
A New Design and an Architecture for FIR

filter with Flexibility and Power Reduction

Sruthy K Mr.S. Maria Antony Ms. S.Kavitha

ME VLSI Asst.Professor ME VLSI
KALAIGNAR KARUNANIDHI KALAIGNAR KARUNANIDHI KALAIGNAR KARUNANIDHI

INSTITUTE OF TECHNOLOGY INSTITUTE OF TECHNOLOGY INSTITUTE OF TECHNOLOGY

 Coimbatore Coimbatore Coimbatore

 India India India

 Abstract

Efficient algorithms and architectures have been introduced

for the design of low complexity bit-parallel multiple constant

multiplications (MCM)[1]. But all these results in an

additional complexity for the system operation, digit-serial

MCM design[1] offers alternative low complexity MCM

operations at the cost of an increased delay. Canonical signed

digit based recoding is proposed with a new reconfigurable

architecture[21] of low complexity.

A better digit-based method decomposes into both adds and

subtracts by recoding the number into the canonical signed

digit (CSD) representation [Avizienis 1961], which allows

negative digits. The straightforward method for decomposing

the multiplication into adds and

shifts translates 1’s in the binary representation of the

constant ‘t’ into shifts, and adds up the shifted inputs. For

example, consider t = 71,

with 3 shift operations and 3 addition operations. The

proposed method is using CSD[11], the previous example can

be improved to use only 2 add/subtract operations viz:

The proposed architecture is capable of operating for different

word length filter coefficients without any overhead in the

hardware circuitry. Dynamically reconfigurable filters[21]

can be efficiently implemented by using CSD[11]. Design

examples show that the proposed architectures offer good

area and power reductions and speed improvement compared

to the best existing one. Algorithms and schemes for

computing several common arithmetic expressions defined in

the complex domain as hardware-implemented operators.

Mapping the expression to a system of linear equations, apply

a complex-to-real transform, and compute the solutions to the

linear system using a digit-by-digit, the

most significant digit first, recurrence method are also tested.

Index Terms— Complex arithmetic, Canonical signed

digit(CSD),high level synthesis, reconfigurable, Finite Impulse

Response (FIR) filters .

Figure 1: Transposed form of a digital FIR filter
design

Figure 2: Transposed form mcm block.

I. INTRODUCTION

In digital signal processing (DSP) systems finite impulse

response (FIR) filters are of great importance. Transposed

Direct form is the usually used computational technique as it

offers a higher power efficiency and hence higher

performance. The multiplier block as of in fig – b involves

multiplication of a single input with different filter coefficients

which are also constants. Full flexibility of a multiplier is not

necessary for the constant multiplications. Here only constants

are to be multiplied and no floating point multiplication is

involved.

 Although area-, delay-, and power-efficient multiplier

architectures, such as Wallace and modified Booth multipliers,

have been proposed, the full flexibility of a multiplier is not

1204

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

necessary for the constant multiplications, since filter

coefficients are fixed and determined beforehand by the DSP

algorithms .Hence, the multiplication of filter coefficients with

the input data is generally implemented under a shift adds

architecture, where each constant multiplication is realized

using addition/subtraction and shift operations in an MCM

operation[1].

 The complexity of FIR filters is dominated by the

complexity of coefficient multipliers. It is well known that the

common sub expression elimination (CSE) methods based on

canonical signed digit (CSD)[11] coefficients produce low

complexity FIR filter coefficient multipliers. The goal of

CSE[1] is to identify multiple occurrences of identical bit

patterns that are present in the CSD [11]representation of

coefficients, and eliminate these redundant multiplications. A

modification of the 2-bit CSE[1] technique for identifying the

proper patterns for elimination of redundant computations and

to maximize the optimization impact was proposed. Another

technique was to minimize the logic depth (LD) (LD is

defined as the number of adder-steps in a maximal path of

decomposed multiplications and thus to improve the speed of

operation. The proposed method use binary common sub

expression elimination (BCSE)[21] method which provides

improved adder reductions and thus low complexity FIR

filters . In a method based on the pseudo floating point method

was used to encode the filter coefficients and thus to reduce

the complexity of the filter. But the method is limited to filter

lengths less than 40.In general, the methods are only suitable

for application specific filters where the coefficients are fixed

and hence not suitable for reconfigurable filters[21].

