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Abstract 

This paper presents an implementation of 

prefix adders and compare with the Ripple 

carry adder (RCA) and Carry skip adder 

(CSA) in terms of power and speed. The 

binary adder is the critical element in most 

digital circuit designs including digital signal 

processors (DSP) and microprocessor data 

path units. As such, extensive research 

continues to be focused on improving the 

power delay performance of the adder. In 

VLSI implementations, parallel-prefix adders 

are known to have the best performance. 

               Binary adders are one of the most 

essential logic elements within a digital 

system. In addition, binary adders are also 

helpful in units other than Arithmetic Logic 

Units (ALU), such as multipliers, dividers and 

memory addressing. Therefore, binary 

addition is essential that any improvement in 

binary addition can result in a performance 

boost for any computing system and, hence, 

help improve the performance of the entire 

system. In this project Xilinx-ISE tool is used 

for simulation, logical verification, and further 

synthesizing. 

 

1. Introduction 
 

To humans, decimal numbers are easy to comprehend 

and implement for performing arithmetic. However, in 

digital systems, such as a microprocessor, DSP (Digital 

Signal Processor) or ASIC (Application-Specific 

Integrated Circuit), binary numbers are more pragmatic 

for a given computation. This occurs because binary 

values are optimally efficient at representing many 

values. 

Binary adders are one of the most essential logic 

elements within a digital system. In addition, binary 

adders are also helpful in units other than Arithmetic 

Logic Units (ALU), such as multipliers, dividers and 

memory addressing. Therefore, binary addition is 

essential that any improvement in binary addition can 
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Result in a performance boost for any computing 

system and, hence, help improve the performance of 

the entire system. 

The major problem for binary addition is the carry 

chain. As the width of the input operand increases, the 

length of the carry chain increases. Figure 1.1 

demonstrates an example of an 8- bit binary add 

operation and how the carry chain is affected. This 

example shows that the worst case occurs when the 

carry travels the longest possible path, from the least 

significant bit (LSB) to the most significant bit (MSB). 

In order to improve the performance of carry-propagate 

adders, it is possible to accelerate the carry chain, but 

not eliminate it. Consequently, most digital designers 

often resort to building faster adders when optimizing 

computer architecture, because they tend to set the 

critical path for most computations. 

 

 
              Figure 1. Binary Adder Example 

 

The binary adder is the critical element in most digital 

circuit designs including digital signal processors 

(DSP) and microprocessor data path units. As such, 

extensive research continues to be focused on 

improving the power delay performance of the adder. 

In VLSI implementations, parallel-prefix adders are 

known to have the best performance. Reconfigurable 

logic such as Field Programmable Gate Arrays 

(FPGAs) has been gaining in popularity in recent years 

because it offers improved performance in terms of 

speed and power over DSP-based and microprocessor-

based solutions for many practical designs involving 

mobile DSP and telecommunications applications and a 

significant reduction in development time and cost over 

Application Specific Integrated Circuit (ASIC) designs. 

                  The power advantage is especially 

important with the growing popularity of mobile and 

portable electronics, which make extensive use of DSP 

functions. However, because of the structure of the 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T



configurable logic and routing resources in FPGAs, 

parallel-prefix adders will have a different performance 

than VLSI implementations. In particular, most modern 

FPGAs employ a fast-carry chain which optimizes the 

carry path for the simple Ripple Carry Adder (RCA). In 

this paper, the practical issues involved in designing and 

implementing tree-based adders on FPGAs are 

described. Several tree-based adder structures are 

implemented and characterized on a FPGA and 

compared with the Ripple Carry Adder (RCA) and the 

Carry Skip Adder (CSA). Finally, some conclusions and 

suggestions for improving FPGA designs to enable 

better tree-based adder performance are given. 

