
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abstract— This work deals with a new modification of 

Particle Swarm with Center of Mass Optimization, Which We 

denoted by (PSOCM ). This modification gives a new efficient 

search technique. It gets benefit from the physical principle 

“center of mass” to move the particles to the new best-

predicted position. The new proposed technique improves the 

performance of current PSO technique. To evaluate the 

proposed algorithm (PSOCM) we compare it with two existed 

versions of PSO techniques, Center Particle Swarm 

Optimization (Center PSO) and Linear Decreasing Weight 

particle swarm optimization (LDWPSO) algorithms, the 

experimental results show that the PSOCM overcome Center 

PSO and LDWPSO in term of convergence rate, complexity, 

and scalability. 

Keywords— Computational intelligence; Particle Swarm 

Optimization; Local; Global, and Center of Mass. 

 

I.INTRODUCTION 

 

Kennedy and Eberhart introduced particle Swarm 

Optimization (PSO) in 1995 as a stochastic optimization 

algorithm based on social simulation model [1].  

The research in PSO has resulted in a large number of new 

PSO algorithms that improves the performance of the 

original PSO and enables application of PSO to different 

optimization problem types (e.g., unconstrained 

optimization, optimization in dynamic environments, 

constrained optimization, multi-objective optimization and 

finding multiple solutions). Elaborate theoretical studies of 

PSO dynamics have been done, and PSO parameter 

sensitivity analyses have resulted in a better understanding 

of the influence of PSO control parameters. PSO 

applications vary in complexity and cover a wide range of 

application areas. The PSO algorithm simulates the 

behaviors of bird flocking, the flight of a bird flock can be 

simulated with relative accuracy by simply maintaining a 

target distance between each bird and its immediate 

neighbors. This distance may depend on its size and 

desirable behavior. Therefore in PSO, each single solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a bird in the search space) is called a particle, and each 

particle has fitness value which is evaluated by the 

objective function to be optimized, and has a velocity 

which directs the flying of the particle. All particles fly 

through the problem space by following the current 

optimum particle. 

Many research papers have appeared in the literature using 

particle swarm optimization (PSO). A number of basic 

modifications to the basic PSO have been developed to 

improve speed of convergence and the quality of solutions 

found by the PSO. These modifications include the 

introduction of an inertia weight, velocity clamping, and 

velocity constriction. 

The following description of the PSO algorithm is adapted 

from [2]. In PSO, a swarm consists of N particles moving 

around in a D-dimensional searching space. Let Xi(t) = 

(xi1, xi2, …, xid) denote the position of particle i in the 

search space at time step t, Vi(t) = (vi1, vi2, …, vid) denote 

the velocity particle i in the search space at time step t, Pi = 

(pi1, pi2, …, pid) denote the best solution achieved so far 

by the particle itself, Pg= (pg1, pg2, …, pgd) denote the 

best solution achieved so far by the whole swarm. Adding a 

velocity to the current position, as follows, changes the 

new position of the particle:  

Xid
(t+1)

= Xid
(t)

+ Vid
(t+1)

                                (1) 

Vid
(t+1)

= w. Vid
(t)

+ c1r1(Pid − Xid
(t)

) + c2r2(Pgd − Xid
(t)

)   (2) 

Where c1 and c2 are two positive constants, r1 and r2 are 

two random numbers in the range [0, 1]; w is the inertia 

weight. The velocity vector drives the optimization 

process, and reflects both the experiential knowledge of the 

particle and socially exchanged information from the 

particle’s neighborhood. The experiential knowledge of a 

particle is generally referred to as the cognitive component, 

which is proportional to the distance of the particle from its 

own best position (referred to as pbesti). The socially 

exchanged information is referred to as the social 

component of the velocity equation (2), which is 
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proportional to the distance of the particle from the best 

position found by the swarm (referred to as gbest). 

