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Abstract  
 

The software industry estimators does not estimate 

required projects effort, cost and schedule well. 

Developing an effective estimation model is one of the 

most challenging and important activities in software 

development. Existing project estimating models are 

good but not satisfying the needs of the customer 

organizations. Software developers and clients are 

extremely confident about the project and team’s 

capabilities. There is modest that software cost 

estimation models can reimburse for when software 

projects lack the necessary information and knowledge 

at the time when cost and schedule are estimated. 

Furthermore, most estimation models need careful 

understanding of the model parameters as well as a 

certain level of domain expertise in order to use them 

efficiently. Without the proper understanding, teams 

may potentially end up exaggerating the capability of 

the team’s personnel, or understating the complexities 

of the project. These misrepresentations lead to 

inaccurate and non-realistic estimations.   That result 

in poor project planning with schedule overruns. This 

paper suggests a mechanism to design a model to cater 

the needs of the project managers to make accurate 

estimations. The proposed system will help to manage 

resources, control and plan a project, and deliver a 

project on time, on schedule and on budget. 

 

1. Introduction 

  
A Software Project is dynamic. The code changes, the 

design changes, and the requirements change. What’s 

more, changes in the requirements lead to more 

changes in the design, and changes in the design lead to 

even more changes in the code and test cases. But the 

estimation process is static. If the software cost is 

underestimated, inefficiencies will be brought to the 

project and the actual cost will be surely increased. 

Overestimated software cost will lose the bid, waste the 

time, money, staff and other resources, and lead to the  

 

financial loss, even economic failure of the 

organization. Therefore, the ability to accurately 

estimate the software cost needed to complete the 

project on time is crucial for software organizations [1-

5]. 

 

How many were delivered on time and on budget? 

How many estimates were accurate? IT projects are 

notorious for over-running, and here are several reasons 

why it occurs…  [Craig Buckler, 2010]. 

 

 The project is poorly scoped 

 Development time is estimated by non-

programmers 

 Developer estimates are too optimistic 

 The project is not adequately dissected 

 Estimated time is used 

 Sometimes more developers may involve for quick 

estimation 

 The project scope changes 

 Estimates are fixed 

 Testing time is forgotten 

 Estimates are taken too literally 

and many more ……. 

 

“Measure twice, cut once” is highly relevant to the 

construction part of software development. The worst 

software projects end up doing construction two or 

three times or more. Doing the most expensive part of 

the project twice is as bad an idea in software as it is in 

any other line of work. Software projects can be 

measured in numerous ways. For any project attribute, 

it’s possible to measure that attribute in a way that’s 

superior to not measuring it at all. If data is to be used 

in a scientific experiment, it must be quantified. Be 

aware of measurement side effects. Measurement has a 

motivational effect. People pay attention to whatever is 

measured, assuming that it’s used to evaluate them. 

Choose what you measure carefully. People tend to 

focus on work that’s measured and to ignore work that 

isn’t. To argue against measurement is to argue that it’s 

better not to know what’s really happening on your 

project. When you measure an aspect of a project, you 
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know something about it that you didn’t know before. 

You can see whether the aspect gets bigger or smaller 

or stays the same. The measurement gives you a 

window into at least that aspect of your project. The 

window might be small and cloudy until you refine 

your measurements, but it will be better than no 

window at all. To argue against all measurements 

because some are inconclusive is to argue against 

windows because some happen to be cloudy [8]. 

 

 
Figure 1. Software management  

 

2.  Estimation and Measurement 
 

Until a system is deployed at the customer site and 

developed product in use, no one can ever be quite sure 

whether it meets the customer’s needs or not. To solve 

the above problem understand the software application 

domain that is being developed and communicate 

effectively with clients and users. Without proper 

understanding of the customer requirements and 

domain knowledge estimation is not achievable.  

Software development is heavily labour-intensive; 

however, skills of team members can vary dramatically 

and probably are the biggest single factor affecting 

success of a project [12, 19, 20]. 

 

 
Figure 2. Measurement advantages at various levels 

Estimation and measurement are two faces of the 

same attribute of a software application: size. This 

explanation can be extended to other similar attributes 

of software projects that include effort, schedule, and 

quality parameters. Estimation is certainly not done at 

the end of the project. During the contract process there 

is a need to estimate the size, effort, and cost of a 

software product that is yet to be developed [10,11,13].  

