

A Novel Approach to Design Neuro-Fuzzy Expert System for Software

Estimation

B V A N S S Prabhakar Rao1 & P Seetha Ramaih2

 1Research Scholar, Department of Computer Science and Engineering, JNTU Kakinada, Kakinada,

Andhra Pradesh, India
2Professor Emeritus, Dept. of CS & SE, College of Engineering (A), Andhra University Visakhapatnam,

Andhra Pradesh, India

Abstract

The software industry estimators does not estimate

required projects effort, cost and schedule well.

Developing an effective estimation model is one of the

most challenging and important activities in software

development. Existing project estimating models are

good but not satisfying the needs of the customer

organizations. Software developers and clients are

extremely confident about the project and team’s

capabilities. There is modest that software cost

estimation models can reimburse for when software

projects lack the necessary information and knowledge

at the time when cost and schedule are estimated.

Furthermore, most estimation models need careful

understanding of the model parameters as well as a

certain level of domain expertise in order to use them

efficiently. Without the proper understanding, teams

may potentially end up exaggerating the capability of

the team’s personnel, or understating the complexities

of the project. These misrepresentations lead to

inaccurate and non-realistic estimations. That result

in poor project planning with schedule overruns. This

paper suggests a mechanism to design a model to cater

the needs of the project managers to make accurate

estimations. The proposed system will help to manage

resources, control and plan a project, and deliver a

project on time, on schedule and on budget.

1. Introduction

A Software Project is dynamic. The code changes, the

design changes, and the requirements change. What’s

more, changes in the requirements lead to more

changes in the design, and changes in the design lead to

even more changes in the code and test cases. But the

estimation process is static. If the software cost is

underestimated, inefficiencies will be brought to the

project and the actual cost will be surely increased.

Overestimated software cost will lose the bid, waste the

time, money, staff and other resources, and lead to the

financial loss, even economic failure of the

organization. Therefore, the ability to accurately

estimate the software cost needed to complete the

project on time is crucial for software organizations [1-

5].

How many were delivered on time and on budget?

How many estimates were accurate? IT projects are

notorious for over-running, and here are several reasons

why it occurs… [Craig Buckler, 2010].

 The project is poorly scoped

 Development time is estimated by non-

programmers

 Developer estimates are too optimistic

 The project is not adequately dissected

 Estimated time is used

 Sometimes more developers may involve for quick

estimation

 The project scope changes

 Estimates are fixed

 Testing time is forgotten

 Estimates are taken too literally

and many more …….

“Measure twice, cut once” is highly relevant to the

construction part of software development. The worst

software projects end up doing construction two or

three times or more. Doing the most expensive part of

the project twice is as bad an idea in software as it is in

any other line of work. Software projects can be

measured in numerous ways. For any project attribute,

it’s possible to measure that attribute in a way that’s

superior to not measuring it at all. If data is to be used

in a scientific experiment, it must be quantified. Be

aware of measurement side effects. Measurement has a

motivational effect. People pay attention to whatever is

measured, assuming that it’s used to evaluate them.

Choose what you measure carefully. People tend to

focus on work that’s measured and to ignore work that

isn’t. To argue against measurement is to argue that it’s

better not to know what’s really happening on your

project. When you measure an aspect of a project, you

3012

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121307

know something about it that you didn’t know before.

You can see whether the aspect gets bigger or smaller

or stays the same. The measurement gives you a

window into at least that aspect of your project. The

window might be small and cloudy until you refine

your measurements, but it will be better than no

window at all. To argue against all measurements

because some are inconclusive is to argue against

windows because some happen to be cloudy [8].

Figure 1. Software management

2. Estimation and Measurement

Until a system is deployed at the customer site and

developed product in use, no one can ever be quite sure

whether it meets the customer’s needs or not. To solve

the above problem understand the software application

domain that is being developed and communicate

effectively with clients and users. Without proper

understanding of the customer requirements and

domain knowledge estimation is not achievable.

Software development is heavily labour-intensive;

however, skills of team members can vary dramatically

and probably are the biggest single factor affecting

success of a project [12, 19, 20].

Figure 2. Measurement advantages at various levels

Estimation and measurement are two faces of the

same attribute of a software application: size. This

explanation can be extended to other similar attributes

of software projects that include effort, schedule, and

quality parameters. Estimation is certainly not done at

the end of the project. During the contract process there

is a need to estimate the size, effort, and cost of a

software product that is yet to be developed [10,11,13].

