
A new Hybridized Multilevel Feedback Queue Scheduling with Intelligent Time

Slice and its Performance Analysis

 H.S.Behera , Reena Kumari Naik, Suchilagna Parida

Department of Computer Science and Engineering

 Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur,

Odisha,768018, India.

Abstract

In this paper we have proposed a new hybridized

multilevel feedback queue with intelligent time slice

(ITS). The processes that are entering into the system

are assigned to the first ready queue according to their

priority which is decided by using HRRN algorithm and

then gradually shifted to the next lower level queues

upon expiration of time slice. In multilevel feedback

queue, the ITS increases gradually while entering to

the lower level queues. HRRN scheduling policy

reduces the indefinite postponement of the long

processes thus reducing starvation. Here control flow

diagram has been used to describe the flow of control

of execution of processes in respective queues. The

proposed approach shows a better and reduced

turnaround time, average waiting time and throughput

than the other papers.

Keywords --- CPU burst time, intelligent time

slice(ITS), shifting to lower queues, MLFQ Scheduling

algorithm, Round Robin scheduling, HRRN scheduling,

turnaround time, waiting time, and throughput.

1. Introduction
Scheduling in multitasking and multiprocessing

environment is the way the processes are assigned to

execute on the available CPUs. The main goal of

scheduling is to minimize the various parameters such

as CPU utilization, throughput, turnaround time,

waiting time, context switches etc. There are various

type of scheduling are used to schedule various

processes. Multilevel feedback queue scheduling is a

scheduling policy which allows processes entering to

the system to move among several queues. Here the

processes do not come with any priority but during

scheduling they goes down to the lower level queues

according to its CPU burst time and calculated time

slice(ITS). Here the HRRN scheduling algorithm is

merged with multilevel feedback queue to improve the

performance. HRRN scheduling policy is similar to the

SJN (shortest job next) which decide the priority of the

processes based on the execution time and the waiting

time. Priority of processes increases as long as they

wait in the queue which prevents the indefinite

postponement (process starvation). The scheduling is

used in the real time applications like routing of data

packets in computer networking, controlling traffic in

airways, roadways and railways etc. This motivates us

to implement multilevel feedback queue scheduling

algorithm with sorted remaining burst time with

dynamic time quantum concept.

A. Scheduling algorithms
When there are number of processes in the ready

queue, the algorithm which decides the order of

execution of those processes is called scheduling

algorithm. The various well known CPU scheduling

algorithms are First Come First Serve (FCFS), Shortest

Job First (SJF), Highest Response Ratio Next (HRRN)

and Priority. All the above four algorithms are non-pre

-emptive in nature and are not suitable for time sharing

systems. Shortest Remaining Time Next (SRTN) and

Round Robin (RR) are pre-emptive in nature. RR is

most suitable for time sharing systems.

B. Related Work

There are various type of approaches proposed in

different papers in order to increase the overall

performance of the MLFQ. Paper[3], a parametric

multilevel feedback queue scheduling algorithm that

has been proposed to solve the problems regarding the

scheduling and also increase the overall performance .

Here the priority has also played a most important role.

A very small time quantum has been assigned to the

very high priority queue and decreased the time

quantum by 1 and doubles the time slice as the level of

queue increases. In paper [4], it is proposed that the

process does not come with any priority rather it is

decided during scheduling. The time quantum assigned

were gradually increasing as the priority increases. An

approach is given for the long processes whose burst

time is so much that they starve during scheduling to

get the CPU time. They also proposed a well organized

control flow diagram. In another paper [6],Recurrent

neural network has been proposed to optimize the

quantum of each queue. The RNN can give the most

effective model for recognizing the trend information

of the time series data .The input of the RNN are the

quantum of queues and average response time. Average

response time enters as the input to neural network so,

that the network obtains a relation between the change

of quantum of specified queue with the average

response time and with the quantum of other queues

and by a change in the quantum of specified queue. In

Paper[8], a different type of analysis has been

described which is the combination of both best case

analysis as well as worst case analysis .The

performance is analyzed in terms of time complexity.

It was also an effective method for better performance

of the multilevel feedback queue scheduling. In another

paper [10], the multilevel feedback queue scheduling is

implemented in linux kernel. In another paper,

multilevel feedback queue with dynamic time quantum

has been proposed which shows a better performance.

Here the time quantum is calculated based on the mean

and median of the processes. Likewise various

algorithms were proposed to achieve better

performance and reliability of using the scheduling.