 For the implementation of constant multiplications

using addition/ subtraction and shift operations, a straight

forward method, generally known as the digit-based recoding

[7], initially defines the constants in multiplications in binary

representation. Then, for each 1 in the binary representation of

the constant, according to its bit position, it shifts the variable

and adds up the shifted variables to obtain the result. As a

simple example, consider the constant multiplications 29x and

43x using the digit-based recoding method [7]. The

decompositions of 29x and 43x in binary are listed as follows:

 29x = (11101)binx = x>>4+x>>3+x>>2+x

 43x = (101011)binx = x>>5+x>>3+x>>1+x

and require 6 addition.

However, the implementation of constant multiplications in a

shift-adds architecture enables the sharing of common partial

products among the constant multiplications, that significantly

reduces the area and power dissipation of the MCM design.

Hence, the MCM problem[1] is defined as finding the

minimum number of addition/ subtraction operations that

implement the constant multiplications, since shifts can be

realized using only wires in hardware. Note that the MCM

problem is an NP-complete problem [4]. The algorithms

designed for the MCM problem can be categorized in two

classes as Common Sub expression Elimination (CSE)[1]

methods and graph-based (GB) techniques. While the

maximization of the partial product sharing is common in

these algorithms, they differ in the search space that they

explore. The CSE algorithms [1, 13] initially define the

constants under a particular number representation namely,

binary, Canonical Signed Digit (CSD)[11],or Minimal Signed

Digit (MSD), and then, find the “best" sub expression,

generally the most common, among the constant

multiplications. The GB algorithms [2, 6, 14] are not restricted

to any particular number representation and consider a large

number of alternative implementations of a constant

multiplication, yielding better solutions than the CSE

algorithms as shown in [2, 14]. Returning to our example in

Figure 2, the exact CSE algorithm [1] gives a solution with 4

operations by finding the most common partial products 3x =

(11)binx and 5x = (101)binx when constants are defined under

binary, (Figure 2(b)). The exact GB algorithm [2].

 However, the digit-based recoding technique does not

exploit the sharing of common partial products, which allows

great reductions in the number of operations and,

consequently, in area and power dissipation of the MCM

design at the gate level. Hence, the fundamental optimization

problem, called the MCM problem[1], is defined as finding

the minimum number of addition and subtraction operations

that implement the constant multiplications. Note that, in bit-

parallel design of constant multiplications, shifts can be

realized using only wires in hardware without representing

any area cost.

II. REVIEW OF PREVIOUS METHODS

 This section presents the main concepts related to the

proposed algorithms, introduces the problem definitions, and

gives an overview on previously proposed algorithms.

A. Number Representation

The binary representation decomposes a number in a set of

additions of powers of 2. The representation of numbers using

a signed digit system makes use of positive and negative

digits, {1, 0,−1}. The CSD representation [18] is a signed

representation.

 The digit-based recoding technique does not

exploit the sharing of common partial products, which allows

great reductions in the number of operations and,

consequently, in area and power dissipation of the MCM

design at the gate level. Hence, the fundamental optimization

problem, called the MCM problem, is defined as finding the

minimum number of addition and subtraction operations that

implement the constant multiplications. Note that, in bit-

parallel design of constant multiplications, shifts can be

realized using only wires in hardware without representing

any area cost.

 The algorithms designed for the MCM problem can be

1205

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

Figure 3: Example for combinational circuit with its CNF formula

Figure 4: The coefficient c is obtained from (a) two
existing fundamentals or (b) three existing
fundamentals.

categorized in two classes: common subexpression

elimination(CSE) algorithms [9] and graph-based (GB)

techniques [12]. The CSE algorithms initially extract all

possible subexpressions from the representations of the

constants when they are defined under binary, canonical

signed digit (CSD) , or minimal signed digit (MSD) [8]. Then,

they find the “best” sub expression, generally the most

common, to be shared among the constant multiplications. The

GB methods are not limited to any particular number

representation and consider a larger number of alternative

implementations of a

constant, yielding better solutions than the CSE algorithms, as

shown in [11] and [12].

 The exact CSE algorithm of [9] gives a solution with four

operations by finding the most common partial products

 3x = (11)binx and 5x = (101)binx

when constants are defined under binary, as illustrated in

Fig. 2(b). On the other hand, the exact GB algorithm [12]

finds a solution with the minimum number of operations by

sharing the common partial product 7x in both multiplications,

Note that the partial product

 7x =(111)binx

 cannot be extracted from the binary representation

of 43x in the exact CSE algorithm [9].

