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Abstract 
 

Our problem consists of choosing the 'best' model 

among the family models which are frequently used in 

the field of Biostatistics; Medicine; Biology; 

Agricultural sciences; etc.... The methods used for the 

estimation of the model parameters are the maximum 

likelihood and the resolution of the estimating 

equations, known as Generating Estimating Equations. 

After having described the various models and methods 

as well as the majority of the developments known to us 

so far, we opted for the mixed linear models with the 

maximum likelihood method  

 

1. Introduction  
The frequency of the repeated measures in biology, 

epidemiology and the problems of health in general is 

at the origin of the increasing interest of biostatisticians 

for the methods of statistical analyses which are 

adapted specifically to the correlated data. The choice 

of a statistical model among a family of models and an 

analysis method among others, is not an easy task. This 

choice depends on the applicability, the aim, the 

structure of the sample or on the degree of dependence 

inside the individual groups. 

    The longitudinal studies aims at observing any 

individual on two occasions or more over wide periods, 

by taking account of time; on the other hand, repeated 

measurements are taken during one period of study 

which is very short, by taking account of the 

experimental conditions (Ware 1985). The book of 

Diggle et al. 2002 is a complete work treating the 

longitudinal data analysis. For longitudinal data; the 

analyses are often concerned with the investigation of 

changes over time of a characteristic which is 

repeatedly measured for each study subject or 

experimental unit. In medical sudies, the measurements 

might be cholesterol level; serum glucose, lung volume 

or blood pressure. 

    Longitudinal data may be called balanced when 

the same number of time points is available on each 

unit and time intervals between pairs of corresponding 

obsrvations are the same for all units; however, 

obsevations on the same unit need not be equally 

spaced. In practice, these data are often unbalanced; 

that is all the individuals are not observed at equally 

space time points and the obsevation numbers are not 

equal for the individuals. So, methods based on the 

standard multivariate linear model are not available. 

    For measurements in series (repeated 

measurements), one can, for example, uses the time 

series; though in practice, the calculative problems 

repeated on these time series which are generally short 

and numerous which make these methods inapplicable, 

in rending the passage to other methods. One can, for 

example, use the mixed linear models which consist of 

using all these series at the same time; the method of 

least squares; the bootstrap; the generalized linear 

models which often use quasi-likelihood; the marginal 

models, etc... 

    This note comments on the choice of a statistical 

model for longitudinal data or unbalanced repeated 

measurements analysis. Once a model is chosen, the 

estimation of its parameters is carried out by a standard 

method among a large given family, such as the 

maximum likelihood or the weighted least squares.  

 

2. Models  
2.1. Random effects models 
    The linear regression whose objective is the study of 

the relation between a variable response (explained 

variable) and one or more explanatory variables, is 

based on the linear model (LM). In order to explain 

variability between the various individuals, random 

effects were introduced into the explanatory part of the 

traditional linear models. That gives rise to the mixed 

linear models or random-effects models which are 

noted by LMM, or also sometimes by certain authors 

by L2M. 

    This first family; namely the mixed linear models are 

widely used (Harville 1977 ; Laird and Ware 1982 ; 

Chi and Reinsel 1989; verbeke and Molenberghs 2000; 

Littell et al. 2000).These models prove to adapt suitably 

to the longitudinal data and repeated balanced or 

unbalanced measurements, even in the presence of 

missing data. However, on the one hand, they suppose 

that the data follow gaussian distributions ; on the other 

hand, the calculative problems pose a problem in spite 
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of considerable developments of software and 

procedures, such as PROC MIXED or GENMOD of 

the SAS system (Littell et al. 1996). When one uses the 

maximum likelihood (ML), the obtained normal 

equations are generally nonlinear. Consequently, these 

equations are solved by iterative processes, such as the 

EM algorithm (Dempster et al.1977; Laird et al.1987); 

the Newton Raphson algorithm (Lindstrom and Bates 

1988); the Fisher scoring algorithm (Jennrich and 

Schluchter 1986; etc...). To avoid the slowness of 

certain algorithms and the problems of convergence 

which is sometimes local rather than global; an 

alternative consists of switching on noniterative 

methods, especially for the variance-covariance matrix 

estimate of the considered model. To achieve this, we 

propose the following method. 

 

2.2. The weighted least squares method 
The weighted least squares method gives unbiased and 

consistent estimates. However, it does not make valid 

the tests of the confidence intervals which are based on 

normality (data are supposed normally distributed). 

This problem can be solved by the use of the 

nonparametric tests (Zerbe 1979); but these methods 

are applied only for balanced data, which is not often 

the case for longitudinal data or repeated 

measurements. 

 

2.3. The bootstrap 
The Bootstrap (Efron and Gong 1983); is another 

method to avoid the normality assumption. The idea is 

to work with an estimator of a sample density. 

However, there are disadvantages such as heaviness in 

calculations and the missing data can also pose 

problems. 

 

2.2. Marginal models 
    There is another alternative which is different from 

the preceding ones. The marginal models wich consists 

of solving the generalized estimating equations (GEE). 

This method uses, on the one hand, the generalized 

linear models (GLM) (Mc Cullagh and Nelder 1989) 

and on the other hand, the generalized estimating 

equations (Liang and Zeger 1986), which are an 

extension of quasi-likelihood (QL) (Wedderburn 1974). 