Linear Decreasing Weight particle swarm optimization 

(LDWPSO) algorithm was presented by Shi and Eberhart 

[3]. The inertia weight w is decreased linearly over the 

searching iterations, from an initial value to a final value as 

follows: 

 

 

w = (wmax − wmin) ×
(Max.Iter−Iter)

Max.Iter
+ wmax          (3)                             

Where w is the inertia weight that controls the velocity of 

particles, wmax is the initial inertia weight, wmin is the 

final inertia weight, Max. Iter is the maximum number of 

iterations, and Iteris the current iteration. LDWPSO 

algorithm uses equation (1) to update position, equation (2) 

to update velocity and equation (3) to update the inertia 

weight. Center particle swarm optimization algorithm 

(Center PSO) was presented by [2] based on introducing a 

center particle to the LDWPSO algorithm proposed where 

a center particle is incorporated into linearly decreasing 

weight particle swarm optimization (LDWPSO). Unlike 

other ordinary particles in LDWPSO, the center particle 

has no explicit velocity, and is set to the center of the 

swarm at every iteration. But it is involved in all operations 

the same as the ordinary particle, such as fitness evaluation, 

competition for the best particle, except for the velocity 

calculation. The center particle has opportunities to become 

the gbest of the swarm. After N-1particles update their 

positions as the usual PSO algorithms at every iteration, a 

center particle is updated according the following formula: 

Xcd
(t+1)

=
1

N−1
∑ Xid

(t+1)N−1
i=1                           (4)                                                                           

We will compare our proposed algorithm with these 

methods.  

 Section 2 of this work gives the proposed algorithm. In 

section 3, the evaluation of the proposed algorithm is 

presented. Finally, in Section 4 we conclusion this paper by 

the summary of main points.   

 

II.THE PROPOSED TECHNIQUE 

A. Definitions 

System of point masses is that system consisting of N 

individual point masses 1,…, N. Their motion is described 

by specifying their position vectors r1⃗⃗  ⃗,…, rN⃗⃗⃗⃗  as function of 

time t: r i(t), where i =1,…,N. Center of Gravity or Center 

of Mass, is a point in a system of point masses at which the 

position vector R⃗⃗  is calculated using the masses mi and 

position vectors r i as follows: 

R⃗⃗ =
1

M
∑ mi × r i

N
i=1           (5) 

M = ∑ mi
N
i=1                   (6) 

 

Where M is the summation of masses and N is the number 

of masses. The terms “Center of Mass” and “Center of 

Gravity” are equivalently used in a uniform gravity field to 

represent a unique point in an object or system, which can 

be used to describe the system’s response to external forces 

and torques. Center of Mass can also be defined as an 

average of masses factored by their distances from 

reference point [4]. 

B. Assumptions 

Back to the particle swarm optimization algorithm and in 

particular to the equation of velocity, which controls the 

movement of the particles using the main parameters 

(gbest, lbest, acceleration coefficients and inertia weight), a 

new effective center of mass particle Xcm is proposed. 

This particle will contribute to accelerating the 

convergence of the algorithm in quite less number of 

iterations. It can also help to enhance the quality of the 

solution (by finding closer solution to the optimal). Unlike 

the center particle in Center PSO algorithm [2], the center 

of mass particle is virtual particle represent to the swarm at 

every iteration, and weighted by the fitness values of the 

particles that form the swarm, it has no velocity and 

doesn’t involved in all operations of the ordinary particle, 

such as fitness evaluation, competition for the best particle. 

By considering the particle swarm as a system of point 

masses, and make the value of the objective function of 

each particle meets the mass, then the weighted center of 

swarm can be calculated as follows: 

Xcm(t) =
1

Fcm
∑ F(xi) × xi(t)

N
i=1                            (7) 

Where F(xi) is the fitness values at position xi(t) of particle 

i, and Fcm is the summation of particles’ fitness values. By 

analogy with the summation of masses M in equation (8), 

Fcm can be calculated using equation (10). The fitness 

value F(xi) is considered to be the same value as the used 

objective function f(xi) when the algorithm searches for 

maximum optima, and to be the inverse of the objective 

function value searching for minimum optima as in 

equations (11) and (12). 