 

 
Figure 3. Qualitative Assessment of the product 

 

With the exception of the contract phase and the 

time preceding the first milestone, measurement 

activity takes place in all other situations. At the 

completion of every milestone, both measurement of 

the completed activities and estimation of the balance 

milestones based on the analysis of the data collated, 

are done. This helps in tracking as well as making 

corrections to a project schedule that might be going off 

track and helps the project deliver on time, and within 

budget [9].  

 

3. Hybrid Intelligent System 

 
A hybrid intelligent system is one that combines at 

least two intelligent technologies. Suppose, combining 

a neural network with a fuzzy system results in a hybrid 

neuro-fuzzy system. The combination of probabilistic 

reasoning, fuzzy logic, neural networks and 

evolutionary computation forms the core of soft 

computing, an emerging approach to building hybrid 

intelligent systems capable of reasoning and learning in 

an uncertain and imprecise environment [7, 16-18]. 

 

3.1 Initial weights for training  

Assign initial weights for size, defect tracking, 

productivity, overall quality and maintainability by 

obtaining the values from similar previous projects. Of 

course most of the software projects are unique. At that 

time it is better to depend on the expert suggestion.  
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Figure 4. Developing a baseline of data 

 

Size 
 

S11: Total lines of code written 

S12: Total comment lines 

S13: Total number of classes or routines 

S14: Total data declarations 

S15: Total blank lines  

 

Defect Tracking 
 
D11: Severity of each defect 

D12: Location of each defect (class or routine) 

D13: Origin of each defect (requirements, design, 

construction, test) 

D14: Way in which each defect is corrected 

D15: Person responsible for each defect 

D16: Number of lines affected by each defect correction 

D17: Work hours spent correcting each defect 

D18: Average time required to find a defect 

D19: Average time required to fix a defect 

D20: Number of attempts made to correct each defect 

D21: Number of new errors resulting from defect correction  

 

Productivity 
 
P11: Work-hours spent on the project 

P12: Work-hours spent on each class or routine 

P13: Number of times each class or routine changed 

P14: Dollars spent on project 

P15: Dollars spent per line of code 

P16: Dollars spent per defect  

 

Overall Quality 
 
Q11: Total number of defects 

Q12: Number of defects in each class or routine 

Q13: Average defects per thousand lines of code 

Q14: Mean time between failures 

Q15: Compiler-detected errors 

 

Maintainability  
 
M11: Number of public routines on each class 

M12: Number of parameters passed to each routine 

M13: Number of private routines and/or variables on each 

class 

M14: Number of local variables used by each routine 

M15: Number of routines called by each class or routine 

M16: Number of decision points in each routine 

M17: Control-flow complexity in each routine 

M18: Lines of code in each class or routine 

M19: Lines of comments in each class or routine 

M20: Number of data declarations in each class or routine 

M21: Number of blank lines in each class or routine 

M22: Number of gotos in each class or routine 

M23: Number of input or output statements in each class or 

routine 

 

Religious Issues 
R11: Programming language 

R12: Indentation style 

R13: Placing of braces 

R14: Choice of IDE 

R15: Commenting style 

R16: Efficiency vs. readability trade-offs 

R17: Choice of methodology—for example, scrum vs. extreme 

programming vs. evolutionary delivery 

R18: Programming utilities 

R19: Naming conventions 

R20: Use of gotos  

R21: Use of global variables 

R22: Measurements, especially productivity measures such as 

lines of code per day 

 

 

4. Neuro-Fuzzy Expert System 
 

Fuzzy logic and neural networks are natural 

complementary tools in building intelligent systems. 

While neural networks are low-level computational 

structures that perform well when dealing with raw 

data, fuzzy logic deals with reasoning on a higher level, 

using linguistic information acquired from domain 

experts. However, fuzzy systems lack the ability to 

learn and cannot adjust themselves to a new 

environment. On the other hand, although neural 

networks can learn, they are opaque to the user. 

Integrated neuro-fuzzy expert systems can combine the 

parallel computation and learning abilities of neural 

networks with the human-like knowledge 

representation and explanation abilities of fuzzy 

systems. As a result, neural networks become more 

transparent, while fuzzy systems become capable of 

learning. 
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Figure 5. Neuro-Fuzzy Expert System  

 

Expert systems rely on logical inferences and decision 

trees and focus on modelling human reasoning. Neural 

networks rely on parallel data processing and focus on 

modelling a human brain. Expert systems treat the 

brain as a black-box. Neural networks look at its 

structure and functions, particularly at its ability to 

learn. Knowledge in a rule-based expert system is 

represented by IF-THEN production rules. Knowledge 

in neural networks is stored as synaptic weights 

between neurons. In expert systems, knowledge can be 

divided into individual rules and the user can see and 

understand the piece of knowledge applied by the 

system. In neural networks, one cannot select a single 

synaptic weight as a discrete piece of knowledge. Here 

knowledge is embedded in the entire network; it cannot 

be broken into individual pieces, and any change of a 

synaptic weight may lead to unpredictable results.  