 

2. Research Contributions 

                   The implementations that have been 

developed in this dissertation help to improve the 

design of parallel- prefix adders and their associated 

computing architectures. This has the potential of 

impacting many application specific and general 

purpose computer architectures. Consequently, this 

work can impact the designs of many computing 

systems, as well as impacting many areas of engineers 

and science. In this paper, the practical issues involved 

in designing and implementing tree-based adders on 

FPGAs are described. Several tree-based adder 

structures are implemented and characterized on a 

FPGA and compared with the Ripple Carry Adder 

(RCA) and the Carry Skip Adder (CSA). Finally, some 

conclusions and suggestions for improving FPGA 

designs to enable better tree-based adder performance 

are given 

 

         3. Parallel-Prefix Structures  
To resolve the delay of carry-look ahead adders, the 

scheme of multilevel-look ahead adders or parallel-

prefix adders can be employed. The idea is to compute 

small group of intermediate prefixes and then find large 

group prefixes, until all the carry bits are computed. 

These adders have tree structures within a carry-

computing stage similar to the carry propagate adder. 

However, the other two stages for these adders are 

called pre-computation and post-computation stages. In 

pre-computation stage, each bit computes its carry 

generate/propagate and a temporary sum. In the prefix 

stage, the group carry generate/propagate signals are 

computed to form the carry chain and provide the carry-

in for the adder below. 

         Gi:k = Gi:j + Pi:j . Gj-1:k 

                         Pi:k = Pi:j .  Pj-1:k 

 

In the post-computation stage, the sum and carry-

out are finally produced. The carry-out can be omitted if 

only a sum needs to be produced. 

si = ti  ^  Gi:-1 

              cout = gn-1 + pn-1 _ Gn-2:-1 

        where Gi:-1 = ci with the assumption g-1 = cin.  

      

All parallel-prefix structures can be implemented 

with the equations above; however, Equation can be 

interpreted in various ways, which leads to different 

types of parallel-prefix trees. 
 Parallel-prefix adders, also known as carry-tree 

adders, pre-calculate the propagate and generate 

signals. These signals are variously combined using the 

fundamental carry operator (fco) cells. 

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR) 

Due to associative law of the fco, these operators 

can be combined in different ways to form various 

adder structures. For, suppose the 4-bit carry-look 

ahead generator is given by. 

 c4 = (g4, p4) ο [(g3, p3) ο [(g2, p2) ο (g1, p1)] ] 

A simple rearrangement of the order of operations 

allows parallel operation, resulting in a more efficient 

tree structure for this 4-bit example 

   c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2 ) ο (g1, p1)] 

 

It is readily apparent that a key advantage of the 

tree structured adder is that the critical path due to the 

carry delay is on the order of log2N for an N-bit wide 

adder. The arrangement of the prefix network gives rise 

to various families of adders. For this study, the focus 

is on the Kogge-Stone adder, known for having 

minimal logic depth and fan-out (see Figure 3.1). Here 

we designate BC as the black cell which generates the 

ordered pair in equation; the gray cell (GC) generates 

the left signal only. The interconnect area is known to 

be high, but for an FPGA with large routing overhead 

to begin with, this is not as important as in a VLSI 

implementation. The regularity of the Kogge-Stone 

prefix network has built in redundancy which has 

implications for fault-tolerant designs. 

        3.1 Kogge-Stone Prefix Tree 

Kogge-Stone prefix tree is among the type of prefix 

trees that use the fewest logic levels. A 16-bit example 

is shown in Figure 3.1. In fact, Kogge-Stone is a 

member of Knowles prefix tree. The 16-bit prefix tree 

can be viewed as Knowles [1, 1, 1, 1]. The numbers in 

the brackets represent the maximum branch fan-out at 

each logic level. The maximum fan-out is 2 in all logic 

levels for all width Kogge-Stone prefix trees. 

The key of building a prefix tree is how to 

implement Equation according to the specific features 

of that type of prefix tree and apply the rules described 

in the previous section. Gray cells are inserted similar 

to black cells except that the gray cells final output 

carry outs instead of intermediate G/P group. The 
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reason of starting with Kogge-Stone prefix tree is that it 

is the easiest to build in terms of using a program 

concept. The example in Figure 3.1 is 16-bit (a power 

of 2) prefix tree. It is not difficult to extend the structure 

to any width if the basics are strictly followed. 

