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Abstract

The process of identification of discrete kernels of unit
hydrographs is an important step in its application to
flood forecast. The process of discrete kernels
estimation of unit hydrographs has several interesting
features, like the overestimation condition that appears
when there are more equations than variables to be
estimated, this condition often produces negative
ordinates of the unit hydrograph and sometimes
produces changing values that give oscillating values
on the unit hydrograph. In order to avoid such
undesirable outcomes, it is proposed in the paper to use
the well-known Rosenbrock’s non-linear multi-variable
optimization procedure in the estimation phase of the
ordinates of unit hydrographs coupled with an
objective function that minimize the sum of the squared
errors between the forecasted and actual direct runoff
hydrographs. Two examples of application are
contained in the paper and through them the
applicability and the goodness of fit of the proposed
methodology is depicted.
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1. Introduction

The spread use of the unit hydrograph (UH), as an
essential tool for real-time river flows forecasting
models, and due to the generalized use of computers to
perform the operations required by the phase of
identification of the UH ordinates, in order to produce
forecasted hydrographs, the process of identification
becomes to be an important step of the whole process
of real-time hydrograph forecasting. Often the
identification phase of UH ordinates produces
undesirable outcomes, like negative values and
oscillations in the UH ordinates, which even though
they mathematically correct they are unrealistic form
the point of view of hydrology and are difficult to
explain from the physical basis of the phenomenon of
streamflow.

Some efforts have been made to avoid such
problems, the use of optimization to obtain UH
ordinates for flood forecasting has been proposed, [1].
Two approaches to identify UH ordinates, based in
linear programming, namely MINISAD, in which the
sum of absolute deviations is minimized, and
MINIMAD, which minimize the maximum absolute
deviation, were proposed [2]. The application of a non-
linear optimization procedure to analyze the impact of
several forms of the objective function in the
identification phase of the UH ordinates, has been
proposed, [3]. The use of quadratic programming to
stabilize the UH ordinates via the difference norms and
they found an advantage over the standard ridge
regression, where the penalties are placed on
oscillations of the UH ordinates rather than on the size
of its ordinates, has been proposed, [4]. The use of
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discrete time-kernels to route discrete-time inflow
hydrographs, has been proposed, [5].

2. Discrete kernels of unit hydrograph
ordinates identification through non-Linear
optimization

The discrete form of the convolution between effective
rainfall and direct runoff is, [6]:

q(n) = i&(n —v+Dr(v)
vt 1)

forn=1,2, ...
where:
g(n) is the direct runoff hydrograph ordinate at time n
8(.) is the UH discrete kernel
r(.) is the mean effective rainfall rate

In equation (1), q(.) and r(.) must have consistent
units given that §(.) are dimensionless. From eq. (1),
the error river forecast, defined as e(n), is, [6]:

e(n) =q°(n) - Zn“d(n —v+Dr({)
- o)

forn=1,2, ...

and the mean squared error of the river forecast is, [6]:

MSE(e) = {2%}
= ®)

where:
MSE(e) is the mean squared error of the river forecast
N is the number of ordinates of the direct runoff
hydrograph

Now, in order to set properly the optimization
problem to be solved, the following objective function
is used:

min (MSE(e)) = min [ZGT(”)}

4)

subject to the following constraints:
a) Non-negativity constraints:
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forl=1,...,.M
where M is the memory time
a) Ordering constraints:

S <5(2)<...<5(p)

5(p)=5(p+1)=..>5(N) ©

where:
d(p) is the ordinate which corresponds to the peak of
the UH

The optimization part of the problem to identify the
discrete kernels of the UH, has been carried out through
the well-known non-linear optimization Rosenbrock’s
method for constrained multiple variables, [7]. This
procedure is named MINIMSE herein.

3. Results and discussion

The proposed methodology was applied to two
different cases, in the first place the proposed
methodology was applied to the data contained in [2].
The resulting discrete kernels for the unit hydrograph
are shown in table 1. These results are depicted in
figure 1. In here, it is easy to see that the least
appropriate approach is that of MINISAD, those of
MINIMAD and MINIMSE produce similar discrete
kernels unit hydrographs.

The values of the objective functions for the
approaches MINISAD, MINIMAD and MINIMSE are
contained in table 2. With regard to the objective
functions, when the sum of absolute deviations (SAD)
is minimized, the MINISAD produces the best value
and MINIMAD the worst, being MINIMSE almost in
the middle of such values. When the maximum
absolute deviation (MAD) is under consideration, the
MINIMAD produces the best value but the MINIMSE
approach is very close to this value and the MINISAD
approach provides the worst value. In the case of the
mean squared error (MSE), the MINIMSE method
produced the best value followed, not very close, by
those of MINISAD and MINIMAD.

The corresponding direct runoff hydrograph
produced by the approaches MINISAD, MINIMAD
and MINIMSE are shown in table 2 and depicted in
figure 2. In this case, the direct runoff produced by
MINIMAD and MINIMSE follow closely the actual
direct runoff hydrograph, being the MINISAD the
worst solution.

