
A Novel Secured Cryptographic Hash (NSCH)

Algorithm

M. Thangavel*, P. Varalakshmi**,
Teaching fellow*, Assistant Professor (Sr.Grade)**,

Department of Information Technology,

MIT Campus, Anna University, Chennai.

M. Kuthalingam,
PG Scholar,

Department of Information Technology,

MIT Campus, Anna University, Chennai.

Abstract— Cryptographic hash algorithms are utilized to create

a message digest of unique fixed length bit string for the

arbitrarily length of the data. Hash functions are considered to

be tools, which are used in digital time stamping, digital

signatures, and assuring the integrity of the messages. The data

that has been outsourced need to be periodically verified that

whether the data has been modified by anonymous user or not.

In this paper, a novel idea has been proposed for creating a

unique message digest of any message by addressing the data

integrity problem. A comparison has been made with the existing

cryptographic hashing tool MD5, modified approach on MD5 [1]

and our proposed efficient algorithm. In the NSCH algorithm,

the randomness of the message digest for the input message has

been increased which has been proved and justified in the

experimental results.

Keywords—Cryptography; Hash; MD5; message digest; digital

signature

I. INTRODUCTION

Computer security refers to the techniques that have been
used to secure data from the theft or misuse and also to enable
privacy of the user‟s data. In cloud computing, users store
their data in multiple locations in order to increase the data
availability but it is not easy to identify whether the
data remain unchanged as it is originally stored. It is difficult
to check the arbitrary length of data. The hash function is the
efficient algorithm which maps an arbitrary length of the data
to the fixed length of the data, to check whether the data
integrity is maintained or not.

A digital signature is an interesting mathematical scheme
used to demonstrate the authenticity of a digital message or
document, using cryptographic hashing algorithms like MD5,
SHA-1, and RIPEMD. A cryptographic hash function is a
form of hash function which operates on an arbitrary block of
data and returns the unique fixed length bit string. This fixed
length bit string is called the cryptography hash value of the
data. Any change in the original data will reflect on the hash
value of the respective data. Using this property, user can
easily identify and check whether the data has been modified
or not. The applications of hash value include E-mail security,
cyclic redundancy Checksum for files on a network etc.

The Cryptographic hash functions are computationally
expensive compared with standard hash functions, so it should
be used only, when the application required this hash function.
A hash function h should have minimum two properties, (i)
compression- h maps input of arbiters length „x‟ and output h

(x) of fixed length string n, (ii) easy computation – given hash
function h and input x, h (x) can be computed easily. There are
several methods to create a cryptographic hash function and
one of the important method is one-way compression function.
The cryptography hash function utilizes the concept of
block cipher modes of operation but the resulting bit string
should not be invert able. Many popular hash functions like
SHA-1, SHA-2, MD-4, MD-5 are using the concept of block
cipher modes of operation. In the proposed scheme, the
concept of block cipher modes of operation has been used to
create the hash value of the string.

The hash functions are classified into two ways. One is
keyed hash functions, which includes two distinct inputs a
message and a secret key. And another one is unkeyed hash
function, which have categories of hash functions based on
modular arithmetic, block ciphers, and customized hash
function. The cryptography hash function need to satisfy the
following 4 main properties, (i) impossible to generate original
message from the hash value (Preimage Property) (i.e) it is a
one way function, (ii) impossible to have a message x and to
find a message x‟, such that both messages hash to a same
message digest (Second Preimage Property). (iii) impossible
for two different strings have the same hash value (Collision
property) and (iv) impossible to modify the message with
modifying the hash value. The input message can be a string
of any variable length which contains alphabets with upper
and lower case, numbers and special symbols. The message
can be represented in the form as in Equation 1.

Message =
[a-zA-Z0-9!@#$ %^&*()_+\-=\[\]{};':"\\|,.<> \/?]

+
 (1)

The digest should be a string of fixed length with alphabets,
numbers and special characters. This can be achieved by
blocking the arbiter length string into blocks of string as in
Equation 2.