Fcm = ∑ F(xi)
N
i=1                     (8) 

F(xi) = f(xi) ,  when maximizing an objective function                                                  

                                                              (9) 

F(xi) =
1

f(xi)+ϵ
 , when minimizing an objective function,  

ϵ ≅ 0                                                                   (10) 

The range of the objective function assumed to be non-

negative in this case 

 

C. Velocity Update Function   

By calculating the center of swarm Xcm, the best position 

over all the swarm Pg (gbest), and the best position 

discovered by each particle Pi (pbest), the new velocity 

update equation of each particle can be produced using the 

following formula: 

vid
(t+1)

= wvid
(t)

+ c1r1 (
Pid

(t)
+Xcm

(t)

2
− Xid

(t)
) + c2r2 (

Pgd
(t)

−Xcm
(t)

2
−

Xid
(t)

)                                                              (11) 

Xid
(t+1)

= vid
(t+1)

+ Xid
(t)

                    (12) 

Consequently, the new position of each particle is updated 

using equation (14), and the searching process continues in 

progress until a stopping criterion is met. It must be noted 

that, if the inertia weight w in equation (13) was decreasing 

linearly, the resulted technique will be PSOCM, and if the 

inertia weight was fixed, the resulted technique will be 

PSOCM1. A roughly comparative visualization between 

the movement of particles in both PSOCM technique and 

SPSO algorithm is shown in Figure1. 
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D. Description of Particle Swarm with Center of Mass 

Technique 

 

As said previously, the main difference between our proposed 

technique PSOCM and Center PSO algorithm is that the Center 

PSO used average of particles’ positions to calculate the center 

particle. All particles except center update their velocities and 

positions using equations of the standard PSO. On the other 

hand, in our PSOCM, center of mass particle is calculated using 

weighted average of particles’ positions as given in equation 

(3), and doesn’t involved in all operations of the ordinary 

particle. The philosophy behind that is to make such a center of 

mass particle Xcm effects on the attraction of particles towards 

the global optima, and helps them to avoid the local optima.  

This can be explained by clarifying the role of the second and 

third terms in equation (7). The second term (
Pid

(t)
+Xcm

(t)

2
− Xid

(t)
) 

is responsible for the attraction of the particle’s current position 

towards the mean of the positive direction of its own best 

position (pbest) and the positive direction of the center of mass 

particle’s position (Xcm), which helps the cognitive behavior 

component to avoid the local optima. On the other hand, the 

third term (
Pgd

(t)
−Xcm

(t)

2
− Xid

(t)
) is responsible for the attraction of 

the particle’s current position towards the mean of the positive 

direction of the global best position (gbest) and the negative 

direction of the center of mass particle’s position  (-Xcm), 

which helps maintaining the diversity of the swarm during the 

searching process. This increases the opportunity of fast 

convergence to global (or near global optima), where the center 

of mass particle will attract particles to the region of best found 

solutions, that gives particles the best chance to occupy the 

position of global best found solution during the search process, 

all previous movement are supported by linearly decreasing 

weight which give the balance between exploration and 

exploitation during the search process. 

Pseudo Code of the PSO with Center of Mass Algorithm 

The following pseudo-code explains the whole process of 

PSOCM: 

 

 

 

 

 

 

Algorithm                The proposed  (PSOCM) algorithm 

01: begin 

02:   Randomly initialize particles swarm 

03:   while (stopping criterion is not met) 

04:       for i =1 the swarm size 

05:          Compute fitness of the particle swarm 

06:          Find local best Pi and global best Pg 

07:          Calculate center of swarm Xcm by equation (3) 

08:          for d=1 the problem dimensionality 

09:             Update particle velocity using equation (7) 

10:             Update particle position using equation (8) 

11:          end 

12:       end 

13:     update the inertia weight value by equation (3) 

14:   end-while  

15: end-algorithm 

 

Evaluation the performance of PSOCM Technique 

The benchmark test functions are problems with varying 

difficulty levels and problem size. Those problems will be 

solved by the proposed PSOCM technique and the other 

versions of particle swarm optimization algorithms, 

namely, SPSO, LDWPSO, Center PSO and Mean PSO. 

Problem Set consists of four scalable problems, namely, 

Rosenbrock, Rastrigrin, Griewank and Ackely function, the 

dimension of those problems can be increased/decreased, 

so the complexity of those problem increases as the 

problem size is increased [5]. 