C. Our Contribution

Here best suited OTS is calculated based on the

execution time and waiting time. Dynamic ITS

calculated for each queue with the point that the value

of ITS increases as the processes go downward. HRRN

scheduling policy is used to prevent the process

starvation. Thus it is observed that there is an

improvement in the overall performance.

 II.A. PROPOSED ALGORITHM

In the proposed approach, the original time slice (OTS)

is calculated which is based on the waiting time and the

run time or burst time. The ITS calculated for each

queue is based on the calculated OTS.

A. Proposed Algorithm

In this algorithm, the first process is assigned to the Q1

since at the beginning all processes have the same

priority and then the Response Ratio or priority of

other processes is calculated which is based on the

waiting time and the execution time . As long as the

process waits in the ready queue the priority increases.

Then according to the priority the processes are

assigned to the ready queue for execution. Then the

OTS is calculated for each process based on the burst

time. ITS is calculated based on the OTS (original

time slice), PC (priority component), SC(shortness

component) and CSC (context switch component) for

each process and average of the ITS of each processes

is assigned as the time slice for the Q1. Upon

expiration of the ITS the processes move toward the

lower level queue till completion. The ITS increases

as processes move towards lower level queue. The

response of

Response Ratio= waiting time + expected run time

 expected run time

The Response Ratio is calculated for each queue

before entering to the queue. According to the

response time the processes are scheduled. The

process having higher response ratio will be assigned

first to the ready queue for execution.

To calculate ITS we introduce some parameters and

those are described below:

OTS (original time slice): It is calculated for each

process based on the execution time. It depends upon

the range, number of processes and priority.

Range = Max burst time+ Min burst time

 Max burst time- Min burst time

 OTS= range+ (no. of processes) + (priority of current

Process).

PN (priority number): It is decided based on the burst
time of each process (process having smallest burst
time is given highest priority).

PC (priority component): It can be calculated using PN.

 PC=1/PN 1, if PN=1

 0, if PN>1

SC (shortness component): It is calculated based on

burst time of current process and previous process.

 SC= 1, if burst time (current-previous) process<0

 0, otherwise

CSC (context switch component): It is calculated

based on burst time, PC, SC and OTS.

 SC= 1, if (burst time-(PC+SC+OTS)) <0

 0, otherwise

ITS (intelligent time slice): It is calculated based on all

the above parameters. It should not be greater than the

maximum burst time.

PSEUDO CODE:

1. Let n: number of processes

 m: number of levels

 l: level

 b[i]: burst time of ith process

 rb[i]: remaining burst time of ith process

 OTS: original time slice,

 ITS: intelligent time slice

 PC: priority component, SC: shortness

component, CSC: context switch component

 Initialize: l=1,avg tat=0

2. Insert the processes p1 to Q1

 then

 Priority of remaining Pi where i=2 to 5 are

calculated using HRRN.

 Assign all Pi to Q1. According to their priority

3. Calculate the OTS

Range = Max burst time+ Min burst time

 Max burst time- Min burst time

 OTS= range + (no. of processes) +(priority of

current process)

4. Calculate ITS

 for(m=1 to 5)

 {

 While (ready queue!=NULL)

 {

 ITS= OTS+PC+SC+CSC// for each processes

 ITS1=sum of all ITS / total no. of processes

 Q1<-ITS1

 Q2<--2*ITS1

 }

 }

 5. If(bt>=ITS)

 {

 Rbt=bt-ITS;

 Qm+1<--Rbt;

 }

 Else

 Qm<--P[i];

6. if(m>=5)

{

 Sort the all Rbt of processes in ascending order;

 Then resend them to the respective queues for

complete execution.

}

7. Calculate avg tat, waiting time and throughput.

8. stop and exit.

 Fig2. FLOW CHART OF THE PROPOSED

ALGORITHM:

 Yes

 No

 No

 Yes

 No

 Yes

 II. B. CONTROL FLOW DIAGRAM OF THE

PROPOSED ALGORITHM

A control flow diagram (CFD) describes the sequence

of flow of control of process or program. It can consist

of a subdivision to show sequential steps, with different

conditional statements, repetitions and case conditions.

