
A Novel Evaluation of Query Processing and

Optimization in DBMS

Mohd Muntjir
College of Computers and Information Technology

Tail University, Taif,

 Saudi Arabia

 Abstract- Query Processing is the systematic method of accessing

the require information from a database system in an expected

and reliable trend. Database systems must be agile to respond to

requests for information from the user i.e. process queries. In

huge database systems that may be running on unreliable and

elusive domain it is no easy to outcome to dynamic database

query plans based on information available exclusively at

compile time. Obtaining and finding the database results in a

prompt manner deals with the method of Query Optimization.

Adequate processing of queries is a major requirement in various

interactive environments that associates huge amounts of data.

Dynamic query processing in environments such as the

multimedia search, Web, and distributed systems has shown a

main impact on performance and optimization. This paper will

suggest and propose the main concepts of query processing and

query optimization in the relational database systems. It is also

describing and differentiating query-processing method in

relational database systems.

 Keywords: Query Processing, Query Optimization, and Database

I. INTRODUCTION

The basic part of any Database Management Systems is query

processing and optimization. The outcomes of queries must be

accessible in the timeframe required by the complying user

[2]. Query processing techniques based on various design

dimensions can be defined as [1]:

A. Query model:

Processing techniques are defined according to the query

model they consider. Few techniques recognize a selection

query model, where outcomes are attached basically to base

tuples. Alternative techniques speculate a join query model,

where final outcomes are calculated over join results. A third

section considers an aggregate query model, where we are

responsive in ranking groups of tuples.

B. Implementation level:

These processing techniques are defined according to their

level of association with database systems. E.g., some

techniques are designed in an application layer on top of the

database systems, although others are implemented as query

operators.

C. Data access methods:

Processing method is classified according to the data access

technique they consider to be accessible in the fundamentals

data sources. For instance, some techniques define the

availability of random access, although others are controlled to

only classified access.

D. Ranking function:

Processing techniques are classified based on the limitations

they establish on the latent ranking (scoring) functions. Best

suggested techniques expect monotone scoring functions.

E. Data and query uncertainty:

Processing techniques are defined based on the ambiguity

elaborated in their data and query models. Many techniques

establish exact results, whilst others order for proximate

answers, or manage indefinite data.

II. QUERY PROCESSING

Query processing specifies to the range of activities integrated

in extracting data from a database system. The activities

comprise translation of queries in high-level database

languages into expressions that can be used at the physical

level of the file systems, and a variation of query-optimizing

conversion, and real interpretation of queries. Furthermore, a

database query is the vehicle for instructing a DBMS to update

or fetch specific data to/from the physically stored

intermediate. The real updating and fetching of data is

established through different low- level procedures [10].

Instance of such operations for a relational DBMS can be

relational algebra operations such as select, project, join,

Cartesian product. [11]. As long as the DBMS is created and

designed to process these low -level operations purposely, it

can be quite the burden to a user to create requests to the

DBMS in these designs.

There are three phases [12] that a query passes through during

the DBMS’ processing of that query: 1. parsing and translation

2. Optimization3. Evaluation

Furthermore, the first step in processing a query referred to a

Database Management System is to convert the query into a

form accessible by the query-processing engines. High- level

query languages such as SQL defined a query as a sequence or

string, of characters.

Actual sequences of characters represent different types of

tokens such as literal strings operators, keywords, operands,

etc. Similar to all languages, there are rules (syntax and

grammar) that control how the tokens can be integrated into (i.

valid statements.

The major job of the parser is to extract the tokens from the

raw string of characters and translate them into the equivalent

internal data elements and structures (i.e. query graph, query

tree). The last task of the parser is to authenticate the validity

and syntax of the real query strings. In second phase, the query

processor implements rules to the internal data structures of

the query to transform these structures into similar, but more

adequate demonstrations. The standard can be based upon

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111390

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1676

mathematical models of the relational algebra expression and

tree, upon cost calculates of various algorithms used to

operations or upon the semantics within the query and the

relations it integrates. Electing the proper rules to implement,

when to apply them and how they are implemented is the

function of the query optimization engine.