Rosenbrock: A uni-modal function, with significant 

interaction between the variables. Its global minimum 

equal to zero located at (1, 1,…, 1), so there are n design 

variables with lower and upper limits of [-100, 100]. 

f1(x) = ∑ (100(xi+1 − xi
2)2 + (xi − 1)2)n−1

i=1          (13)                        

Rastrigin: A multi-modal version of Spherical function, 

characterized by deep local minima arranged as sinusoidal 

bumps, there are n design variables with lower and upper 

limits of [-10, 10], its global minimum equal to zero at (0, 

0, …, 0).  

f2(x) = ∑ (xi
2 − 10 cos(2πxi) + 10)n

i=1             (14) 

Griewank: A multi-modal function with significant 

interaction between its variables caused by the product 

term, there are n design variables with lower and upper 

limits of [-600, 600], its global minimum equal to zero at 

(0, 0, …, 0).  

f3(x) =
1

4000
∑ xi

2 − ∏ cos (
xi

√i
)n

i=1
n
i=1 + 1           (15)

   

Ackley: A multi-modal function with deep local minima, 

there are n design variables with the lower and upper limits 

of [-30, 30], its global minimum equal to zero at (0, 0, …, 

0).  

f4(x) = −20 e
−0.02√1

n
∑ xi

2n
i=1 − e(1n∑ cos(2πxi)

n
i=1 ) + 20 + e

                                                                (16)  

 Parameter Settings 

The evaluation of proposed PSOCM performance against 

the performance of PSO versions was performed by three 

comparisons. Firstly, the same set of parameters was 

          Standard PSO               PSOCOM 

𝑋𝑖(𝑡 + 1) 
𝑋𝑖(𝑡 + 1) 

𝑃𝑔 

𝑃𝑖 
𝑃𝑖 + 𝑋𝑐𝑚

2
 

 

−𝑥𝑐𝑚 

 

𝑋𝑖(𝑡) + 𝑤. 𝑉𝑖(𝑡) 

𝑃𝑔 − 𝑋𝑐𝑚

2
 

𝑋𝑐𝑚 

 

Fig 1.  Comparative movement of a particle in SPSO and PSOCM. 
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applied to the three tested algorithms, namely, LDWPSO, 

Center PSO and the proposed PSOCM to solve the first 

four benchmark test functions. Inertia weight w was 

linearly decreased from 0.9 to 0.4; acceleration coefficients 

were set to c1 = c2 = 2; the maximum velocity was set to 

Vmax = Xmax. The complexity was investigated for three 

cases of the first four problems dimensionality (D = 10, 20, 

30), correspondingly, the maximum number of iterations 

was set to (Itermax = 1000, 1500, 2000). Initialization 

range for particles’ position was set to 15≤ xi ≤30, 2.56≤ xi 

≤5.12, 300≤ xi ≤600 and 15≤ xi ≤30 for f1(x), f2(x), f3(x) 

and f4(x) respectively. The scalability of algorithms was 

investigated using four population sizes (N =20, 40, 80, 

160) for each function with different dimensionality; all 

solutions were computed over 100 runs.  

Standard deviation (SD) is a widely used measurement of 

variability or diversity used in statistics and probability 

theory. A low standard deviation indicates that the data 

points tend to be very close to the mean, whereas high 

standard deviation indicates that the data is spread out over 

a large range of values. Technically, the standard deviation 

of a statistical population, data set, or probability 

distribution is the square root of its variance and calculated 

as follows: 

SD = √σ = √∑ (xi − μ)2N
i=1 N⁄                     (17) 

Where σ is the variance, N is the number of data points xi, 

and μ is the mean (average) of data points xi. 

Analysis of the Results  

To evaluate the performance of the proposed technique,    

the comparisons of the proposed PSOCM technique with 

LDWPSO and Center PSO are performed in this 

experiment. All experiments performed on Intel core-i3 1.8 

GHz laptop with 4 GB of RAM under WIN7 platform. 

Comparison of PSOCM to LDWPSO and Center PSO 

It should be noted that, according to the used precision of 

numeric data types, the numeric value is considered equals 

zero if it was less than 5.0×10-324, and it will be displayed 

to 0.0000±0.0000 [6]. Tables 1, 2, 3 and 4 list the mean 

fitness value and standard deviation of the solutions 

averaged over 100 runs for Rosenbrock, Rastrigin, 

Griewank and Ackley functions respectively. As a result 

from these tables, it is observed that the proposed PSOCM 

superiors the LDWPSO and Center PSO for all the four test 

benchmark problems by influence of swarm size 

scalability, dimension complexity and the convergence rate 

(speed), it gives the optimal solution accurately for 

Rastrigrin and Griewank functions, and more close to 

optimal for Ackley function. For scalability, it can be seen 

that as the swarm size increases the average minimum 

value by LDWPSO and Center PSO decreases and become 

close to the optimal, with opportunity for Center PSO to 

overcome LDWPSO, but they both are bigger than that of 

PSOCM. Noticeable, average by PSOCM is the  

 

smallest one and fixed for the test functions except for 

Rosenbrock, it decreases slowly. 

