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Abstract  
 

 

The process of identification of discrete kernels of unit 

hydrographs is an important step in its application to 

flood forecast. The process of discrete kernels 

estimation of unit hydrographs has several interesting 

features, like the overestimation condition that appears 

when there are more equations than variables to be 

estimated, this condition often produces negative 

ordinates of the unit hydrograph and sometimes 

produces changing values that give oscillating values 

on the unit hydrograph. In order to avoid such 

undesirable outcomes, it is proposed in the paper to use 

the well-known Rosenbrock´s non-linear multi-variable 

optimization procedure in the estimation phase of the 

ordinates of unit hydrographs coupled with an 

objective function that minimize the sum of the squared 

errors between the forecasted and actual direct runoff 

hydrographs. Two examples of application are 

contained in the paper and through them the 

applicability and the goodness of fit of the proposed 

methodology is depicted. 
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1. Introduction  
The spread use of the unit hydrograph (UH), as an 

essential tool for real-time river flows forecasting 

models, and due to the generalized use of computers to 

perform the operations required by the phase of 

identification of the UH ordinates, in order to produce 

forecasted hydrographs, the process of identification 

becomes to be an important step of the whole process 

of real-time hydrograph forecasting. Often the 

identification phase of UH ordinates produces 

undesirable outcomes, like negative values and 

oscillations in the UH ordinates, which even though 

they mathematically correct  they are unrealistic form 

the point of view of hydrology and are difficult to 

explain from the physical basis of the phenomenon of 

streamflow. 

Some efforts have been made to avoid such 

problems, the use of optimization to obtain UH 

ordinates for flood forecasting has been proposed, [1]. 

Two approaches to identify UH ordinates, based in 

linear programming, namely MINISAD, in which the 

sum of absolute deviations is minimized, and 

MINIMAD, which minimize the maximum absolute 

deviation, were proposed [2]. The application of a non-

linear optimization procedure to analyze the impact of 

several forms of the objective function in the 

identification phase of the UH ordinates, has been 

proposed, [3]. The use of quadratic programming to 

stabilize the UH ordinates via the difference norms and 

they found an advantage over the standard ridge 

regression, where the penalties are placed on 

oscillations of the UH ordinates rather than on the size 

of its ordinates, has been proposed, [4]. The use of 

1872

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10719



  

  

 

 

  
 

discrete time-kernels to route discrete-time inflow 

hydrographs, has been proposed, [5].  

 

 

2. Discrete kernels of unit hydrograph 

ordinates identification through non-Linear 

optimization 
The discrete form of the convolution between effective 

rainfall and direct runoff is, [6]: 
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for n = 1, 2, … 

where: 

q(n) is the direct runoff hydrograph ordinate at time n 

δ(.) is the UH discrete kernel 

r(.) is the mean effective rainfall rate 

In equation (1), q(.) and r(.) must have consistent 

units given that δ(.) are dimensionless. From eq. (1), 

the error river forecast, defined as e(n), is, [6]: 

  

   

)()1()()(
1

0 






n

rnnqne

     
                                                                (2) 

for n = 1, 2, … 

 

and the mean squared error of the river forecast is, [6]: 

  
2/1

1

2 )(
)( 








 

n N

ne
eMSE

                (3) 

 

where:  

MSE(e) is the mean squared error of the river forecast 

N is the number of ordinates of the direct runoff 

hydrograph 

Now, in order to set properly the optimization 

problem to be solved, the following objective function 

is used: 
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subject to the following constraints: 

a) Non-negativity constraints: 

                                     

0
                                      (5) 

 
for I = 1, …, M 

where M is the memory time 

a) Ordering constraints: 
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where: 

δ(p) is the ordinate which corresponds to the peak of 

the UH 

The optimization part of the problem to identify the 

discrete kernels of the UH, has been carried out through 

the well-known non-linear optimization Rosenbrock´s 

method for constrained multiple variables, [7]. This 

procedure is named MINIMSE herein. 

 

 

3. Results and discussion 
The proposed methodology was applied to two 

different cases, in the first place the proposed 

methodology was applied to the data contained in [2]. 

The resulting discrete kernels for the unit hydrograph 

are shown in table 1. These results are depicted in 

figure 1. In here, it is easy to see that the least 

appropriate approach is that of MINISAD, those of 

MINIMAD and MINIMSE produce similar discrete 

kernels unit hydrographs. 

The values of the objective functions for the 

approaches MINISAD, MINIMAD and MINIMSE are 

contained in table 2.  With regard to the objective 

functions, when the sum of absolute deviations (SAD) 

is minimized, the MINISAD produces the best value 

and MINIMAD the worst, being MINIMSE almost in 

the middle of such values. When the maximum 

absolute deviation (MAD) is under consideration, the 

MINIMAD produces the best value but the MINIMSE 

approach is very close to this value and the MINISAD 

approach provides the worst value. In the case of the 

mean squared error (MSE), the MINIMSE method 

produced the best value followed, not very close, by 

those of MINISAD and MINIMAD. 

The corresponding direct runoff hydrograph 

produced by the approaches MINISAD, MINIMAD 

and MINIMSE are shown in table 2 and depicted in 

figure 2. In this case, the direct runoff produced by 

MINIMAD and MINIMSE follow closely the actual 

direct runoff hydrograph, being the MINISAD the 

worst solution. 

So, the MINIMSE produces better overall solutions 

than the ones provided by the approaches of MINISAD 
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and MINIMAD, for this first case considered in this 

paper. 