However, all these algorithms assume that the input data

x is processed in parallel. On the other hand, in digit-serial

arithmetic, the data words are divided into digit sets,

consisting of d bits, that are processed one at a time [13].

Since digit serial operators occupy less area and are

independent of the data word length, digit-serial architectures

offer alternative low complexity designs when compared to

bit-parallel architectures.

 However, the shifts require the use of D flip-flops, as

opposed to the bit-parallel MCM design where they are free in

terms of hardware. Hence, the high-level algorithms should

take into account the sharing of shift operations as well as the

sharing of addition/subtraction operations in digit-serial MCM

design. Furthermore, finding the minimum number of

operations realizing an MCM operation does not always yield

an MCM design with optimal area at the gate level [15].

Hence, the high-level algorithms should consider the

implementation cost of each digit-serial operation at the gate

level.

B. Boolean Satisfiability

 Conjunctional normal form(CNF) is a representation of a

propositional formula consisting of a conjunction of

propositional clauses where each clause is a disjunction of

literals. if a literal of a clause assumes value 1, then the clause

is satisfied. The satisfiability (SAT) problem is to find an

assignment on n variables of the Boolean formula in CNF that

evaluates the formula to 1, or to prove that the formula is

equal to the constant 0. The derivation of CNF formulas of

basic logic gates can be found in [19].

 A combinational circuit is a directed acyclic graph with

nodes corresponding to logic gates and directed edges

corresponding to wires connecting the gates. Incoming edges

of a node are called fanins and outgoing edges are called

fanouts.

 Consider the combinational circuit and its CNF formula

given in Fig. 3. In this Boolean formula, the first three clauses

represent the CNF formula of a two-input AND gate, and the

last three clauses denote the CNF formula of a two-input OR

gate. Here first three clauses represent the CNF formula of a

two-input AND gate, and the last three clauses denote the

CNF formula of a two-input OR gate.

C. Digit-Serial Multiplication(20).

A new algorithm is a hybrid of the RAG-n (Reduced Adder

Graph) and RSAG-n(Reduced Shift and Add Graph)

algorithms. RASG-n work with odd coefficients like RAG-n

and only realizes one coefficient in each iteration, like RSAG-

n. These algorithms are graph based. Node values are referred

to as fundamentals. Realized coefficients are removed from

the coefficient set and added to an interconnection table that

specifies how the value is obtained. The termination condition

of the algorithm is that the coefficient set is empty. The steps

in the

RSAG-n algorithm are as follows:

1.Divide even coefficients by two until odd, and save

the number of times each coefficient is divided.

These shifts at the outputs can be considered to be

free when other coefficients are synthesised.

2. Remove zeros, ones, i.e., coefficients which corresponds to

a power-of-two, and repeated coefficients

from the coefficient set.

3. Compute the single-coefficient adder cost for each

coefficient, which is done by using a look-uptable.

 4. Compute a sum matrix based on power-of-two

multiples of the fundamental values included in

the interconnection table. At start this matrix is and is then

extended when new fundamentals are added. If any required

1206

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

coefficients are found in the matrix, compute the required

number of shifts. Find the coefficients which require the

lowest number of additional shifts, and select the smallest of

those. Add this coefficient to the interconnection

Table and remove it from the coefficient set.

5. Repeat step 4 until no required coefficient is found

in the sum matrix.

6. for each remaining coefficient, check if it can be

obtained by the strategies illustrated in Fig. 4. For

both cases two new adders are required. If any

coefficients are found, select the smallest coefficient

of those which require the lowest number of

additional shifts. Add this coefficient and the extra

fundamental to the interconnection table. Remove

the coefficient from the coefficient set.

7. Repeat step 5 and 6 until no required coefficient is

found.

8. Choose the smallest coefficient with lowest single

coefficient adder cost. Different sets of fundamentals

that can be used to realize the coefficient are obtained from a

look-up-table. For each set, remove fundamentals that are

already included in the interconnection table and compute the

required

number of shifts. Find the sets which require the

lowest number of additional shifts, and of those,

select the set with smallest sum. Add this set and

the coefficient to the interconnection table.

Remove the coefficient from the coefficient set.