 

 

 

                    Table I   Mean fitness value for Rosenbrock 

function  

 

 

Size

 

D.

 

Max. 

I.

 

LDWPSO

 

Center

 

PSO

 

PSOCM

 

20

 

 

 
10 

20

 

30

 
1000

 

1500

 

2000

 
67.3562±118.3036

 

79.3558±100.6168

 

175.8825±322.3206

 
37.0061±73.9258

 

66.2748±74.3958

 

82.3127±98.1343

 
8.1585±0.1818

 

18.1835±0.2072

 

28.2233±0.2581

 

40

 

 

 
10 

20

 

30

 
1000

 

1500

 

2000

 
34.0945±76.6419

 

51.9005±124.0668

 

87.4123±145.7247

 
23.6052±48.5820

 

43.7853±73.6872

 

66.5193±73.1078

 
8.1023±0.0279

 

18.1208±0.1053

 

28.1548±0.1729

 

80

 

 

 
10

 

20

 

30

 
1000

 

1500

 

2000

 
14.3379±36.3526

 

47.6202±66.7143

 

59.5880±69.6433

 
10.5008±27.3195

 

29.4490±42.4971

 

57.5455±67.5122

 
8.0956±0.0352

 

18.0989±0.0136

 

28.1076±0.0632

 

160

 

 

 
10 

20

 

30

 
1000

 

1500

 

2000

 
12.3286±35.5062

 

33.5459±51.3636

 

57.2036±83.5046

 
10.0699±23.3492

 

20.8180±30.9508

 

50.2963±50.2122

 
8.0911±0.0466

 

18.0928±0.0483

 

28.0932±0.0497

 

 

 

 

Table II.

 

Mean fitness value for Rastrigin function.

 

 

 

 

 

 

 

 

 

Size D. 
Max. 

I. 
LDWPSO Center PSO PSOCM 

20 

 

 

10 

20 

30 

1000 

1500 

2000 

9.1437±4.9662 

47.7768±17.6409 

87.9939±25.6677 

9.0801±4.6473 

47.4496±15.9583 

126.5994±36.3899 

0.0000±0.0000 

0.0000±0.0000 

0.0000±0.0000 

40 

 

 

10 

20 

30 

1000 

1500 

2000 

5.5618±3.2518 

26.9677±9.1263 

52.0860±16.7072 

5.8603±3.3086 

30.9730±9.8311 

80.9298±24.1957 

0.0000±0.0000 

0.0000±0.0000 

0.0000±0.0000 

80 

 

 

10 

20 

30 

1000 

1500 

2000 

3.7311±1.9312 

20.0285±7.7322 

33.2141±9.1025 

3.8704±2.3116 

22.1876±8.4571 

61.0605±19.7476 

0.0000±0.0000 

0.0000±0.0000 

0.0000±0.0000 

160 

 

 

10 

20 

30 

1000 

1500 

2000 

1.9369±1.1581 

10.5770±3.9736 

36.7956±11.5786 

2.3282±1.3219 

14.6657±4.8183 

39.7013±10.0061 

0.0000±0.0000 

0.0000±0.0000 

0.0000±0.0000 
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Table III.
 

Mean fitness value for Griewank 

function.
 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Table IV.

 

Mean fitness value for Griewank 

function.

 

 

Figure1 :Rosenbrock

 

function convergence.

 

 

 

 

 

 

 

 

 

 

 

 

 

               

 

                      

  Fig 2.Rastrigin function convergence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Fig 3. Griewank function convergence.

 

 

Fig

 

4. Ackley function convergence.

 
 
 
 
 
 
 
 
 
 
 

Size
 
D.

 
Max. 

I.
 