Message digest=
[a-zA-Z0-9!@#$ %^&*()_+\-=\[\]{};':"\\|,.<> \/?]

m
 (2)

where m is fixed length of digest value.

MD5 Hashing algorithm [5] is a message digest
authentication algorithm developed by RSA, Inc. It is a
modified version of the MD4 algorithm [4]. The hashing
algorithm computes a digest of the arbitrary length of the data.
MD5 requires that both the sender and receiver compute the
digest of the entire message.

1253

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031187

MD5 is a block-chained digest algorithm which
computes the message digest over the input data in phases of
512-byte blocks organized as little-endian 32-bit words
(Figure 1.1). In the figure, the first part is processed with an
initial seed value and results with a digest that becomes the
seed value for the next part. When the last part is computed,
its digest value is the digest value for the entire input stream.
This chained seeding prohibits parallel processing of the
blocks.

Figure 1.1 Flow of MD-5 hashing algorithm

Mendel et.al [2] research work has listed and proven out the
various collision attacks [3, 6] that can be done in MD5
hashing algorithms.

While working on the privacy of the data in cloud,
cryptographic hash algorithms are used for generating fixed
length of unique block tag for a given file. So, we proposed a
secured block-chained digest algorithm by satisfying the
properties of the cryptographic hash functions and to provide a
unique message digest for a message.

II. NOVEL SECURED CRYPTOGRAPHIC HASHING (NSCH)

ALGORITHM

The proposed (NSCH) algorithm has been represented as

flowchart in figure 2.1.

Figure 2.1 Flow of NSCH algorithm

The proposed (NSCH) algorithm (Figure 2.1) has been

described as follows:
Input: A message with arbiter length.
Output: A hash value of 128 bit for the input message

The algorithm involves the following steps,

Step1:

Enter the input string.
Using the general form, generate new random string:
 ((a-z) + (A-Z) + (0-9) +
 (!@#$ %^&*()_+\-=\[\]{};':"\\|,.<> \/?) +
 (Sunday-Saturday) + (0-9))
where „+‟ represents any position in the random string.

Step 2:

Select and count the number of alphabets from the random
string.

Step 3:
Find the Secret_value by assuming the following conditions,
to improve the randomness.

a. If the alphabet count =10 then
Secret_value = (ASCII value for the UPPERCASE
of the position of first character) +1.

b. If the alphabet count > 10 and < 20 then

Secret_value = (ASCII value for the UPPERCASE
of the position of first character – ASCII value of the
character „A‟) + (ASCII value for the UPPERCASE
of the position of second character – ASCII value of
the character „A‟) +2.

c. If the alphabet count >= 20 and <30 then

Secret_value = (ASCII value for the UPPERCASE
of the position of first character – ASCII value of the
character „A‟) + (ASCII value for the UPPERCASE
of the position of third character – ASCII value of
the character „A‟) +2.

d. If the alphabet count >= 30 then

Secret_value = (ASCII value for the UPPERCASE
of the position of second character – ASCII value of
the character „A‟) + (ASCII value for the
UPPERCASE of the position of fourth character –
ASCII value of the character „A‟) +2.

where value of alphabetical count varies based on the
application or message.

Step 4:
Consider a lookup table as given in the Table 2.1 for finding
the alphabet position,

Table 2.1 Lookup table - Alphabets Position

A B C D E F G H I J K L M N

0 1 2 3 4 5 6 7 8 9 10 11 12 13

O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25

1254

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031187

Step 4 (Cont…)

a. Select each character from the input string.
b. New position = find the position from the lookup

table + Secret_value % 26
c. New alphabet = new position equaling value from

the lookup table.

Step 5:

a. Find the binary string value for each character using
ASCII value of the character.

b. Find the binary string value for the numbers and
special characters using the ASCII value.