9. Repeat step 5, 6, 7, and 8 until the coefficient set is

empty. The basic ideas for the RAG-n [5], RSAG-n [10], and

RASG-n algorithms are similar, but the resulting difference is

significant. The main difference between

the first two algorithms is that RAG-n chooses to realize

coefficients by using extra fundamentals of minimum value,

while RSAG-n chooses fundamentals that require a minimum

number of shifts. The result of these two different strategies is

that RAG-n is more likely to reuse fundamentals, due to the

selection of smaller fundamental values and by that reduce the

adder cost, while RSAG-n is more likely to reduce the number

of shifts. As the proposed algorithm, RASG-n, is a hybrid of

these strategies realizations with both few adders and few

shifts are obtained. It is worth noting that if all coefficients are

Figure 5: Architecture of proposed method.

realized before step 6 of the algorithm, the implementation has

optimal adder cost

II. Review of BCSE Method

This[6] deals with the elimination of redundant binary

common subexpressions (BCSs) that occur within the

coefficients. The BCSE technique focuses on eliminating

redundant computations in coefficient multipliers by reusing

the most common binary bit patterns (BCSs) present in

coefficients.

An n-bit binary number can form 2n − (n + 1)

BCSs among themselves. For example, a 3-bit binary

representation can form four BCSs, which are [0 1 1],

[1 0 1], [1 1 0], and [1 1 1]. These BCSs can be expressed as

[0 1 1] = x2 = 2−1x + 2−2x, [1 0 1] = x3 = x + 2−2x, [1 1 0]=

x4 = x + 2−1x, and [1 1 1]= x5 = x + 2−1x + 2−2x, where x is

the input signal. Note that other BCSs such as [0 0 1], [0 1 0],

and [1 0 0] do not require any adder for implementation as

they have only one nonzero bit. A straightforward realization

of above BCSs would require five adders. However x2 can be

obtained from x4 by a right shift operation (without using

any extra adders): x2 = 2−1x + 2−2x = 2−1(x + 2−1x) = 2−1x4.

Also, x5 can be obtained from x4 using an adder:

x5 = x + 2−1x + 2−2x = x4 + 2−2x.

 Thus, only three adders are needed to realize the BCSs x2 to

x5. The number of adders required for all the possible n-bit

binary sub expressions is 2n−1 − 1 [6]. The number of adders

needed to implement the

Coefficient multipliers using the binary representation-based

BCSE is considerably less than the CSD-based CSE methods

[6]. The proposed FIR filter architecture is based on

transposed direct form as shown in Fig. 1. In the transposed

direct form, the coefficient multipliers (shown as dotted

outline in Fig. 1) share the same input and hence commonly

known as multiplier block (MB). The MB reduces the

1207

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

Figure 6: Architecture of shift and add unit.

complexity of the FIR filter implementations, by exploiting

the redundancy in MCM. Thus, redundant

computations (partial product additions in the multiplier) are

eliminated using BCSE. The BCSE method in [6] was

formulated as a low complexity solution to realize

application specific filters where the coefficients are fixed.

In the case of channel filters for SDR receivers, the

coefficients need to be changed as the filter specification

changes with the communication standard. Therefore,

reconfigurability is a necessary requirement for SDR channel

filters. In the next section, we propose two architectures that

incorporate reconfigurability into the BCSE-based low

complexity filter architecture. We use CSD[11] to illustrate

proposed reconfigurable filter architectures[21] in this paper,

it must be noted that the proposed architectures can be used

for any CSE method with appropriate modifications.

 III. Proposed Filter Architectures

In this section, the architecture of the proposed FIR filter is

presented. Our architecture is based on the transposed direct

form FIR filter structure as shown in Fig. 1. The dotted

portion in Fig. 1 represents the MB. In Fig. 1, PE-i represents

the processing element corresponding to the ith coefficient. PE

performs the coefficient multiplication operation with the help

of a shift and add unit which will be explained in the latter

part of this section. The architecture of PE is different for

proposed CSM and PSM. In the CSM, the filter coefficients

are partitioned into fixed groups and hence the PE architecture

involves constant shifters. But in the PSM, the PE consists of

programmable shifters (PS). The FIR filter architecture can be

realized in a serial way in which the same PE is used for

generation of all partial products by convolving the

coefficients with the input signal (h ∗ x[n]) or in a parallel

way, where parallel PE architectures are employed. The first

option is used when power consumption and area are of prime

concern. The basic architecture of the PE (dotted portion) is

shown in Fig. 5 . The functions of different blocks of the PE

are explained below.

