
A Novel Approach For Designing A Low Power Parallel Prefix Adders

 R.Chaitanyakumar

 M Tech student,

Pragati Engineering College,

Surampalem (A.P, IND).

Abstract

This paper presents an implementation of

prefix adders and compare with the Ripple

carry adder (RCA) and Carry skip adder

(CSA) in terms of power and speed. The

binary adder is the critical element in most

digital circuit designs including digital signal

processors (DSP) and microprocessor data

path units. As such, extensive research

continues to be focused on improving the

power delay performance of the adder. In

VLSI implementations, parallel-prefix adders

are known to have the best performance.

 Binary adders are one of the most

essential logic elements within a digital

system. In addition, binary adders are also

helpful in units other than Arithmetic Logic

Units (ALU), such as multipliers, dividers and

memory addressing. Therefore, binary

addition is essential that any improvement in

binary addition can result in a performance

boost for any computing system and, hence,

help improve the performance of the entire

system. In this project Xilinx-ISE tool is used

for simulation, logical verification, and further

synthesizing.

1. Introduction

To humans, decimal numbers are easy to comprehend

and implement for performing arithmetic. However, in

digital systems, such as a microprocessor, DSP (Digital

Signal Processor) or ASIC (Application-Specific

Integrated Circuit), binary numbers are more pragmatic

for a given computation. This occurs because binary

values are optimally efficient at representing many

values.

Binary adders are one of the most essential logic

elements within a digital system. In addition, binary

adders are also helpful in units other than Arithmetic

Logic Units (ALU), such as multipliers, dividers and

memory addressing. Therefore, binary addition is

essential that any improvement in binary addition can

P.Sunitha

Assistant Professor, Dept.of ECE

Pragati Engineering College,

Surampalem (A.P, IND).

Result in a performance boost for any computing

system and, hence, help improve the performance of

the entire system.

The major problem for binary addition is the carry

chain. As the width of the input operand increases, the

length of the carry chain increases. Figure 1.1

demonstrates an example of an 8- bit binary add

operation and how the carry chain is affected. This

example shows that the worst case occurs when the

carry travels the longest possible path, from the least

significant bit (LSB) to the most significant bit (MSB).

In order to improve the performance of carry-propagate

adders, it is possible to accelerate the carry chain, but

not eliminate it. Consequently, most digital designers

often resort to building faster adders when optimizing

computer architecture, because they tend to set the

critical path for most computations.

 Figure 1. Binary Adder Example

The binary adder is the critical element in most digital

circuit designs including digital signal processors

(DSP) and microprocessor data path units. As such,

extensive research continues to be focused on

improving the power delay performance of the adder.

In VLSI implementations, parallel-prefix adders are

known to have the best performance. Reconfigurable

logic such as Field Programmable Gate Arrays

(FPGAs) has been gaining in popularity in recent years

because it offers improved performance in terms of

speed and power over DSP-based and microprocessor-

based solutions for many practical designs involving

mobile DSP and telecommunications applications and a

significant reduction in development time and cost over

Application Specific Integrated Circuit (ASIC) designs.

 The power advantage is especially

important with the growing popularity of mobile and

portable electronics, which make extensive use of DSP

functions. However, because of the structure of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

configurable logic and routing resources in FPGAs,

parallel-prefix adders will have a different performance

than VLSI implementations. In particular, most modern

FPGAs employ a fast-carry chain which optimizes the

carry path for the simple Ripple Carry Adder (RCA). In

this paper, the practical issues involved in designing and

implementing tree-based adders on FPGAs are

described. Several tree-based adder structures are

implemented and characterized on a FPGA and

compared with the Ripple Carry Adder (RCA) and the

Carry Skip Adder (CSA). Finally, some conclusions and

suggestions for improving FPGA designs to enable

better tree-based adder performance are given.

2. Research Contributions

 The implementations that have been

developed in this dissertation help to improve the

design of parallel- prefix adders and their associated

computing architectures. This has the potential of

impacting many application specific and general

purpose computer architectures. Consequently, this

work can impact the designs of many computing

systems, as well as impacting many areas of engineers

and science. In this paper, the practical issues involved

in designing and implementing tree-based adders on

FPGAs are described. Several tree-based adder

structures are implemented and characterized on a

FPGA and compared with the Ripple Carry Adder

(RCA) and the Carry Skip Adder (CSA). Finally, some

conclusions and suggestions for improving FPGA

designs to enable better tree-based adder performance

are given

 3. Parallel-Prefix Structures
To resolve the delay of carry-look ahead adders, the

scheme of multilevel-look ahead adders or parallel-

prefix adders can be employed. The idea is to compute

small group of intermediate prefixes and then find large

group prefixes, until all the carry bits are computed.