Step 6:
Based on the sequence of the random string,

a. Convert the string length as multiple of 128 bits and
append 0‟s if it not.

b. Append 64 more bits by scanning the binary string of
previous step starting from the location (length of the
string /3)

Step 7:
a. Divide the output string of previous step in 128 bit

blocks

b. Generate 128 bit binary key using random key
generator

c. Perform 128 bit block string with 128 bit random key
string any of the bitwise operations like AND,
OR,XOR, Left shift, Right shift,etc.

d. Store the digest output.

Step 8:

a. Perform a bitwise operation among the current
message digest string and previous message digest
string

b. Perform the step 7 until the input message are
exhausted

Step 9:
Convert the output of previous step into corresponding
character value and store it as the final 128 bit block.

Step 10:
The final 128 bit block message and 128 bit random key are
combined using bitwise operation to produce the final
message digest value.

A. Random key generation

A key is generated with 128 bit length. The key can be

generated using following equation,

Key = (key*44) % 967 (2.1)

Keyf = (Key)! (2.2)

where binary equivalent of Keyf is calculated and any 128 bit

taken as key for a step.

The random key is generated by using recurring function.

In each and every step one block of message string and a

random key proceed to give message digest. The process

involves with OR, AND, XOR and any shift wise operations.

The stepwise message digest process performs the previous

step wise message digest values and form the final message

digest form. The output string should be constant length from

the any arbiter length input string.

B. Example for NSCH Algorithm

Step 1:

Let the input string be “hash123?Function”

Step 2:

The random string will be generated using the function,
 ((a-z) + (A-Z) + (0-9) +
 (!@#$ %^&*()_+\-=\[\]{};':"\\|,.<> \/?) +
 (Sunday-Saturday) + (0-9)).
For the above given example, the random string be,

 WEDNESDAYhash123?Function2

 WEDNESDAY3327163049264

And select only alphabet =

 WEDNESDAYhashFunctionWEDNESDAY

And the length of selected alphabets length is 30

Step 3:

For the given input string, character positions are 2 and 4,

since alphabet count is 30.

Secret_value = ((65-65)+(72-65))+2 = 9

Step 4:

The new alphabet will be generated for the random string,

FNMWNBMJHQJBQFODWLCRXWFNMWNBMJH

„W‟ will be converted to „F‟ as follows:

NewPosition=(„W‟ position - lookup table+Secret_value)%26.

 = (22 + 9)%26 = 5.

New Alphabet = F.

Step 5:

Take the ASCII value of each characters and special symbols

and numbers.

Table 2.2 – ASCII Value of the New String

010001100100111001001101010101110100111001000010

010011010100101001001000010100010100101001000010

010100010011000000110000001100110011000100110000

001100000011001100110010001100000011000000110011

001100110011000000110000001100110100011001001111

010001000101011101001100010000110101001001011000

010101110011000000110000001100110011001001000110

010011100100110101010111010011100100001001001101

010010100100100000110000001100000011001100110011

001100000011000000110011001100110011000000110000

001100110011001000110000001100000011001100110111

001100000011000000110011001100010011000000110000

001100110011011000110000001100000011001100110011

001100000011000000110011001100000011000000110000

001100110011010000110000001100000011001100111001

001100000011000000110011001100100011000000110000

0011001100110110001100000011000000110011001101

1255

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031187

Step 6:

The bit sequence is appended with input binary string and the

resulting string is 64 shorter than a multiple of 512.

Table 2.3 – ASCII Value with appended bits

010001100100111001001101010101110100111001000010

010011010100101001001000010100010100101001000010

010100010011000000110000001100110011000100110000

001100000011001100110010001100000011000000110011

001100110011000000110000001100110100011001001111

010001000101011101001100010000110101001001011000

010101110011000000110000001100110011001001000110

010011100100110101010111010011100100001001001101

010010100100100000110000001100000011001100110011

001100000011000000110011001100110011000000110000

001100110011001000110000001100000011001100110111

001100000011000000110011001100010011000000110000

001100110011011000110000001100000011001100110011

001100000011000000110011001100000011000000110000

001100110011010000110000001100000011001100111001

001100000011000000110011001100100011000000110000

001100110011011000110000001100000011001100110100

00

00000000000000000000000000000000

Step 7:

The new 64 bits are appended to input binary string starting

from (length of string /3)th position. So the binary string

length became multiple of 512 bits, so we can divide the

blocks of 128 bits.