 INPUTS (Processes with burst times)

 SCHEDULING_QUEUE in level1(tq1)

SCHEDULING_QUEUE in level2(tq2)

 SCHEDULING_QUEUE in level5(tq5)

 Schedule process1

 In Q1(tq6)

 Schedule process4

 In Q4(tq6)

 Schedule process2

 In Q2(tq6) schedule process3

 In Q3(tq6)

 Schedule process In Q5 (tq6)

 SCHEDULING in level6(tq6)

 Schedule process1

 In Q1 (tq7)

 Schedule process4

 In Q4(tq7)

 Schedule process2

 In Q2(tq7)

 schedule process3

 InQ3(tq7)
Schedule process5 In Q5 (tq7)

Figure 2.Control Flow Diagram showing the scheduling

process.

 This algorithm will work for n processes but

here for experimental purpose we have taken 5 queues

(Q1, Q2, Q3, Q4 and Q5) .If any process does not

 Start

 Q1 P[i] according to their RsR

While (m<=5)

 Is Ready

queue= null?

 P[i]ITS

Is bt>=ITS ?

 ?

Qm ITS

Qm+1 rbt

Is m>5 ?

 ?

Sort rbt[i]

Calculate tat, avg waiting

time, and throughput

 Exit

Calculate waiting

time of each Qm

Calculate Response ratio (RsR) of P[i]

 loop

(m<=5)

 End of loop

Calculate ITS

rbt=bt-ITS

complete its execution within these queues and reaches

to the lowest queue i.e. Q5 then the remaining processes

are to be rescheduled in their respective queues. The

processes are arranged according to their remaining

CPU burst time and send them to their respective

queues. The processes are in increasing or decreasing

order and the process having minimum burst time is

sent to Q1 and next process to Q2 and in the same way

processes are assigned up to Q5 so that Q5 must get the

process with highest remaining burst time. The same

procedure repeats till all the processes have finished

their execution.

The process of execution repeats till all the processes

are finished within their given burst times. Here the

order of time quanta is

 tq1 < tq2 <tq3 <tq4 <tq5 <tq6 <tq7

III. EXPERIMENTAL ANALYSIS

A. Assumptions
The environment is assumed to be time sharing,

multiprocessor and multitasking. OTS and ITS are

assumed to be not more than the maximum burst time.

All the attributes like CPU burst time, number of

processes, OTS and ITS of all the processes are known

before submitting the processes to the processor. All

processes are CPU bound. No processes are I/O bound.

B. Data set

We have performed three experiments for evaluating

various performances. We have taken three different

cases for evaluation in increasing, decreasing and

random order of burst time.

C. Performance Metrics

There should be some significance output for better

performance and those are as follows:

1) Turnaround time (TAT): The average turnaround

time should be less for better performance.

2) Waiting time (WT): waiting time is the time of the

process that waits for the CPUs to execute .The average

waiting time should be less for better performance.

3) Throughput: Throughput of the algorithm should be

more for better performance.

D. Experiments Performed

Here to evaluate the performance of the proposed

algorithm we have taken 5 processes in increasing,

decreasing and random order for each cases . The

algorithm works effectively for any type of processes.

In each case, we have compared the experimental

results of our proposed algorithm with the previous

proposed MLFQ algorithms. Here we have taken a

dynamic ITS as time slice for each queue. And hence

the turnaround time, average waiting time and

throughput are calculated.

The OTS is calculated using the following formula:

Range = Max burst time+ Min burst time

 Max burst time- Min burst time

 OTS= range +no. of processes +priority of current

process

To calculate IT’S THE formula used is

ITS=OTS+(total no. of processes)+(priority of current

process).

For example: table 1:

Process Burst

Time

PN PC SC CSC OTS ITS

P1 290 1 1 0 0 10 11

P2 300 2 0 0 0 11 11

P3 324 3 0 0 0 12 12

P4 400 4 0 0 0 13 13

P5 520 5 0 0 0 14 14

The average ITS = (11+11+12+13+14)/5=61/5=

 12.2(rounding up) =12

The various ITS for each queue is calculated as

follows;

ITS1=12

ITS2=2* ITS1=24

ITS3=2*ITS2 =48

ITS4=2*ITS3 =96

ITS5=2*ITS4 =192

 III.A.GANTT CHART

Gantt chart for case 1:

ITS1=12; arrival time =0

P1 P2 P3 P4 P5

0 12 24 36 48 60

ITS2=24, arrival time=60

P1 P2 P3 P4 P5

60 84 108 132 156 180

ITS3=48, arrival time=180

P1 P2 P3 P4 P5

180 228 276 324 372 420

ITS4=96, arrival time=420

P1 P2 P3 P4 P5

420 516 612 708 804 900

ITS5=192, arrival time=900

P1 P2 P3 P4 P5

900 1010 1130 1274 1466 1658

 When the processes reach to the lowest queue but

have not completed then the remaining CPU burst time

of each process are calculated and sort all the values in

ascending order .Rescheduled the processes by sending

them into their required respective queues. The process

having least burst time is send to Q1 and the next

process to Q2. In the same manner all processes have

been sent to different queues according to their values.