These adders have tree structures within a carry-

computing stage similar to the carry propagate adder.

However, the other two stages for these adders are

called pre-computation and post-computation stages. In

pre-computation stage, each bit computes its carry

generate/propagate and a temporary sum. In the prefix

stage, the group carry generate/propagate signals are

computed to form the carry chain and provide the carry-

in for the adder below.

 Gi:k = Gi:j + Pi:j . Gj-1:k

 Pi:k = Pi:j . Pj-1:k

In the post-computation stage, the sum and carry-

out are finally produced. The carry-out can be omitted if

only a sum needs to be produced.

si = ti ^ Gi:-1

 cout = gn-1 + pn-1 _ Gn-2:-1

 where Gi:-1 = ci with the assumption g-1 = cin.

All parallel-prefix structures can be implemented

with the equations above; however, Equation can be

interpreted in various ways, which leads to different

types of parallel-prefix trees.
 Parallel-prefix adders, also known as carry-tree

adders, pre-calculate the propagate and generate

signals. These signals are variously combined using the

fundamental carry operator (fco) cells.

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR)

Due to associative law of the fco, these operators

can be combined in different ways to form various

adder structures. For, suppose the 4-bit carry-look

ahead generator is given by.

 c4 = (g4, p4) ο [(g3, p3) ο [(g2, p2) ο (g1, p1)]]

A simple rearrangement of the order of operations

allows parallel operation, resulting in a more efficient

tree structure for this 4-bit example

 c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2) ο (g1, p1)]

It is readily apparent that a key advantage of the

tree structured adder is that the critical path due to the

carry delay is on the order of log2N for an N-bit wide

adder. The arrangement of the prefix network gives rise

to various families of adders. For this study, the focus

is on the Kogge-Stone adder, known for having

minimal logic depth and fan-out (see Figure 3.1). Here

we designate BC as the black cell which generates the

ordered pair in equation; the gray cell (GC) generates

the left signal only. The interconnect area is known to

be high, but for an FPGA with large routing overhead

to begin with, this is not as important as in a VLSI

implementation. The regularity of the Kogge-Stone

prefix network has built in redundancy which has

implications for fault-tolerant designs.

 3.1 Kogge-Stone Prefix Tree

Kogge-Stone prefix tree is among the type of prefix

trees that use the fewest logic levels. A 16-bit example

is shown in Figure 3.1. In fact, Kogge-Stone is a

member of Knowles prefix tree. The 16-bit prefix tree

can be viewed as Knowles [1, 1, 1, 1]. The numbers in

the brackets represent the maximum branch fan-out at

each logic level. The maximum fan-out is 2 in all logic

levels for all width Kogge-Stone prefix trees.

The key of building a prefix tree is how to

implement Equation according to the specific features

of that type of prefix tree and apply the rules described

in the previous section. Gray cells are inserted similar

to black cells except that the gray cells final output

carry outs instead of intermediate G/P group. The

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

reason of starting with Kogge-Stone prefix tree is that it

is the easiest to build in terms of using a program

concept. The example in Figure 3.1 is 16-bit (a power

of 2) prefix tree. It is not difficult to extend the structure

to any width if the basics are strictly followed.

 Figure 3.1: 16-bit Kogge-Stone Prefix Tree

For the Kogge-Stone prefix tree, at the logic level 1, the

inputs span is 1 bit, example group (4:3) take the inputs

at bit 4 and bit 3). Group (4:3) will be taken as inputs

and combined with group (6:5) to generate group (6:3)

at logic level 2. Group (6:3) will be taken as inputs and

combined with group (10:7) to generate group (10:3) at

logic level 3, and so on so forth.

 Table I: Subset of (g, p) Relations Used for Testing

3.2 Sparse Kogge-Stone adder

 The sparse Kogge-Stone adder, shown in Figure

3.2.This hybrid design completes the summation

process with a 4 bit RCA allowing the carry prefix

network to be simplified.

3.3 Spanning Tree Carry-Look ahead Adder

Another carry-tree adder is the spanning tree carry-look

ahead (CLA) adder is also examined. Like the sparse

Kogge-Stone adder, this design terminates with a four-

bit Ripple Carry Adder (RCA). As the FPGA uses a

fast carry-chain for the Ripple Carry Adder (RCA), it is

interesting to compare the performance of this adder

with the sparse Kogge-Stone and regular Kogge-Stone

adder.