Figure 3. Qualitative Assessment of the product

With the exception of the contract phase and the

time preceding the first milestone, measurement

activity takes place in all other situations. At the

completion of every milestone, both measurement of

the completed activities and estimation of the balance

milestones based on the analysis of the data collated,

are done. This helps in tracking as well as making

corrections to a project schedule that might be going off

track and helps the project deliver on time, and within

budget [9].

3. Hybrid Intelligent System

A hybrid intelligent system is one that combines at

least two intelligent technologies. Suppose, combining

a neural network with a fuzzy system results in a hybrid

neuro-fuzzy system. The combination of probabilistic

reasoning, fuzzy logic, neural networks and

evolutionary computation forms the core of soft

computing, an emerging approach to building hybrid

intelligent systems capable of reasoning and learning in

an uncertain and imprecise environment [7, 16-18].

3.1 Initial weights for training

Assign initial weights for size, defect tracking,

productivity, overall quality and maintainability by

obtaining the values from similar previous projects. Of

course most of the software projects are unique. At that

time it is better to depend on the expert suggestion.

3013

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121307

Figure 4. Developing a baseline of data

Size

S11: Total lines of code written

S12: Total comment lines

S13: Total number of classes or routines

S14: Total data declarations

S15: Total blank lines

Defect Tracking

D11: Severity of each defect

D12: Location of each defect (class or routine)

D13: Origin of each defect (requirements, design,

construction, test)

D14: Way in which each defect is corrected

D15: Person responsible for each defect

D16: Number of lines affected by each defect correction

D17: Work hours spent correcting each defect

D18: Average time required to find a defect

D19: Average time required to fix a defect

D20: Number of attempts made to correct each defect

D21: Number of new errors resulting from defect correction

Productivity

P11: Work-hours spent on the project

P12: Work-hours spent on each class or routine

P13: Number of times each class or routine changed

P14: Dollars spent on project

P15: Dollars spent per line of code

P16: Dollars spent per defect

Overall Quality

Q11: Total number of defects

Q12: Number of defects in each class or routine

Q13: Average defects per thousand lines of code

Q14: Mean time between failures

Q15: Compiler-detected errors

Maintainability

M11: Number of public routines on each class

M12: Number of parameters passed to each routine

M13: Number of private routines and/or variables on each

class

M14: Number of local variables used by each routine

M15: Number of routines called by each class or routine

M16: Number of decision points in each routine

M17: Control-flow complexity in each routine

M18: Lines of code in each class or routine

M19: Lines of comments in each class or routine

M20: Number of data declarations in each class or routine

M21: Number of blank lines in each class or routine

M22: Number of gotos in each class or routine

M23: Number of input or output statements in each class or

routine

Religious Issues
R11: Programming language

R12: Indentation style

R13: Placing of braces

R14: Choice of IDE

R15: Commenting style

R16: Efficiency vs. readability trade-offs

R17: Choice of methodology—for example, scrum vs. extreme

programming vs. evolutionary delivery

R18: Programming utilities

R19: Naming conventions

R20: Use of gotos

R21: Use of global variables

R22: Measurements, especially productivity measures such as

lines of code per day

4. Neuro-Fuzzy Expert System

Fuzzy logic and neural networks are natural

complementary tools in building intelligent systems.

While neural networks are low-level computational

structures that perform well when dealing with raw

data, fuzzy logic deals with reasoning on a higher level,

using linguistic information acquired from domain

experts. However, fuzzy systems lack the ability to

learn and cannot adjust themselves to a new

environment. On the other hand, although neural

networks can learn, they are opaque to the user.

Integrated neuro-fuzzy expert systems can combine the

parallel computation and learning abilities of neural

networks with the human-like knowledge

representation and explanation abilities of fuzzy

systems. As a result, neural networks become more

transparent, while fuzzy systems become capable of

learning.