Q5 must have the process with highest remaining burst

time. The same procedure is repeated till all the

processes get executed. Here ,since two processes are

remaining those are P4and P5 so those are scheduled

as follows,

 T6=1658

 Queue 3

 P4

 1658 1686

 Queue 5

P5

 1658 1806

 For this case the turnaround time is 1806.

Throughput = no. of processes completed

 total time taken

Here we have taken few test cases of different CPU

burst times which gives a comparison based on the idea

of proposed approach and other MLFQs. We have

taken 5 different processes for each test case which are

to be scheduled.

Table 2(a): FIRST TEST CASE INPUT:

(Five processes with CPU burst times in increasing

order)

Process Burst

time

PN PC SC CSC OTS ITS

P1 290 1 1 0 0 10 11

P2 300 2 0 0 0 11 11

P3 324 3 0 0 0 12 12

P4 400 4 0 0 0 13 13

P5 520 5 0 0 0 14 14

 Table 2(b): FIRST TEST CASE OUTPUT:

algorithms Turnaround

time

Average

waiting

time

throughput

Power

MLFQ

 1834 648 2.73*10
-3

EMLFQ 1834 648 2.73*10
-3

Proposed

approach

 1806 473 2.76*10
-3

Table 3(a): SECOND TEST CASE INPUT:

(Five processes with CPU burst times in decreasing

order)

Process Burst

time

PN PC SC CSC OTS ITS

P1 522 5 0 0 0 9 11

P2 390 4 0 1 0 10 12

P3 326 3 0 1 0 11 12

P4 280 2 0 1 0 12 12

P5 276 1 1 1 0 13 13

Table 3(b): SECOND TEST CASE OUTPUT:

Table 4(a): THIRD TEST CASE INPUT:

(Five processes with CPU burst times in random order)

Process Burst

time

PN PC SC CSC OTS ITS

P1 328 4 0 0 0 9 11

P2 282 5 1 1 0 10 13

P3 580 1 0 0 0 11 11

P4 360 3 0 1 0 12 12

P5 420 2 0 0 0 13 11

Table 4(b): THIRD TEST CASE OUTPUT:

In all the above test cases the calculated turnaround

time, average waiting time & throughput are better than

previous MLFQ papers.

III.B. PERFORMANCE ANALYSIS

Here we have analyzed the performance of our

proposed algorithm with other MLFQ algorithms in

terms of graph. The graph shows the turnaround time,

average waiting time and throughput along the Y-axis

and the number of test cases along the X-axis.

1650

1700

1750

1800

1850

1900

1950

2000

1ST
TEST
CASE

2ND
TEST
CASE

3RD
TEST
CASE

A
V

ER
A

G
E

TU
R

N
 A

R
O

U
N

D
 T

IM
E

--
--

->

NO. OF TEST CASES------>

COMPARISION OF TURN AROUND TIME
BETWEEN DIFFERENT ALGORITHMS

POWER
MLFQ
EMLFQ

PROPOSED
APPROACH

Figure 3.turnaround time of various proposed

approaches for 1
st
 test case, 2

nd
 test case and 3

rd
 test

case are shown.

