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                                                                ABSTRACT  

 

         Present paper delineates to the study of conformally recurrent kahlerian manifolds. In this paper, few 

interesting results have been obtained. In the last, conformally recurrent kahlerian manifold is flat if its 

scalar curvature is zero.   

 

Key words:  Ricci Tensor, Riemannian Curvature Tensor, Scalar Curvature Tensor, Recurrent Vector, 

Conformal Curvature Tensor. 

 
1. INTRODUCTION : 

  Let   g
ji 
  is  a  positive  definite   metric  and   F
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i
   be   the  structure  tensor  of  a  real  2n 

- dimentional  Kahlerian   space.  Then  we  have  the  following  relations : 
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 Let  R
ji
  be the  Ricci  tensor  and   R

h

kji
   be  the  Riemann  curvature  tensor.  Then,  we  have  the  

following  relations: 
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  Then the following relations hold [4]: 

 

(1.2)   H
ij
 = - H

ji
 , 

 

(1.3)   R
ks
 F
s

j
 = H

kj 
, 

 

(1.4)   H
ks
 F
s

j
 = - R

kj 
, 

 

(1.5)   H
kj
 F
kj
 = - R , 

 

(1.6)   ∇
l
 H
kj
 + ∇

k
 H
jl
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j
 H
lk
 = 0 . 

 
2.  CONFORMALLY  RECURRENT  KAHLERIAN  MANIFOLDS : 

Definition  2.1 : 

            A  2n - dimensional  (n ≠ 1,2)  Kaehler  space  which  satisfies  the  relation 

 

(2.1)   ∇
l
 C
h

kji
 = λ

l
 C
h

kji
 

 

  Wherein  λ
l
  is  a  non - zero  vector  is called  recurrence  vector  and  C

h

kji
  is  the 

conformal  curvature  tensor  and  ∇
l
  denotes  covariant  differentiation  with  regard  to  the  Riemannian  

metric  of  the  space. Such a  space is  called  a  conformally  recurrent  Kaehler  space  [2]. 

  We  have  the  following  relation  [2] 
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l
 C
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kjih

 

 

wherein 
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 = R
ijkh

 + g
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 L
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 L
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(2.4)   L
ji
 = -{1/2(n-1)} R

ji
 + {1/4(n-1)(2n-1)} R g

ji
 

 

  Equation  (2.2)  in  covariant  form  can  be  written  as 
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  Transvecting  equation  (2.5)  with  F
ih
  yields 
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(2.6)   ∇
l
 [H
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 + {1/(n-1)}H
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] + {1/2(n-1)(2n-1)}F
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∇
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  Next,  transvecting   equation  (2.6)  with   F
kj
   and  using  the  equation  (1.5),  we  get 

 

(2.7)   (∇
l
 R - λ

l
 R) [F

kj
 F
kj
 + 2 (2n-1)(n-2)] = 0 

wherein 

(2.8)   ∇
l
 R = λ

l
 R 

 

  Inserting   equation    (2.8)    into    equation    (2.6),    we  obtain  
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  From  equation  (1.3),  we  get 
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Hence 
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  From  this  it  follows  that 
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  By  virtue  of  equation  (2.4),  we  obtain 
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l
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ji
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l
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  From  equations  (2.11)  and  (2.5),  we  obtain 

 

(2.12) 
∇
l
 R
kjih

 =  λ
l
 R
kjih 

 

In  this  regard,  we  have 

 

(2.13)  R
kjih

 R
kjih

 = R
2
 

 

Remark  2.1 : 
It  is  noteworthy  that  if  we  take  R = 0,  then  we  get  R

kjih
 = 0,  i.e.  the  

space  is  flat. 

 

Theorem  2.1 : 
In  a  Kahler  space,  the  scalar  curvature  is  zero  and   different  from  zero  if   

a  conformally   recurrent   is   flat   and  a  simple  recurrent  one. 
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   Taking  co-variant  derivative  of  equation  (2.4)  with  respect  to  x
m
,  we  get 

 

   ∇
m
 L
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 = ∇

m
 [-{1/2(n-1)} R

jk
  

 

   + {1/4(n-1)(2n-1)} R g
jk
] 

i.e. 

(2.14)  ∇
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m
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m 

R 

  Inserting  equation  (2.8) into equation  (2.14), we  obtain 
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m
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 - {1/2(2n-1)} R g
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