 
Table 1. Discrete kernels for the approaches MINISAD, 

MINIMAD and MINIMSE 

Time (min) MINISAD MINIMAD MINIMSE 

0 0 0 0 

1 0.1 0.05 0.05 

2 0.17 0.118 0.114 

3 0.19 0.208 0.206 

4 0.16 0.208 0.202 

5 0.05 0.014 0.071 

6 0.01 0.014 0.011 

7 0.01 0.014 0.009 

8 0.01 0.014 0.006 

9 0.01 0.014 0.003 

10 0.01 0.014 0.003 

11 0.01 0.014 0.003 

 

Table 2. Objective functions of MINISAD, MINIMAD 

and MINIMSE 

Method Criterion 

 MINISAD MINIMAD MINIMSE 

SAD 12.9 14.83 14.00 

MAD 2.62 1.44 1.46 

MSE 0.90 0.87 0.75 

 

 

 
 

 
Figure 1. Unit hydrographs produces by the approaches 

MINISAD, MINIMAD and MINIMSE 

 

 

 
Figure 2. Actual direct runoff and the hydrographs 

produced by the approaches MINISAD, MINIMAD 

and MINIMSE 

 
 

Table 3. Direct runoff hydrographs for the actual 

hydrograph and for the approaches MINISAD, 

MINIMAD and MINIMSE 

(1) (2) (3) (4) (5) (6) 

0 0 0 0 0 0 

1 9.65 0.13 0.97 0.48 0.48 

2 11.18 0.88 2.76 1.7 1.66 

3 14.48 2.52 5.18 4.05 3.99 

4 13.21 5.16 7.45 6.7 6.56 

5 19.56 9.32 9.22 8.01 8.41 

6 15.24 10.45 10.33 9.12 9.54 

7 13.72 10.83 10.73 9.79 10.36 

8 14.48 10.96 10.82 10.26 10.63 

9 13.97 10.71 10.37 9.38 10.01 

10 7.37 9.19 9.5 9.05 9.28 

11 2.03 6.8 7.95 8.25 8.25 

12 1.02 4.66 5.51 6.04 6.17 

13 1.52 3.27 3.4 3.51 3.61 

14 2.14 1.84 2.28 2.31 1.93 

15 1.51 1.13 1.89 2.06 1.42 

16 1.13 0.71 1.73 1.93 1.35 

17 0.88 0.33 1.5 1.68 1.22 

18 0.63 0.15 1.17 1.26 0.97 

19 0.5 0.1 0.85 0.91 0.73 

20 0.38 0.05 0.58 0.6 0.54 

21 0.25 0.03 0.41 0.41 0.4 

22 0.13 0 0.32 0.34 0.3 

23 0.08 0 0.24 0.27 0.22 

 
(1) Time (min) 
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(2) Mean effective rainfall (cm/hr) 

(3) Actual direct runoff hydrograph (cm/hr) 

(4) MINISAD 

(5) MINIMAD 

(6) MINIMSE 

 
As a second example of application, the MINIMSE 

methodology was applied to an actual set of data 

recorded at gauging station San Bernardo in 

Northwestern Mexico. The data and results are 

contained in table 4 and graphically depicted in figure 

3. 

 

 

 
Figure 3. Actual direct runoff and the hydrograph 

produced by the approach MINIMSE 

 

 

As it may been observed, from table 4 and figure 3, the 

proposed methodology works very well with an actual 

set of data, the peak of the hydrograph is well 

reproduced and the time to peak, as well.  

The application of the proposed approach is restricted 

to the fact that the computer code for the Rosenbrock’s 

constrained multivariable method must be available, 

given that performing the required computations for 

such method without a computer code is just out of the 

question. 
 

 

4. Conclusions 
A procedure to identify the discrete kernels for the UH 

was presented, based in a non-linear optimization 

technique known as the Rosenbrock´s method for 

multiple constrained variables. The proposed 

methodology has some nice features like the easiness 

on problem formulation and computer code design. 

These characteristics aids the application of the 

procedure in real-time flood forecasting situations. The 

proposed procedure has consistency in reaching better 

results when compared with existing schemes in the 

literature.  

 

 

Table 4. Direct runoff hydrographs for the actual 

hydrograph and for the approach MINIMSE 

(1) (2) (3) (4) (5) 

0 0 0 0 0 

3 0.046 0 0.03 0 

6 0 0 0.08 0 

9 2.18 0.02 0.19 0.08 

12 0 0.09 0.21 0.19 

15 1.42 0.38 0.22 0.46 

18 1.08 0.69 0.03 0.6 

21 0.18 0.93 0.03 0.83 

24 0 0.64 0.03 0.57 

27 

 

0.29 0.03 0.48 

30 

 

0.22 0.02 0.38 

33 

 

0.16 0.02 0.17 

36 

 

0.15 0.02 0.13 

39 

 

0.12 

 

0.12 

42 

 

0.1 

 

0.11 

45 

 

0.09 

 

0.11 

48 

 

0.08 

 

0.1 

51 

 

0.06 

 

0.1 

54 

 

0.06 

 

0.09 

57 

 

0.05 

 

0.09 

60 

 

0.04 

 

0.08 

63 

 

0.04 

 

0.07 

66 

 

0.04 

 

0.07 

69 

 

0.03 

 

0.07 

72 

 

0.03 

 

0.07 

(1) Time (hr) 

(2) Mean effective rainfall (cm/hr) 

(3) Actual direct runoff hydrograph (cm/hr) 

(4) MINIMSE discrete kernels unit 

hydrograph 

(5) MINIMSE direct runoff hydrograph 

(cm/hr) 
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