Figure 3.3: 16-bit Spanning Tree Carry Look ahead

Adder.

4. Experimental Results

The Parallel Prefix adders of koggie-stone adder, sparse

koggie-stone and spanning tree carry look ahead adders

are simulated and synthesized verilog using Xilinx-ISE

tools, and we found that, these parallel prefix adders

are consuming less power and having high speed

functionality as compared with the Ripple carry adder

(RCA) and Carry Skip adder (CSA).The Experimental

results of corresponding adders are given below.

Figure 4.1 Design summary of Kogge-Stone Adder

The design summary of Kogge-stone adder’s total

number of 4-input LUTs, logic Utilization are given in

4.1 figure.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

Figure 4.2 Design summary of Sparse Kogge-Stone

adder.

The design summary of Sparse Kogge-stone adder’s

total number of 4-input LUTs, logic Utilization are

given in 4.2 figure.

Figure 4.3 Design summary of Spanning Tree Carry

look ahead Adder.

The design summary of Spanning tree adder’s total

number of 4-input LUTs, logic Utilization are given in

4.3 figure.

Figure 4.4 Design summary of Carry Skip Adder.

The design summary of Carry Skip adder’s total

number of 4-input LUTs, logic Utilization are given in

4.4 figure.

Figure 4.5 Design summary of Ripple carry adder.

The design summary of Ripple Carry adder’s total

number of 4-input LUTs, logic Utilization are given in

4.5 figure.

The Experimental waveforms of Parallel Prefix adders

are given below

4.6 Kogge-Stone Adder Waveform.

Figure 4.6 Waveform of Kogge-Stone adder

4.7 Spanning Tree Adder wave form.

Figure 4.7 Waveform of Spanning Tree adder

4.8 Sparse Kogge-Stone Adder

Figure 4.6 Waveform of Sparse Kogge-Stone adder

5. Conclusions

 In this paper we have developed an efficient

Parallel Prefix Adders to achieve less power

consumption and better speed performance when

compared to Ripple Carry Adder and Carry Skip

Adder.

The Experimental Power Consumption Results are

given below.

Ripple Carry Adder consumes 25mw.

Carry Skip Adder consumes 27mw.

 Kogge-Stone Adder consumes 20mw.

Sparse Kogge-Stone Adder consumes 17mw.

Spanning Tree Adder consumes 16mw.

 Based on these results, the Parallel Prefix Adders

consume less power when compared to Ripple Carry

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

Adder and Carry Skip Adder.

References

[1] N. H. E. Weste and D. Harris, CMOS VLSI Design,

4
th

 edition, Pearson–Addison-Wesley, 2011.
[2] R. P. Brent and H. T. Kung, “A regular layout

for parallel adders,” IEEE Trans. Comput., vol. C-
31, pp.

[3] D. Harris, “A Taxonomy of Parallel Prefix
Networks,” in Proc. 37th Asilomar Conf. Signals
Systems and Computers, pp. 2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, “A Parallel
Algorithm for the Efficient Solution of a General
Class of Recurrence Equations,” IEEE Trans. on
Computers, Vol. C-22, No 8, August 1973.

[5] P. Ndai, S. Lu, D. Somesekhar, and K. Roy,
“Fine- Grained Redundancy in Adders,” Int. Symp.
On Quality Electronic Design, pp. 317-321, March
2007.

[6] T. Lynch and E. E. Swartzlander, “A Spanning
Tree Carry Lookahead Adder,” IEEE Trans. on
Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[7] D. Gizopoulos, M . Psarakis, A . Paschalis, a n d
Y . Zorian, “Easily Testable Cellular Carry
Lookahead Adders,” Journal of Electronic Testing:
Theory and Applications 19, 285-298, 2003.

[8] S. Xing and W. W. H. Yu, “FPGA
Adders: Performance Evaluation and Optimal
Design,” IEEE Design & Test of Computers, vol.
15, no. 1, pp. 24-29, Jan. 1998.

[9] M. Bečvář and P. Štukjunger, “Fixed-Point
Arithmetic in FPGA,” Acta Polytechnica, vol. 45,
no. 2, pp. 67-72, 2005

[10] K. Vitoroulis and A. J. Al-Khalili,
“Performance of Parallel Prefix Adders
Implemented with FPGA technology,” IEEE
Northeast Workshop on Circuits and Systems, pp.
498-501, Aug. 2007.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