So, the MINIMSE produces better overall solutions
than the ones provided by the approaches of MINISAD
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and MINIMAD, for this first case considered in this

paper.
. 12
Table 1. Discrete kernels for the approaches MINISAD,
MINIMAD and MINIMSE 10
Time (min) MINISAD MINIMAD MINIMSE = 3
S
0 0 0 0 -.'E_ e Actual
1 0.1 0.05 0.05 £ 6
o —A— MINISAD
2 0.17 0.118 0.114 — a
3 0.19 0.208 0.206 d —S—MINIMAD
4 0.16 0.208 0.202 2 —¥— MINIMSE
5 0.05 0.014 0.071 0
6 0.01 0.014 0.011 10
7 0.01 0.014 0.009 . .
8 0.01 0.014 0.006 Time (min)
Figure 2. Actual direct runoff and the hydrographs
9 0.01 0.014 0.003
produced by the approaches MINISAD, MINIMAD
10 0.01 0.014 0.003 and MINIMSE
11 0.01 0.014 0.003
Table 2. Objective functions of MINISAD, MINIMAD Table 3. Direct runoff hydrographs for the actual
and MINIMSE hydrograph and for the approaches MINISAD,
Method Criterion MINIMAD and MINIMSE
MINISAD _MINIMAD _MINIMSE OEO) ?3) 4) 5 (6
SAD 12.9 14.83 14.00 0 0 0 0 0 0
MAD 2.62 1.44 1.46 1 9.65 0.13 0.97 0.48 0.48
MSE 0.90 0.87 0.75 2 11.18 0.88 2.76 1.7 1.66
3 1448 2.52 5.18 4.05 3.99
4 13.21 5.16 7.45 6.7 6.56
0.25 5 1956 932 922 801 841
6 1524 1045 10.33 9.12 9.54
" 7 13.72 10.83 10.73 9.79 10.36
r 0.2 8 1448 1096 10.82 10.26 10.63
= 9 13.97 10.71 10.37 9.38 10.01
E 0.15 10 7.37 9.19 9.5 9.05 9.28
< A— MINISAD 11 203 68 795 825 825
3 12 1.02 4.66 5.51 6.04 6.17
o 01 —B-MINIMAD 13 152 327 34 351 361
O 14 214 184 228 231 193
A 0.05 —6— MINIMSE 15 151 1.13 1.89 2.06 1.42
av. 16 1.13 0.71 1.73 1.93 1.35
17 0.88 0.33 15 1.68 1.22
0¥ 18 0.63 0.15 1.17 1.26 0.97
19 0.5 0.1 0.85 0.91 0.73
0 ) 10 15 20 038 005 058 06 054
Time (min) 21 025 003 041 041 04

22 013 0 0.32 0.34 0.3
23 0.08 0 0.24 027 0.22

Figure 1. Unit hydrographs produces by the approaches

MINISAD, MINIMAD and MINIMSE (1) Time (min)
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(2) Mean effective rainfall (cm/hr) results when compared with existing schemes in the
(3) Actual direct runoff hydrograph (cm/hr) literature.
(4) MINISAD
(5) MINIMAD
(6) MINIMSE Table 4. Direct runoff hydrographs for the actual
hydrograph and for the approach MINIMSE
As a second example of application, the MINIMSE (1) (2) (3) (4) (5)
methodology was applied to an actual set of data 0 0 0 0 0
recorded at gauging station San Bernardo in
Northwestern Mexico. The data and results are 3 0.046 0 0.03 0
contained in table 4 and graphically depicted in figure 6 0 0 0.08 0
3. 9 2.18 0.02 0.19 0.08
12 0 0.09 0.21 0.19
15 1.42 0.38 0.22 0.46
18 1.08 0.69 0.03 0.6
21 0.18 0.93 0.03 0.83
24 0 0.64 0.03 0.57
= Actual 27 0.29 0.03 0.48
—6— MINIMSE 30 0.22 0.02 0.38
33 0.16 0.02 0.17
36 0.15 0.02 0.13
100 39 0.12 0.12
Time (hr) 42 0.1 0.11
Figure 3. Actual direct runoff and the hydrograph 45 0.09 0.11
produced by the approach MINIMSE 48 0.08 0.1
51 0.06 0.1
As it may been observed, from table 4 and figure 3, the 54 0.06 0.09
proposed methodology works very well with an actual 57 0.05 0.09
set of data, the p_eak of the hydrograph is well 60 0.04 008
reproduced and the time to peak, as well.
The application of the proposed approach is restricted 63 0.04 0.07
to the fact that the computer code for the Rosenbrock’s 66 0.04 0.07
constrained multivariable method must be available,
: . . ; 69 0.03 0.07
given that performing the required computations for
such method without a computer code is just out of the 72 i 0.03 0.07
question. (1) Time (hr)

(2) Mean effective rainfall (cm/hr)
(3) Actual direct runoff hydrograph (cm/hr)

. 4) MINIMSE discrete kernels unit
4, Conclusions )

hydrograph
A procedure to identify the discrete kernels for the UH (5) I\/)I/INIE/ISpE direct runoff hydrograph
was presented, based in a non-linear optimization (cm/hr)

technique known as the Rosenbrock’s method for
multiple  constrained  variables. The proposed

methodology has some nice features like the easiness 5. Acknowledgements
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