Fig. 1. Query processing

The last step in processing a query is the evaluation phase.

The best evaluation plan candidate developed by the

optimization engine is selection and then execution. Note that

there can stand various methods of executing a query. Beyond

processing a query in easy consecutive methods, many of a

query’s individual operations can be oppressed in parallel

either as autonomous processes or threads or as interdependent

pipelines of processes. Unconcerned of the method selected,

the permanent results should be same.

Consider for example in Fig.2 :

Fig. 2. A query-evaluation plan

III. MEASURES OF QUERY COST

Cost of query is basically measured as total overdue time for

answering query in a database. Furthermore, expanse of query

evaluation can be assumed in terms of a number of various

assets, and CPU time to execute a query, along with disk

accesses, and, the expanse of communication and

broadcasting, in a distributed or parallel database system. The

response time for a query-evaluation plan, assuming no other

action is going on the computer systems, would scheduled for

all these costs, and could be used as a better scope of the cost

of the methods. In some database systems, although, disk

approaches are usually the most extensive expanse, since disk

accesses are low associated to in-memory operations. Further,

the speed of CPU has been reestablishing much faster than

have disk speed. Henceforth, it is more similar that the time

spent in disk activity will continue to control and maintain the

total time to execute queries in database systems. Decisively,

manipulating and estimating the CPU time is basically

conventional compared to calculating the disk-access

expanses? Mostly the people consider that the disk-access cost

feasible estimation of the cost of a query-evaluation strategy in

databases.

IV. QUERY ALGORITHMS

A. Selection Algorithms

According to selection algorithm, select operation must search

through the data files for records meeting the selection

prototype. Following are some examples of simple and basic

(one attribute) selection algorithms [13].

1) Linear search:

The Database must use a linear search when no database index

exists on the selection condition. Each record from the file is

read and compared to the selection method. The execution

expanse for searching on a non-key attribute is br, where br is

the number of blocks in the file describing relation r. On a

  key attribute, the average cost is br/2, with a worst case of

br. This is basically the type of operation that used to impede

with proper indexing.

2) Binary search:

The DBMS might apply a binary search on an index with non-

unique entries. A binary search, on equality, performed on a

primary key attribute has a worst-case cost of log   (br). It

can be significantly more effective than the linear search, for a

generous number of records.

3) Search using a primary key index on equality:

In a DBMS With a B
+

-tree index, an similarity comparison on

a key attribute will have a worse -case cost of the height of the

tree plus one to fetch the record from the data files. Similarity

comparison on a non-key attribute will be the same excluding

that various records may meet the   condition, in which

matter, we add the number of blocks including the records to

the expanses.

4) Search using a primary index on comparison:

In a DBMS When the comparison operators (<, , >,) are

used to fetching various records from a file sorted by the

search attributes, the first record satisfying the condition is

placed and   the total blocks before (<,) or after (>,) is

added to the cost of locating the first records.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111390

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1677

5) Search using a secondary index on equality:

Fetching one record with an equality comparison on a key

attributes or retrieves a set of records on a non-key attribute

[6]. Furthermore, for a single record, the cost will be equal to

the cost of locating the search key in the index file plus one for

fetching the data record. For different multiple records, in a

database the cost will be equal to the cost of locating the

search key in the index file plus one block approaches for each

data record retrieval, since the data file is not numbered on the

search attributes.

B. Join Algorithms

The join algorithm can be developed in a different way. In

terms of disk accesses, the joint operations can be very costly,

so implementing and utilizing sufficient join algorithms is

more important in minimizing a query’s execution time [8].

Following are four types of join algorithms:

1) Nested-Loop Join:

This join also called nested iteration that uses one join input as

the outer input table and one as the inner (bottom) input table.

The outer loop accesses the outer input table row by row.