Table 2.4 – 128 bit blocks

Block 1:

010001100100111001001101010101110100111001000010

010011010100101001001000010100010100101001000010

01010001001100000011000000110011

Block 2:

001100010011000000110000001100110011001000110000

001100000011001100110011001100000011000000110011

01000110010011110100010001010111

Block 3:

010011000100001101010010010110000101011100110000

001100000011001100110010010001100100111001001101

01010111010011100100001001001101

Block 4:

010010100100100000110000001100000011001100110011

001100000011000000110011001100110011000000110000

00110011001100100011000000110000

Block 5:

001100110011011100110000001100000011001100110001

001100000011000000110011001101100011000000110000

00110011001100110011000000110000

Block 6:

001100110011000000110000001100000011001100110100

001100000011000000110011001110010011000000110000

00110011001100100011000000110000

Block 7:

001100110011011000110000001100000011001100110100

00

00000000000000000000000000000000

Step 8:

Bitwise operation is not done here, since only one 128 bits is

available.

Table 2.5 – Bitwise XOR with 128 bit blocks

R1:Block1 Block2

011101110111111001111101011001000111110001110010

011111010111100101111011011000010111101001110001

00010111011111110111010001100100

R2: R1 Block3

001110110011110100101111001111000010101101000010

010011010100101001001001001001110011010000111100

01000000001100010011011000101001

R3:R2 Block4

011100010111010100011111000011000001100001110001

011111010111101001111010000101000000010000001100

01110011000000110000011000011001

R4:R3 Block5

010000100100001000101111001111000010101101000000

010011010100101001001001001000100011010000111100

01000000001100000011011000101001

R5:R4 Block6

011100010111001000011111000011000001100001110100

011111010111101001111010000110110000010000001100

01110011000000100000011000011001

R6:R5 Block7

010000100100010000101111001111000010101101000000

011111010111101001111010000110110000010000001100

01110011000000100000011000011001

where R1,R2,…R5 are intermediate results and R6 is the

final 128 bit message.

Step 9:

Let the random key be Key=31054905. Repeat the key 2 times

to get 128 bits.

Table 2.5 – Bitwise XOR with message and key

Key : 3105490531054905

Key (in binary):

001100110011000100110000001101010011010000111001

001100000011010100110011001100010011000000110101

00110100001110010011000000110101

Message Digest (binary)= R6 Key

011100010111010100011111000010010001111101111001

010011010100111101001001001010100011010000111001

1256

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031187

01000111001110110011011000101100

Message Digest (Hex) =

 71751f091f794d4f492a3439473b362c

The theoretical and practical improvements can be achieved

are, (i) MD5 bit sequences appended with “01” bit sequences,

so the resulting string 64 shorter than multiple of 512, (ii) In

MD5 64 bits added to input string to take 64 bits strings from

the arbiter positions. But in our algorithm length of the string

/3. This will add more random selection, (iii) MD5 no buffer is

used to store 128 bit blocks. In our mechanism also no buffer

is used to divide 128 bits blocks from the arbiter length string,

(iv) A random key secure against any collision and

vulnerability and attack, (v) The output message digest

contains all alphabets.

III. EXPERIMENTAL RESULTS

For the implementation purpose, JAVA has been used as a

programming language for this implementation and for the

comparison purpose, the existing algorithms too implemented.

The input plain text need to be given as a console input and

the proposed NSCH algorithm calculate the message digest

output and shown below (Table 3.1).