LDWPSO
 

Center PSO
 

PSOCM
 

20
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.5064±0.1804
 

0.9905±0.2373
 

1.3294±0.2671
 

0.4576±0.1552
 

0.8677±0.1954
 

1.0353±0.1547
 

4.44E-

16±0.0000
 

2.04E-

15±1.77E-15
 

3.71E-

15±9.64E-16
 

40
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.3759±0.1253
 

0.7634±0.2029
 

1.0762±0.1997
 

0.3470±0.1114
 

0.6615±0.1379
 

0.7688±0.1189
 

4.44E-

16±0.0000
 

2.26E-

15±1.78E-15
 

3.46E-

15±1.27E-15
 

80
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.2797±0.0956
 

0.5798±0.1479
 

0.8852±0.1720
 

0.2513±0.1039
 

0.4374±0.0887
 

0.5764±0.1095
 

4.44E-

16±0.0000
 

1.79E-

15±1.72E-15
 

3.36E-

15±1.36E-15
 

160
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.1855±0.0849
 

0.4945±0.1349
 

0.7022±0.0727
 

0.1645±0.0857
 

0.3227±0.0551
 

0.4369±0.0727
 

4.44E-

16±0.0000
 

1.47E-

15±1.61E-15
 

3.22E-

15±1.47E-

15
 

Size
 
D.

 
Max. 

I.
 

LDWPSO
 

Center PSO
 

PSOCM
 

20
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.0891±0.0419
 

0.0663±0.2332
 

0.0331±0.0668
 

0.0815±0.0493
 

0.0588±0.1314
 

0.0111±0.1959
 

0.0000±0.0000
 

0.0000±0.0000
 

0.0000±0.0000
 

40
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.0867±0.0423
 

0.0222±0.0223
 

0.0158±0.0175
 

0.0776±0.0395
 

0.0226±0.0410
 

0.0248±0.0355
 

0.0000±0.0000
 

0.0000±0.0000
 

0.0000±0.0000
 

80
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.0688±0.0281
 

0.0221±0.0205
 

0.0119±0.0146
 

0.0659±0.0279
 

0.0215±0.0211
 

0.0192±0.0233
 

0.0000±0.0000
 

0.0000±0.0000
 

0.0000±0.0000
 

160
 

 

 

10 

20
 

30
 

1000
 

1500
 

2000
 

0.0577±0.0236
 

0.0233±0.0196
 

0.0099±0.0115
 

0.0552±0.0221
 

0.0217±0.0195
 

0.0108±0.0109
 

0.0000±0.0000
 

0.0000±0.0000
 

0.0000±0.0000
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According to complexity, when the problem dimension 

increases (more complexity) the average minimum value 

obtained by LDWPSO, CenterPSO and PSOCM increases, 

but the average obtained by PSOCM is still the smallest 

one, it increases slowly while dimenstion rises for all tests 

except Rastrigin and Griewank (the optimal is reached). Up 

to convergence rate, the convergence of PSOCM is faster 

than that ofLDWPSO and CenterPSO. 

 

III.CONCLUSION AND FUTURE WORK 

 

  In this paper, a new variation of PSO, called Particle 

Swarm Optimization with Center of Mass (PSOCM), is 

brought forward. A virtual particle called center of mass is 

inserted to the formula of velocity to help the cognitive 

behavior component to avoid local optima, and to help 

maintaining the diversity of the swarm during the searching 

process. This increases the opportunity of fast convergence 

to global (or near global optima), where the center of mass 

particle will attract particles to the region of best found 

solutions, and this gives particles the best chance to occupy 

the position of global best found solution during the search 

process. Two versions of particle swarm optimization, 

namely, LDWPSO, and CenterPSO, were considered with 

the proposed PSOCM to be compared. A set of well-known 

optimization benchmark test problems with varying 

difficulty levels and problem size are considered to 

evaluate the compared algorithms. This set of problems 

consists of four scalable problems, namely, Rosenbrock, 

Rastrigrin, Griewank and Ackely function, the dimension 

of those problems can be increased/decreased at will, so the 

complexity of those problem increases as the problem size 

is increased. 

  In the future, more theoretical work on PSOCM will be 

performed, and some real examples from industry and 

other fields will be applied to PSOCM to evaluate its 

performance. More physical rules may be used to enhance 

the performance of the particle swarm optimization, which 

is still a hot topic for researchers to explore and examine. 

New enhanced particle swarm optimization algorithm may 

be investigated to be used in forecasting PSO based 

models.    
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