However, one obtains a rough variance-covariance 

matrix estimate of the individuals. In addition, the 

variance is regarded as a nuisance parameter. We are 

interested much more in the regression parameters. In 

this GEE method, the true matrix of correlation is 

replaced by a matrix whose choice is arbitrary, it is a 

working correlation matrix. 

    This last method, which was introduced for the first 

time by Liang and Zeger (1986); is a current 

controversial problem, as far as its use is concerned; 

because, ignoring the correlation, affects the inference 

of the regression coefficients, on the one hand; and on 

the other hand, the regression coefficients estimates 

will be inefficient (Crowder 1995;2001). 

    Of course, for the selection or comparison of models, 

some criteria, such as the AIC (Akaike Information 

Criterion) and the BIC (Bayes Information Criterion) 

do exist, wich we did not mention. We have only 

outlined a brief description of the various models in a 

general and not a particular context (without including 

particular data). 

    Among these families of models, the most used in 

quantitative genetics; medicine; biology; ecology; 

biostatistics, as well as in other fields, are the first (the 

random effect models) and the last ( the marginal 

models). This is why we insist on the completed work 

concerning these models. 

 

3. Notes and discussion  
    Advantages and disadvantages of the marginal 

models and generalized estimating equations are 

evoked in several works. One can quote those of Zhao 

and Prentice (1990); Prentice and Zhao (1991); Liang 

et al.(1992); Fitzmaurice and Laird (1993); Park 

(1993); (Crowder 1995);Lindsey and Lambert (1998); 

Crowder (2001); among others. 

    Recall that Liang and Zeger (1986) introduced their 

approach for the analysis of correlated data. Their idea 

was to model the marginal means of the variable 

response and to estimate the regression parameters by 

the resolution of the generalized estimating equations. 

These equations use a working correlation matrix, 

which depends on a parameter α. This matrix is 

arbitrary and can not be correctly specified. The authors 

proposed thereafter an estimator of the variance 

regression parameters, known as robust estimator or 

'sandwich estimator' and showed that the regression 

parameter estimates and their variances are convergent 

even if the working correlation matrix is badly 

specified. 

    Prentice (1988); extended this idea in the context of 

binary responses by introducing estimating equations 

for the correlation parameter noted by α. The objective 

was to jointly estimate the parameters of regression and 

correlation. 

    Prentice and Zhao (1991) and Zeger and Liang 

(1992) generalized this method for an unspecified 

responses. 

    Through examples taken for the working correlation 

matrix and for the true correlation matrix, Crowder 

(1995) showed that the estimator of α can not be 

consistent (if it does exist at all); this raises a problem 

on the first assumption of theorem 2 of Liang and 
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Zeger (1986). Wherby to satisfy this assumption, the 

situations where the estimator of α is K^{1/2} 

consistent (K is the individual number) are sought. 

    Park and Shin (1995) criticized the work of Crowder 

(1995) and contradicted the results author's by 

simulations. However, these simulations were made on 

small size samples ( n=25 and n=100 ). What about 

large samples then ? taking in consideration that the 

work of Crowder (1995) concerned large samples 

which raised controversial over the asymptotic results 

of Liang and Zeger (1986). 

    To solve the problem of disadvantages of the 

generalized estimating equations of Liang and Zeger 

(1986), Crowder (2001) proposed improvements of 

those equations by combining a noted approach GE (' 

Gaussian Estimation' based on the maximum 

likelihood) with the GEE equations. This method is 

much more based on the GE method. The author 

concluded that it is more advantageous and easier to 

maximize a function, such as the likelihood, and that a 

maximum almost always exists, even if it is local than 

to solve equations,for example, the GEE equations, 

which sometimes can not have solutions. 

    Other authors tried to make improvements 

concerning GEE equations. 

    In particular, Lipsitz et al. (1991) proposed the odds 

ratio (OR) per pair such as a measure of association 

within-group instead of the correlation or covariance. 

    Liang et al. (1992) like Fitzmaurice and Laird (1993) 

also used the odds ratio. 

    Comparisons between the approach of the Maximum 

likelihood and that of GEE equations were done by 

Park (1993) who went for the first method. 

    Lindsey and Lambert (1998) underlined the 

advantages and especially the disadvantages of the 

marginal models (for example a treatment can be 

efficient on average whereas it is bad for each subject). 

However, the authors underlined that these models can 

be adapted for descriptive studies, such as the 

epidemiological studies. In fact, these models can be 

only applied with a great precaution in the experimental 

studies, such as the clinical trials. Examples are given 

by authors to compare the marginal models versus the 

conditional ones. 

    Hall and Severini (1998) proposed an extension of 

the GEE in order to improve the effectiveness of 

estimators of the association parameters α. Their 

method is entitled extended generalized estimating 

equations (EGEE method). 

    Lastly, let us note that Hu and Lachin (2001) insisted 

on the fact that various working correlation matrices 

arrive at various conclusions by following a study on 

the treatment of diabetes. 

 

4. Conclusion  
Based oneself on the results of the literature concluded 

by the various authors and contradicted by others, one 

can say that the choice of the working correlation 

matrix, let alone the choice of the GEE method by 

using marginal models, is rather delicate and that this 

method remains very debatable; especially, with respect 

to that of the maximum likelihood in the context of the 

random effects models. Therfore one notes that the 

least remains the 'best' method and the adequate model 

too for analysing longitudinal data or repeated 

measures balanced and especially unbalanced. 
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