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INTRODUCTION 

The notion of fuzzy sets was proposed to tackling problems 

in which indefiniteness arising from a sort of intrinsic 

ambiguity plays a fundamental role. Fuzziness, a feature of 

uncertainty, results from the lack of sharp distinction of the 

boundary of a set, i.e., an individual is neither definitely a 

member of the set nor definitely not a member of it. new 

parametric generalized exponential entropy is proposed. 

This paper is organized as follows: some basic definition 

related to probability and fuzzy set theory are discussed. a 

new fuzzy entropy measure called, exponential fuzzy 

entropy of order-α is proposed and verifies the axiomatic 

requirements. some properties of the proposed measure are 

studied and limiting cases also discussed here and our 

conclusions are presented in  

PRELIMINARIES 

In this section we present some basic concepts related to 

probability theory and fuzzy sets which will be needed in 

the following analysis. First, let us cover probabilistic part 

of the preliminaries. 

Let 
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be the set of n-complete probability distribution. 

For any probability distribution 

.),......,( 21 nnpppP   Shannon entropy [11] is 

defined as 
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Various generalized entropies have been introduced in the 

literature, taking the Shannon entropy as basic and have 

found applications in various disciplines such as 

economics, statistics, information processing and 

computing etc. 

Generalizations of Shannon’s entropy started with Renyi’s` 

entropy [10] of order-α, given by
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Pal and Pal [8, 9] analyzed the classical Shannon 

information entropy and proposed a information entropy 

called exponential entropy given by
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These authors point out that, the exponential entropy has an 

advantage over Shannon’s entropy. For the uniform 

probability distribution 









nnnn
P

1
.................

1
,

1
,

1  

exponential entropy has a fixed upper bound 
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which is not the case for Shannon’s entropy. 

Corresponding to (2), Kvalseth [6] introduced and studied 

generalized exponential entropy of order-α, given by
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Definition 1: Let  nxxX ,........1 be a discrete universe 

of discourse. A fuzzy set A on X is characterized by a 

membership function )(xA  : X → [0, 1].The value 

)(xA of A at x ∈ X stands for the degree of membership 

of x in A. 

Definition 2: A fuzzy set 
*A  is called a sharpened version 

of fuzzy set A if the following conditions are satisfied: 
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Definition 3: Let FS(X) denote the family of all FSs of 

universe X, assume )(, XFSBA   is given by 

   ;)(,;)(, XxxxBXxxxA BA   then 

some set operations can be defined as follows:  

i.  XxxxxA AA

C  )(),(1,    

ii.  XxxxxBA BA  )(),(min,      
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iii.  XxxxxBA BA  )(),(max,   First 

attempt to quantity the uncertainly associated with a fuzzy 

event in the context of discrete probabilistic frame work 

appears to have been made by Zadeh [14],who defined the 

entropy of fuzzy set A with respect to ),( PX  as  
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De Luca and Termini [2] introduced a set of four axioms 

are widely accepted as criterion for defining any fuzzy 

entropy. In fuzzy set theory, the fuzzy entropy is a measure 

of fuzziness which expresses the amount of average 

ambiguity or difficulty in making a decision whether an 

element belongs to a set or not. A measure of fuzziness in a 

fuzzy set should have at least the following axioms: 

 PI (Sharpness): H(A) is minimum iff A is crisp set i.e. 

.10)( iorxiA   

P2 (Maximality): H(A) is maximum iff A is most fuzzy set 

i.e. .
2

1
)( ixiA   

 P3 (Resolution): )()( * AHAH  where 
*A  is a 

sharpened version of A. 

P4 (Symmetry): )()( CAHAH  where 
CA  is the 

complement set of A. 

Since  )(1)( iAiA xandx    gives same degree of 

fuzziness, therefore, De Luca and Termini [2] defined 

fuzzy entropy for a fuzzy set A corresponding to(1) as 
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Later on Bhandari and pal [1] made a survey on 

information measures on fuzzy sets and gave some new 

measures of fuzzy entropy. Corresponding to (2) they have 

suggested the following measure: 
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Pal and Pal [8,9] defined exponential fuzzy entropy for a 

fuzzy set corresponding (3) as  

 

 

   
)9(

1)(1

)(

1

1
)(

1
)(1

)(1



























n

i
x

iA

x

iA

iA

iA

ex

ex

en
AE








 

Throughout this paper, we denote the set of all fuzzy sets 

on X by FS(X). 

In the next section we propose generalized fuzzy entropy 

measure corresponding to (4),called exponential fuzzy 

entropy of order-α and verify the axiomatic requirements. 

 

 

 

 

 

 

EXPONENTIAL FUZZY ENTROPY OF ORDER 

We proceed with the following formal definition: 

Definition 4: Let A be the fuzzy set A fuzzy set defined on 

discrete universe of discourse  nxxX ,........1 having 

the membership values nixiA ........2,1),(  .We define 

the exponential fuzzy entropy of order-α corre- sponding to 

(5), as 
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Theorem:1 The measure (10) satisfy measure of fuzzy 

entropy. 

Proof: Symmetry follows from the definition. We prove the 

properties (1) to (3) are satisfied by (10). 

PI (Sharpness): First let 0)( AE , then  
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Conversely, if A is a crisp set , then either 0)( iA x  or 

.,.....3,2,11)( nixiA  it gives  
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P2 (Maximality): Let 
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Thus  )( iA xf   is a concave function which has a global 

maximum at .5.0)( iA x )(AEHence  is maximum 

iff A is the most fuzzy set. 

.,....2,1.5.0)(.).( nixei iA   
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P3 (Resolution): Since )(AH is increasing function of 

)( iA x  in the range  5.0,0 and the decreasing function 

of )( iA x  in the range  5.0,0 therefore, 
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P4 (Symmetry): It is clearly from the definition,  

   .CAEAE   .theoremtheproveHence  
  

IV. PROPERTIES OF EXPONENTIAL FUZZY 

ENTROPY OF ORDER-α 

The measure of exponential fuzzy entropy of order-α has 

the following properties: 

Theorem 2: For ),(, XFSBA   
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Lemma:
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V. CONCLUSIONS 

This work introduces a Fuzzy Entropy and Fuzzy 

Divergence measure is exponential fuzzy entropy of order-

α in the setting of fuzzy set theory.Some properties of this 

measure have been also studied.This measure generalizes 

Pal and Pal [9] exponential entropy and De-Luca and 

Termini [2] logarithmic entropy. Introduction of parameter-

α provides new flexibility and wider application of 

exponential fuzzy entropy to different situations. 
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