3014

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121307

Figure 5. Neuro-Fuzzy Expert System

Expert systems rely on logical inferences and decision

trees and focus on modelling human reasoning. Neural

networks rely on parallel data processing and focus on

modelling a human brain. Expert systems treat the

brain as a black-box. Neural networks look at its

structure and functions, particularly at its ability to

learn. Knowledge in a rule-based expert system is

represented by IF-THEN production rules. Knowledge

in neural networks is stored as synaptic weights

between neurons. In expert systems, knowledge can be

divided into individual rules and the user can see and

understand the piece of knowledge applied by the

system. In neural networks, one cannot select a single

synaptic weight as a discrete piece of knowledge. Here

knowledge is embedded in the entire network; it cannot

be broken into individual pieces, and any change of a

synaptic weight may lead to unpredictable results.

A hybrid system that combines a neural network, fuzzy

system and a rule-based expert system is called a

neuro-fuzzy expert system. The heart of a neural expert

system is the inference engine. It controls the

information flow in the system and initiates inference

over the neural knowledge base [6, 7, 14, 15].

5.1 Rule Extraction

Neurons in the network are connected by links, each of

which has a numerical weight attached to it. The

weights in a trained neural network determine the

strength or importance of the associated neuron inputs.

If we set each input of the input layer to either +1

(true), -1 (false), or 0 (unknown), we can give a

semantic interpretation for the activation of any output

neuron.

An inference can be made if the known net weighted

input to a neuron is greater than the sum of the absolute

values of the weights of the unknown inputs.

5.2 Knowledge Base

Conjunction

Layer

Input

Layer

R1

R2

R3

R4

a1

a2

a3

a4

a5 R5

b2

b1

b3

0.2

0.8

-0.1

0.9

0.6

R6

R7

R8

c1

c2

0.1

0.9

0.7

Disjunction

Layer

Conjunction

Layer

Disjunction

Layer

Rule 1: Rule 5:
IF a1 AND a3 THEN b1 (0.8) IF a5 THEN b3 (0.6)

Rule 2: Rule 6:
IF a1 AND a4 THEN b1 (0.2) IF b1 AND b3 THEN c1 (0.7)

Rule 3: Rule 7:
IF a2 AND a5 THEN b2 (-0.1) IF b2 THEN c1 (0.1)

Rule 4: Rule 8:
IF a3 AND a4 THEN b3 (0.9) IF b2 AND b3 THEN c2 (0.9)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Figure 6. Multilayer Knowledge Base

6. Learning Process

A neuro-fuzzy system is essentially a multi-layer neural

network, and thus it can apply standard learning

algorithms developed for neural networks, including

the back-propagation algorithm. When a training input-

output example is presented to the system, the back-

propagation algorithm computes the system output and

compares it with the desired output of the training

example. The error is propagated backwards through

the network from the output layer to the input layer.

The neuron activation functions are modified as the

error is propagated. To determine the necessary

modifications, the back-propagation algorithm

differentiates the activation functions of the neurons.

Suppose that fuzzy IF-THEN rules incorporated into

the system structure are supplied by a domain expert.

Prior or existing knowledge can dramatically expedite

the system training [14-18].

3015

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121307

Besides, if the quality of training data is poor, the

expert knowledge may be the only way to come to a

solution at all. However, experts do occasionally

make mistakes, and thus some rules used in a neuro-

fuzzy system may be false or redundant. Therefore, a

neuro-fuzzy system should also be capable of

identifying bad rules.

 Given input and output linguistic values, a neuro-fuzzy

system can automatically generate a complete set of

fuzzy IF-THEN rules.

After training we can eliminate all rules whose

certainty factors are less than some sufficiently small

number, say 0.1. As a result, we obtain the same set of

four fuzzy IF-THEN rules that represents the XOR

operation.

Figure 7. Five Rule System

Figure 8. Five rule Time vs. Weight

Figure 9. Eight Rule System

Figure 10. Eight rule Time vs. Weight

7. Conclusion

The combination of fuzzy logic and neural networks

with expert system concept constitutes a powerful

means for designing intelligent systems. The required

domain knowledge for software application can be put

into a neuro-fuzzy system by human experts in the

form of linguistic variables and fuzzy rules. When a

representative set of examples is available, a neuro-

fuzzy system can automatically transform it into a

robust set of fuzzy IF-THEN rules, and thereby reduce

our dependence on expert knowledge when building

intelligent systems. This estimation brings together

today's most valuable tips, techniques, and best

practices for accurately estimating software project

efforts, costs, and schedules. Further work can be

extended with all types of software products.

3016

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121307

8. References

[1] Moataz A. Ahmed, Irfan Ahmad, and Jarallah S.