1) Shift and Add Unit:

 It is well known that one of the

efficient ways to reduce the complexity of multiplication

operation is to realize it using shift and add operations.

In contrast to conventional shift and add units used in

previously proposed reconfigurable filter architectures,

we use the BCSs-based shift and add unit in our proposed

CSM and PSM architectures. The architecture of shift and add

unit is shown in Fig. 3. The shift and add

unit is used to realize all the 3-bit BCSs of the input

signal ranging from [0 0 0] to [1 1 1]. In Fig. 3, “x>>k”

represents the input x shifted right by k units. All the

3-bit BCSs [0 1 1], [1 0 1], [1 1 0], and [1 1 1] of a 3-bit

number are generated using only three adders, whereas

a conventional shift and add unit would require five

adders. Since the shifts to obtain the BCSs are known

beforehand, PS are not required. All these eight BCSs

(including [000]) are then fed to the multiplexer unit.

In both the architectures (CSM and PSM) proposed in

this paper, we use the same shift and add unit. Thus,

the use of 3-bit BCSs reduces the number of adders

needed to implement the shift and add unit compared to

conventional shift and add units.

2) Multiplexer Unit:

 The multiplexer units are used to

select the appropriate output from the shift and add unit. All

the multiplexers will share the outputs of the shift and add

unit. The inputs to the multiplexers are the 8/4 inputs from the

shift and add unit and hence 8:1/4:1 multiplexer units are

employed in the architecture. The select signals of the

multiplexers are the filter coefficients which are previously

stored in a look up table (LUT). The CSM and PSM

architectures basically differ in the way filter coefficients are

stored in the LUT. In the CSM, the coefficients are directly

stored in LUTs without any modification whereas in PSM, the

coefficients are stored in a coded format. The number of

multiplexers will also be different for PSM and CSM. In

CSM, the number of multiplexers will be dependent on

the number of groups after the partitioning of the filter

coefficient into fixed groups. The number of multiplexers

in the PSM is dependent on the number of non-zero

operands in the coefficient for the worst case after the

application of BCSE algorithm.

3) Final Shifter Unit:

 The final shifter unit will perform

the shifting operation after all the intermediate additions

(i.e., intra-coefficient additions) are done. This can be

illustrated using the output expression

1208

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

After obtaining the intermediate sums (x + 2−2x) and

(x + 2−1x) from the shift and add units with the help of

multiplexer unit, the final shifter unit will perform the

shift operations 2−4and 2−15 in (2). The PSM and CSM

architectures also differ in the nature of final shifters. In

the CSM, the final shifts are constants and hence no PS

are required. In the PSM, we have used PS.

4) Final Adder Unit:

 This unit will compute the sum of all

the intermediate additions 2−4(x + 2−2x) and 2−15(x +

2−1x) as in (2). As the filter specifications of different

communication standards are different, the coefficients

change with the standards. In conventional reconfigurable

filters, the new coefficient set corresponding to the

filter specification of the new communication standard

is loaded in the LUT. Subsequently, the shift and add

unit performs a bitwise addition after appropriate shifts.

On the contrary, the proposed CSM and PSM architectures

perform a binary common subexpression (BCS)- wise addition

(instead bitwise addition). Thus, the same hardware

architecture can be used for different filter

specifications to achieve the necessary reconfigurability.

Moreover, the proposed BCS-based shift and add unit

reduces addition operations and hence offers hardware

complexity reduction. In the next section, the CSM is

explained in a detailed manner.

IV. Architecture of PSM

 The PSM is based on the BCSE algorithm presented in

our previous work [6]. The PSM architecture presented in this

section incorporates reconfigurability into BCSE. The PSM

has a pre-analysis part in which the filter coefficients are

analyzed using the BCSE algorithm in [6]. Thus, the

redundant computations (additions) are eliminated using the

BCSs and the resulting coefficients in a coded format are

stored in the LUT. The coding format is explained in the latter

part of this section. The shift and add unit is identical for both

PSM and CSM. The number of multiplexer units required can

be obtained from the filter coefficients after the application of

BCSE [6]. The number of multiplexers is selected after

considering the number of non-zero operands (BCSs and

unpaired bits) in each of the coefficients after the application

of the BCSE algorithm. The number of multiplexers will be

corresponding to the number of non-zero operands for the

worst-case coefficient (worst-case coefficient being defined as

Figure 7: Architecture of PE for PSM.

coefficient that has the maximum number of non-zero

operands).