 
       Figure 3.1: 16-bit Kogge-Stone Prefix Tree 

 

For the Kogge-Stone prefix tree, at the logic level 1, the 

inputs span is 1 bit, example group (4:3) take the inputs 

at bit 4 and bit 3). Group (4:3) will be taken as inputs 

and combined with group (6:5) to generate group (6:3) 

at logic level 2. Group (6:3) will be taken as inputs and 

combined with group (10:7) to generate group (10:3) at 

logic level 3, and so on so forth. 

 
 Table I: Subset of (g, p) Relations Used for Testing  

 

3.2 Sparse Kogge-Stone adder 

 The sparse Kogge-Stone adder, shown in Figure 

3.2.This hybrid design completes the summation 

process with a 4 bit RCA allowing the carry prefix 

network to be simplified. 

 
3.3 Spanning Tree Carry-Look ahead Adder 

Another carry-tree adder is the spanning tree carry-look 

ahead (CLA) adder is also examined. Like the sparse 

Kogge-Stone adder, this design terminates with a four- 

bit Ripple Carry Adder (RCA). As the FPGA uses a 

fast carry-chain for the Ripple Carry Adder (RCA), it is 

interesting to compare the performance of this adder 

with the sparse Kogge-Stone and regular Kogge-Stone 

adder. 

 
Figure 3.3: 16-bit Spanning Tree Carry Look ahead 

Adder. 

 

4.  Experimental Results 

The Parallel Prefix adders of koggie-stone adder, sparse 

koggie-stone and spanning tree carry look ahead adders 

are simulated and synthesized verilog using Xilinx-ISE 

tools, and we found that, these parallel prefix adders 

are consuming less power and having   high speed 

functionality as compared with the Ripple carry adder 

(RCA) and Carry Skip adder (CSA).The Experimental 

results of corresponding adders are given below. 

 
Figure 4.1 Design summary of Kogge-Stone Adder 

 

The design summary of Kogge-stone adder’s total 

number of 4-input LUTs, logic Utilization are given in 

4.1 figure. 
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Figure 4.2 Design summary of Sparse Kogge-Stone 

adder. 

 

The design summary of Sparse Kogge-stone adder’s 

total number of 4-input LUTs, logic Utilization are 

given in 4.2 figure. 

 

 
Figure 4.3 Design summary of Spanning Tree Carry 

look ahead Adder. 

 

The design summary of Spanning tree adder’s total 

number of 4-input LUTs, logic Utilization are given in 

4.3 figure. 

 

 
Figure 4.4 Design summary of Carry Skip Adder. 

The design summary of Carry Skip adder’s total 

number of 4-input LUTs, logic Utilization are given in 

4.4 figure. 

 

 
Figure 4.5 Design summary of Ripple carry adder. 

 

The design summary of Ripple Carry adder’s total 

number of 4-input LUTs, logic Utilization are given in 

4.5 figure. 

 

The Experimental waveforms of Parallel Prefix adders 

are given below 

 

4.6 Kogge-Stone Adder Waveform. 

 

 
Figure 4.6 Waveform of Kogge-Stone adder  

 

4.7 Spanning Tree Adder wave form. 

 

 
 

Figure 4.7 Waveform of Spanning Tree adder  

 

4.8 Sparse Kogge-Stone Adder 

 

  

Figure 4.6 Waveform of Sparse Kogge-Stone adder 

 

5.  Conclusions 
 

    In this paper we have developed an efficient 

Parallel Prefix Adders to achieve less power 

consumption and better speed performance when 

compared to Ripple Carry Adder and Carry Skip 

Adder.  

The Experimental Power Consumption Results are 

given below. 

Ripple Carry Adder consumes 25mw. 

Carry Skip Adder consumes 27mw. 

     Kogge-Stone Adder consumes 20mw. 

Sparse Kogge-Stone Adder consumes 17mw. 

Spanning Tree Adder consumes 16mw. 

 Based on these results, the Parallel Prefix Adders 

consume less power when compared to Ripple Carry 
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Adder and Carry Skip Adder. 
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