A hybrid system that combines a neural network, fuzzy 

system and a rule-based expert system is called a 

neuro-fuzzy expert system. The heart of a neural expert 

system is the inference engine. It controls the 

information flow in the system and initiates inference 

over the neural knowledge base [6, 7, 14, 15]. 

 

5.1 Rule Extraction 

 

Neurons in the network are connected by links, each of 

which has a numerical weight attached to it. The 

weights in a trained neural network determine the 

strength or importance of the associated neuron inputs. 

If we set each input of the input layer to either +1 

(true), -1 (false), or 0 (unknown), we can give a 

semantic interpretation for the activation of any output 

neuron. 

 

An inference can be made if the known net weighted 

input to a neuron is greater than the sum of the absolute 

values of the weights of the unknown inputs. 

 

 
 

5.2 Knowledge Base 

 

Conjunction

Layer

Input

Layer

R1

R2

R3

R4

a1

a2

a3

a4

a5 R5

b2

b1

b3

0.2

0.8

-0.1

0.9

0.6

R6

R7

R8

c1

c2

0.1

0.9

0.7

Disjunction

Layer

Conjunction

Layer

Disjunction

Layer

Rule 1: Rule 5:
IF a1 AND a3 THEN b1 (0.8) IF a5 THEN b3 (0.6)

Rule 2: Rule 6:
IF a1 AND a4 THEN b1 (0.2) IF b1 AND b3 THEN c1 (0.7)

Rule 3: Rule 7:
IF a2 AND a5 THEN b2 (-0.1 ) IF b2 THEN c1 (0.1)

Rule 4: Rule 8:
IF a3 AND a4 THEN b3 (0.9) IF b2 AND b3 THEN c2 (0.9)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

 
Figure 6. Multilayer Knowledge Base 

 

6. Learning Process                                       

 

A neuro-fuzzy system is essentially a multi-layer neural 

network, and thus it can apply standard learning 

algorithms developed for neural networks, including 

the back-propagation algorithm. When a training input-

output example is presented to the system, the back-

propagation algorithm computes the system output and 

compares it with the desired output of the training 

example. The error is propagated backwards through 

the network from the output layer to the input layer. 

The neuron activation functions are modified as the 

error is propagated. To determine the necessary 

modifications, the back-propagation algorithm 

differentiates the activation functions of the neurons.                                                         

 

Suppose that fuzzy IF-THEN rules incorporated into 

the system structure are supplied by a domain expert. 

Prior or existing knowledge can dramatically expedite 

the system training [14-18].  
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Besides, if the quality of training data is poor, the 

expert knowledge may be the only way to come to a 

solution at all. However, experts do   occasionally 

make mistakes, and thus some rules used in a neuro-

fuzzy system may be false or redundant. Therefore, a 

neuro-fuzzy system should also be capable of 

identifying bad rules. 

 Given input and output linguistic values, a neuro-fuzzy 

system can automatically generate a complete set of 

fuzzy IF-THEN rules.  

 

After training we can eliminate all rules whose 

certainty factors are less than some sufficiently small 

number, say 0.1. As a result, we obtain the same set of 

four fuzzy IF-THEN rules that represents the XOR 

operation. 

 
Figure 7. Five Rule System 

 
Figure 8.  Five rule Time vs. Weight  

 

 
Figure 9. Eight Rule System 

 

 
Figure 10. Eight  rule Time vs. Weight  

  

7. Conclusion  
 

The combination of fuzzy logic and neural networks 

with expert system concept constitutes a powerful 

means for designing intelligent systems. The required 

domain knowledge for software application can be put 

into a neuro-fuzzy system by human experts in the 

form of linguistic variables and fuzzy rules. When a 

representative set of examples is available, a neuro-

fuzzy system can automatically transform it into a 

robust set of fuzzy IF-THEN rules, and thereby reduce 

our dependence on expert knowledge when building 

intelligent systems. This estimation brings together 

today's most valuable tips, techniques, and best 

practices for accurately estimating software project 

efforts, costs, and schedules. Further work can be 

extended with all types of software products.  
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