Research \& Technology (IJERT), ISSN: 2278-0181, vol. 3 issue 11, pp. 329-335, November 2014.

13] Ansar Ahemad Shaikh, and Nilesh S Vani, "An Extended Approach for Securing the Short Messaging Services of GSM using Multi-threading Elliptical Curve Cryptography," International Conference on Communication, Information \& Computing Technology (ICCICT), Mumbai, India, January 2015.
[14] Gaurav Bansod, Nishchal Raval, and Narayan Pisharoty, "Implementation of a New Lightweight Encryption Design for Embedded Security," IEEE Transactions on Information Forensics and Security, vol. 10 no. 1, pp. 142-151, January 2015
[15] Jongkil Kim, Willy Susilo, Man Ho Au, and Jennifer Seberry, "Adaptively Secure Identity-Based Broadcast Encryption With a Constant-Sized Ciphertext," IEEE Transactions on Information Forensics and Security, vol. 10 no. 3, pp. 679-693, March 2015.
[16] Dindayal Mahto, and Dilip Kumar Yadav, "Enhancing Security of OneTime Password using Elliptic Curve Cryptography with Biometrics for E-Commerce Applications," IEEE, 978-1-4799-4445-3/15, 2015
[17] Subhas Barman, Debasis Samanta, and Samiran Chattopadhyay, "Revocable Key Generation From Irrevocable Biometric Data for Symmetric Cryptography," IEEE, 978-1-4799-4445-3/15, 2015.
[18] Harikrishnan T, and C. Babu, "Cryptanalysis of Hummingbird Algorithm with Improved Security and Throughput," International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SA TA), 978-1-4799-7926-4/15, 2015
[19] Ali M Alshahrani1, and Stuart Walker, "Tesseract: A 4D symmetric key container for multimedia security," IEEE, ISBN: 978-1-4799-63768/15 pp. 139-142, 2015
[20] Yoon Jib Kim, and Ki-Uk Kyung, "Secured Radio Communication Based on Fusion of Cryptography Algorithms," IEEE International Conference on Consumer Electronics (ICCE), pp. 388-389, 2015
[21] Lidia Ogiela, and Marek R. Ogiela, "Insider Threats and Cryptographic Techniques in Secure Information Management," IEEE Systems Journal, 2015, in press.
[22] Divyanjali, Ankur, and Trishansh Bhardwaj, "Pseudo Random Bit Generation Using Arithematic Progression," Fifth International Conference on Advanced Computing \& Communication Technologies, 2327-0659/15, DOI 10.1109/ACCT.2015.90, pp. 361-366, 2015
[23] Prachi, Surbhi Dewan, and Pratibha, "Comparative Study of Security Protocols to Enhance Security over Internet," Fifth International Conference on Advanced Computing \& Communication Technologies, IEEE, 2327-0659/15 DOI 10.1109/ACCT.2015.34, pp. 552-556, 2015