Table 3.1 Sample Random Strings

Input

String
Random String

lingam
CEDTQOBYDWQC0030CEDTQO003700360039003

600390034003100320034003200320034003100360038

cat
JLKAXVZXQ0030JLKAXV0037003600390037003

10033003700310039003200380033003800370035

bat
PQAOZWUXWP0031PQAOZWU003700360039003

700320031003200370038003300320030003500360038

hash
OARMJHQJBQ0034OARMJH0037003600390037

00320036003500350032003400310039003300370031

hash
VXWMJHQJBQ0030VXWMJH003700360039003700

330035003500360031003100360039003000380037

As part of Analyzing, 5 random strings have been taken and

calculated the percentage of the distinct characters. The results

are shown in the table below. And figure 3.1 shows the

comparison results. The efficiency of the NSCH Algorithm

can be proven by comparing it with existing MD5 and Secured

Cryptography Hashing algorithms [1] by considering the

maximum number of characters each can have in their

message digest hash value.

Table 3.2 Sample Random Strings with the comparison

Input String MD5
Secured

Cryptography [1]

Our

Scheme

ab 62.5 65.6 69.5

system

simulation
50 59.37 65

cd 46.87 65.62 70.23

project reports 50 70.73 74.33

lingam 40.62 76.56 81.21

Average 49.998 67.576 72.054

Figure 3.1 Sample Random Strings – comparison results

A MD5 hash digest is of the general form: ((a-z) + (0-9))

^32, so the sample space of the characters in the combination=
26+10= 36. Secured Cryptography algorithm [1] is of the
general form: ((a-z) + (A-Z) + (0-9) + (! - ;)) ^64, so, the
sample space of the characters in the combination= 256. The
proposed NSCH algorithm is of the general form: ((a-z) + (A-
Z) + (0-9) + (!@#$ %^&*()_+\-=\[\]{};':"\\|,.<> \/?) +
(Sunday-Saturday) + (0-9)) ^64, so the sample space of the
characters combination = 273. In MD5 the sample space for
occurrence of characters are 36. We can generally write each
unique character can occur with 1.125 equal distributions.
Similarly the secured cryptography algorithm also having
sample space as 256, so each position can accommodate with
4 distinct characters. The proposed scheme sample space is
273 and for equal distribution each position can accommodate
with 5.12 distinct characters. So that proposed algorithm
NSCH is (5.125/1.125) = 4.55% random than existing MD5
algorithm.

IV. CONCLUSION AND FUTURE WORK

In this paper work, a novel secure cryptographic hashing

algorithm has been proposed and it has been compared with

the existing algorithms, in order to prove that the new NSCH

algorithm prove that it can generate more randomness and

unique message digest for the arbitrarily length of the input

string. The brute force and rainbow table based attacks can

take more time to find the hash value. The future work is (i) to

develop more stable, robust algorithm with less time and space

complexity, (ii) to improve space and time complexity, and

(iii) The NSCH algorithm shows a randomness efficiency of

around 80% and it need to be improved better.

1257

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031187

REFERENCES

[1] Rakesh Mohanty, Niharjyoti Sarangi, Sukant kumar Bishi, "A secured

Cryptographic Hashing Algorithm", url: http://arxiv.org/abs/1003.5787,
2010.

[2] Florian Mendel,Christian Rechberger,Martin Schlaffer, "MD5 is Weaker

than Weak: Attacks on Concatenated Combiners", ASIACRYPT 2009,
LNCS 5912, pp. 144-161, 2009.

[3] B. den Boer, Antoon Bosselaers, Collisions for the Compression

Function of MD5, Eurocrypto, 1993.

[4] R. L Rivest, The MD4 Message Digest Algorithm, Request for

Comments (RFC)1320, Internet Activities Board, Internet Privacy Task
Force, April 1992.

[5] R. L Rivest, The MD5 Message Digest Algorithm, Request for

Comments (RFC)1321, Internet Activities Board, Internet PrivacZ Task
Force, April 1992.

[6] Xiaoyun Wang; Hongbo Yu. “How to Break MD5 and Other Hash

Functions”. EUROCRYPT. ISBN 3-540-25910-4,2005.

1258

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031187