Furthermore, the inner loop executed for each outer row and

searches for matching rows in the inner input table. Hence, It

abides of an inner for loop nested within an outer for loop

[12].

2) Index Nested-Loop Join:

If the search ventures an index, it is called an index nested

loops join. This algorithm is almost same as the Nested-Loop

Join, besides an index file on the inner relation’s join attribute

is used versus a data-file scan on each index lookup in the

inner loop is basically an equality selection for maintaining

one of the selection algorithms. Let c be the cost for the

lookup then the worst - case cost for joining rand sis br + nr *

c.

3) Sort –Merge Join:

The sort-merge join algorithm depends on the actual join

condition, and it will depend on whether join attributes are

keys or not. This algorithm can be used to process natural

joins and equi-joins and requires that each   relation be sorted

by the common attributes between natural join and equi-joins

[5].

4) Hash Join:

Hash joins require an equijoin predicate to comparing values

from one table with values from the other table using the

equals’ operator. The hash join algorithm can be used to

access natural joins and equi-joins. Further, the hash join

maintains two hash table file structures to partition each

relation’s records into sets assuming identical hash values on

the join attributes. Each and every relation is scanned and its

relate hash table on the join attribute values is create.

C. Indexes Role

The execution time of many operations, such as select and join

can be decrease by using indexes [7]. Let us see some of the

types of index file structures and the roles they play in

consuming execution time:

1) Dense Index:

A dense index is a file with pairs of keys and pointers for

every record in the data file. Each key in this file is related

with a particular pointer to a record in the sorted data files.

The search key orders Data-file and each and every search key

value have a different index record. This type of structure

needs only a single seek to find the first occurrence of a set of

contiguous records with the aspired search values [9].

2) Sparse Index:

A sparse index is a file with pairs of keys and pointers for

every block in the data files. Every key in this file is attached

with a particular pointer to the block in the sorted data files.

The index search key orders Data-file and only some of the

search key values have related index records. For each index

record’s, data-file pointer indicates to the first data-file record

with the search key values. Further, while this structure can be

less sufficient than a dense index to find the valued record, it

needs less storage space and fewer expenses during insertion

and deletion operations.

3) Primary Index:

If an index is built on ordering key-field of file, it is called

Primary Index. Primary index defined on an ordered data file.

The data file is ordered on a key field. The data file is

sequenced by the attribute that is also the search key in the

index file. Any primary index can be dense or sparse. A

primary index is also considered to as an Index-Sequential File

[5].

4) Secondary Index:

If an index is built on non-ordering field of file, it is called

Secondary Index. Secondary index must be dense. The data

file is sequenced by an attribute that is not same as the search

key in the index file.

5) Multi-Level Index:

A Multilevel Index is an alteration of the secondary level

index system. An index structure have 2 or more tiers of

records where an upper tier’s records indicate to related index

records of the tier down. The bottom tier’s index records

possess the pointers to the data-file records. Furthermore,

multi-level indices can be used to reduce the number of disk

block reads required during a binary search in a DBMS.

6) Clustering Index:

If an index is creating on ordering non-key field of file it is

called Clustering Index. Further, a two-level index structure

where the records in the first level contain the clustering field

value in one field and in the second level, a second field

indicating to a block [of 2
nd

level records]. The records in the

second level have one field that indicates to areal data file

record or to another 2
nd

level block.

4.3.7. B
+

-tree Index:B
+

-tree Indices are an alternative to

indexed sequential files. B
+

-tree Index means multi- level

index with a balanced-tree structure. Creating a search key

value in a B
+

-tree is proportional to the height of the tree

maximum number of seeks required is log(height).