AlGhamdi, “Probabilistic size proxy for software

effort prediction: A framework”, Elsevier,

SciVerse ScienceDirect, Information and Software

Technology, 55, 2013; Pp. 241-251.

[2] V. Khatibi Bardsiri, D.N.A. Jawawi, S.Z.M.

Hashim, and E. Khatibi, “Increasing the accuracy

of software development effort estimation using

projects clustering”, The Institution of Engineering

and Technology 2012, Vol. 6, Iss. 6, Pp.461-473.

[3] Magne Jorgensen, Simula Research Laboratory,

Practical Guidelines for Expert-Judgment-Based

Software Effort Estimation, May/June 2005, IEEE

SOFTWARE, Pp.57-63.

[4] M. Jorgensen, “A Review of Studies on Expert

Estimation of Software Development Effort,” J.

Systems and Software, vol. 70, nos. 1–2, 2004, pp.

37–60.

[5] M. Jorgensen and D.I.K. Sjoberg, “An Effort

Prediction Interval Approach Based on the

Empirical Distribution of Previous Estimation

Accuracy,” J. Information and Software

Technology, vol. 45, no. 3, 2003, pp. 123–136.

[6] Ali Bou Nassif, Danny Ho, and Luiz Fernando

Capretz, “Towards an early software estimation

using log-linear regression and multilayer

perceptron model”, Elsevier, SciVerse

ScienceDirect, The Journal of Systems and

Software, 86, 2013; Pp. 144-160.

[7] Krishnamoorthy Srinivasan and Douglas Fisher,

“Machine Learning Approaches to Estimating

Software Development Effort”, IEEE Transactions

on Software Engineering, Vol.21, No.2, February

1995, Pp. 126-137.

[8] S. McConnell, Code Complete: A Practical

Handbook of Software Construction, Microsoft

Press, second ed., 2004.

[9] M.A. Parthasarathy, Practical Software Estimation

– Function Point Methods for Insourced and

Outsourced Projects, Infosys Press, Pearson, First

Impression, 2007.

[10] Gopalaswamy Ramesh and Ramesh Bhattiprolu,

Software Maintenance - Effective Practices for

Geographically Distributed Environments, TMH,

2009.

[11] Roger S Pressman, Seventh Edition, Software

Engineering, A Practitioner.s Approach; McGraw

Hill International Edition.

[12] Thimothy C. Lethbridge and Robert Laganiere,

Object-Oriented Software Engineering Practical

software development using UML and Java, Tata

McGraw-Hill Publish Company Limited, 2008.

[13] Rajib Mall, Fundamentals of Software

Engineering, Third Edition, PHI Learning Private

Limited, 2011.

[14] S. Rajasekaran, G.A. Vijayalakshmi Pai, Neural

Networks, Fuzzy Logic, and Genetic Algorithms,

Synthesis and Applications, PHI Learning Private

Limited, 2009.

[15] Yegnanarayana, Artificial Neural Netwoks, PHI

Learning Private Limited, 2010.

[16] B V A N S S Prabhakar Rao & P Sita Ramaiah;

Adaptive System for Estimating Development

Effort, Journal of Communication, Navigation and

Signal Processing (Journal of CNS); ISSN 2277-

1735, Vol 1, Issue 1, Jan, 2012, pp 52-56.

[17] G. R. Finnie and G.E. Wittig and J-M. Desharnais,

“A Comparison of Software Effort Estimation

Techniques: Using Function Points with Neural

Networks, Case-Based Reasoning and Regression

Models”, J. Systems Software, Elsevier Science

Inc, 1997; 39: 281-289.

[18] B V A N S S Prabhakar Rao and P Seetha

Ramaiah, Software Size Estimation Using Fuzzy

Backpropagation Network Method; International

Journal of Computer Science Issues(IJCSI), Vol. 9,

Issue 1, No 1, January 2012, ISSN (Online): 1694-

0814, pp. 339-348.

[19] M. Morisio and M. Ezran, and C. Tully, Success

and failure factors in software reuse, IEEE

Transactions on Software Engineering, volume

28,4, 2002, pages 340--357

[20] More Success and Failure Factors in Software

Reuse, "T. Menzies and J.S. Di Stefano", IEEE

Transactions on Software Engineering, 2003.

3017

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121307