algorithms Turnaround

time

Average

waiting

time

Throughput

Power

MLFQ

 1794 641 2.78*10
-3

EMLFQ 1794 641 2.79*10
-3

Proposed

approach

 1788 541 2.80*10
-3

algorithms Turnaround

time

Average

waiting time

throughput

Power

MLFQ

 1970 661 2.538*10
-3

EMLFQ 2970 661 2.54*10
-3

Proposed

approach

 1934 556 2.90*10
-3

0
100
200
300
400
500
600
700

1ST
TEST
CASE

2ND
TEST
CASE

3RD
TEST
CASEA

V
ER

A
G

E
W

A
IT

IN
G

 T
IM

E-
--

--
->

NO. OF TEST CASES------>

COMPARISION OF AVG AVG WAITING
TIME BETWEEN DIFFERENT TEST CASES

POWER
MLFQ
EMLFQ

PROPOSED
APPROACH

 Figure 4.Average waiting time of the queues at each

level of various proposed approaches for 1
st
 test case,

2
nd

 test case & 3
rd

 test case are shown

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

1ST
TEST
CASE

2ND
TEST
CASE

3RD
TEST
CASE

TH
R

O
U

G
H

P
U

T(
1

0
-3

)- -
--

>

NO. OF TEST CASES------>

COMPARISION OF THROUGHPUT
BETWEEN DIFFERENT ALGOTITHMS

POWER
MLFQ

EMLFQ

PROPOSED
ALGORITHM

Figure 5.throughput of various proposed approaches for

1
st
 test case, 2

nd
 test case and 3

rd
 test case are shown.

IV.CONCLUSION AND FUTURE WORK

Here the multilevel feedback queue scheduling and

HRRN scheduling are merged to improve the

performance as well as to prevent the indefinite

postponement of the processes. The starvation is

reduced by this proposed approach.

The number of queues and the time quantum of each

queue also affect the performance a lot. Here a new ITS

introduced in order to enhance overall performances.

As a result reduction in the turnaround time and the

waiting time in Multilevel Feedback Queue Scheduling

was achieved. The throughput for each queue has also

been increased. As the turnaround time and waiting

time decreases, the execution becomes faster.

Throughput increases and hence the CPU utilization

also increases.

 Here we found less turnaround time, average

waiting time and high throughput than the previous

proposed algorithm so we can conclude that this

proposed approach is optimal.

 This algorithm can be used on multitasking,

multiprocessing, time sharing and distributed systems

in an effective way that the research is still being

continued in these fields.

 V. REFERENCES

[1]Shafigh Parsazad, E. Saboori(2010)” A new

scheduling algorithm for server farms load balancing”,

International Journal Conference on Industrial and

information System.

[2]. H.S. Behera, Reena Kumari Naik, Suchilagna

Parida,”Improved Multilevel Feedback Queue

Scheduling using Dynamic Time Quantum and Its

Perfarmance Analysis”,IJCSIT,Vol.3(2),2012.

[3].Baney, Jim and Livny, Miron (2000),” Managin

NetworkResources in Condor”, 9
th

 IEEE Proceedings

of the International Symposium on High Performance

Distributed Computing, Washington, DC, USA

 [4].Parvar, Mohammad R.E, Parvar, M.E. and Safari,

Saeed (2008),”A Starvation Free IMLFQ Scheduling

Algorithm Based on Nueral Network”, International

Journal of Computational Intelligence Research ISS

0973-1873 Vol.4, No.1 pp.27- 36 .

[5] Wolski, Rich, Nurmi, Daniel and Brevik, Jhon

(2007),” An Analysis of Availability Distributions in

Condor”, IEEE, University of California, Santa Barbara

.

[6] .Litzkow, Micheal J., Linvey, Miron and Mutka,

Matt W. (1988),” Condor –A Hunter of Idle

Workstations” IEEE, Department of Computer

Sciences, University of Wisconsin, Madison .

[7]. Abawajy, Jemal H. (2002),”Job Scheduling Policy

for High Throughput Computing Environments”, Ninth

IEEE International Conferences on Parallel and

Distributed Systems, Ottawa, Ontario, Canada .

[8] Liu, Chang, Zhao, Shawn and Liu, Fang (2009),

“An Insight into the architecture of Condor-a

Distributed Scheduler”, IEEE, Beijing, China .

VI. AUTHOR’S BIOGRAPHY

1. Dr. H. S. Behera is currently working as a

Faculty in Dept. of Computer Science and

Engineering, Veer Surendra Sai University of

Technology (VSSUT), Burla, Sambalpur,

768018, Odisha, India. His areas of interest

include Distributed Systems, Data Mining, and

Soft Computing.

2. Reena Kumari Naik is a final year B.Tech

student in Dept. of Computer Science and

Engineering, Veer Surendra Sai University of

Technology (VSSUT), Burla, Sambalpur,

768018, Odisha, India.

3. Suchilagna Parida is a final year B.Tech

student in Dept. of Computer Science and

Engineering, Veer Surendra Sai University of

Technology (VSSUT), Burla, Sambalpur,

768018, Odisha, India.