Although, this, on average is more than a single -level, dense

index that requires only one seek. The B
+

-tree structure has a

unique advantage in that it does not need rearrangement; it is

self-developing because the tree is kept arranged during

insertions and deletions.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111390

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1678

V. CHOICE OF EVALUATION PLANS

In a DBMS, the query optimization engine originates a set of

candidate evaluation plans. Although, some will, in heuristic

theory, creates faster, more sufficient executions. On the

contrary, by previous historical summary, be more efficient

than the theoretical model; this can very well be the case for

queries dependent on the semantic nature of the data to be

managed. Whereas, still others can be more efficient due to

―outside agencies‖ such as competing applications, network

congestion, on the same CPU, etc.

VI. CONCLUSIONS

In a DBMS, One of the major functional needs of a database

system is its ability to process queries in convenient manner. It

is basically true for huge, mission critical applications such as

aeronautical applications, banking systems and weather

forecasting, which can possess millions and even trillions of

records. The basic need for faster and faster, ―immediate‖

results never conclude. Hence, a big deal of research and

resources is spent on creating and generating smarter, highly

efficient query optimization engine for query optimization.

Among them, some of the basic techniques of query

processing and optimization have been presented and redefine

in this paper.

REFERENCES

[1] D. Calvanese, G. DeGiacomo, M. Lenzerini and M. Y. Vardi. Reasoning
on Regular Path Queries. ACM SIGMOD Record, Vol. 32, No. 4,
December 2003.

[2] Henk Ernst Blok, DjoerdHiemstra and Sunil Choenni, Franciska de
Jong, Henk M. Blanken and Peter M.G. Apers. Predicting the cost-
quality trade-off for information retrieval queries: Facilitating database
design and query optimization. Proceedings of the tenth international
conference on Information and knowledge management, Pages 207 -
214.

[3] Andrew Eisenberg and Jim Melton. Advancements in SQL/XML. ACM
SIGMOD Record, Vol. 33, No. 3, September 2004..

[4] AndrewEisenberg and Jim Melton. An Early Look at XQuery API for
JavaTM (XQJ). ACM SIGMOD Record, Vol. 33, No. 2

[5] RamezElmasri and Shamkant B. Navathe. Fundamentals of Database
Systems, second edition. Addison-Wesley Publishing Company.

[6] DonaldKossmann and Konrad Stocker. Iterative Dynamic Programming:
A new Class ofQuery Optimization Algorithms. ACM Transactions on
Database Systems, Vol. 25, No. 1, March 2000, Pages 43- 82.

[7] Chiang Lee, Chi - Sheng Shih and Yaw - Huei Chen. A Graph-theoritic
model for optimizing queries involving methods. The VLDB Journal —
The International Journal on Very Large Data Bases, Vol. 9,Issue 4,
Pages327 - 343.

[8] Hsiao-Fei Liu, Ya - Hui Chang and Kun-Mao Chao. An Optimal
Algorithm for Querying Tree Structures and its Applications in
Bioinformatics. ACM SIGMOD Record Vol. 33, No. 2, June 2004.

[9] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and JafarAdibi. Expressing
and Optimizing Transactions on Database Systems, Vol. 29, Issue 2,
Pages 282 - 318.

[10] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and JafarAdibi. Optimization
of Sequence Queries in Database Systems. In Proceedings of the
twentieth ACM SIGMOD -SIGACT-SIGART symposium on Principles
of database systems, May 2001, Pages 71 -81.

[11] Thomas Schwentick. XPath Query Containment. ACM SIGMOD
Record, Vol. 33, No. 1, March 2004.

[12] AviSilbershatz, Hank Korth and S. Sudarshan.Database Systems
Concepts,7thEditions.McGraw – Hill.

[13] Dimitri Theodoratos and WugangXu. Constructing Search Spaces for
Materialized View Selection. Proceedings of the 7th ACM international
workshop on Data warehousing and OLAP, Pages 112 - 121.

[14] Jingren Zhou and Kenneth A. Ross. Buffering Database Operations for
Enhanced Instruction Cache Performance. Proceedings of the 2004
ACM SIGMOD international conference on Management of data, June
2004, Pages 191 202.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111390

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1679