 The architecture of PE for PSM is shown in Fig. 5. The

coefficient wordlength is fixed as 16 bits. We have done the

statistical analysis for various filters with coefficient precision

of 16 bits and different filter lengths (20, 50, 80, 120, 200,

400, and 800 taps) and it was found that the maximum number

of non-zero operands is 5 for any coefficient. The analysis was

done for filters with different passband (ωp) and stopband

(ωs) frequency specifications given by (1) is ωp = 0.1π, ωs =

0.12π; 2) ωp = 0.15π, ωs = 0.25π; 3) ωp = 0.2π, ωs = 0.22π;

and 4) ωp = 0.2π, ωs = 0.3π, respectively.

 Based on our statistical analysis, we have fixed the number

of multiplexers as 5 (same as the number of non-zero

operands). The LUT consists of two rows of 18 bits for each

coefficient of the form SDDDDXXDDDDXXMMMML

 and DDDDXXDDDDXXDDDDXX, where “S” represents

the sign bit, “DDDD” represents the shift values from 20 to

2−15 and “XX” represents the input “x” or the BCSs

obtained from the shift and add unit. In the coded format, XX

= “01” represents “x,” “10” represents x+2−1x, “11”

represents x + 2−2x, and “00” represents x + 2−1x + 2−2x,

respectively.

 Thus, the two rows can store up to five operands which is

the worst case number of operands for a 16-bit coefficient. In

most of the practical coefficients, the number of operands is

less than the worst case number of operands, 5. In that case

1209

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

“MMMML” can be used to avoid unnecessary additions. The

values “MMMM” will be given as select signal to the Mux6

and “L” to Mux8. “MMMML” indicates the presence of five

operands. A “1” in each position indicates the presence of

each operand. Thus, for all operands to be present will be

indicated by “MMMML” = “11111.” This means the Mux6

will select the output from the output of adder, A4 and Mux8

will select the output of adder, A2. If only first operand is

present, “MMMML” = “10 000.” This means the Mux8 will

select the output of PS, shr4 and Mux6 will select the output

of PS, shr1. As a result of this none of the adders shr1 to shr4

will be loaded saving significant amount

of dynamic power. The coding can be explained as given

below. Consider the positive coefficient h operands. A “1” in

each position indicates the presence of each operand. Thus, for

all operands to be present will be indicated by “MMMML” =

“11111.” This means the Mux6 will select the output from the

output of adder, A4 and Mux8 will select the output of adder,

A2. If only first operand is present, “MMMML” = “10 000.”

This means the Mux8 will select the output of PS, shr4 and

Mux6 will select the output of PS, shr1. As a result of this

none of the adders shr1 to shr4 will be loaded saving

significant amount of dynamic power.

 The coding can be explained as given below. Consider the

positive coefficient h

 (3)

By using the BCSE [6], substituting 2 = [1 1], 3 = [1 0 1],

(11) becomes

 (4)

 Then (12) will be stored in the LUT as

000001101011011110 and 100111111010000000. It must

be noted that as (12) has only four operands, the fifth

operand values “DDDDXX” are substituted as 000000 and

“MMMML” as “11110.” The XX values are given as select

signals for Mux1 to Mux5. The values of DDDD are fed

to corresponding PS. The multiplexer Mux6 and Mux8 will

select the appropriate output in case the number of operands

after BCSE is less than 5. The use of Mux6 and Mux8 reduces

the number of adders utilized by selecting the output from the

appropriate adder as all the adders in the PE are not always

needed. For example, in (12), as only four operands occur,

output can be taken from the output of PS, shr4 without using

adder, shr2. Mux8 will do this and hence the adder shr2 is not

loaded and consumes zero current and power. The select

signals of Mux6 and Mux8 have five bits and hence 25

different control signals are possible which adds lots of

flexibility to the architecture which can be employed in future

if required. Mux7 is used to complement the output in case of

a negative coefficient and its select signal is the sign bit “S” of

the coefficient.

The PSM architecture has two advantages;

TABLE1: Synopsys Synthesis Results for 20-Tap FIR
Filter Implementation

Figure 8:Transposed direct form of an FIR filter.

first, it guarantees a reduced number of additions compared to

CSM, and second it offers the flexibility of changing the

wordlength of coefficients. The same PSM architecture

designed for 16-bit coefficients is capable of operating for any

coefficient wordlength less than 16 bits. This means, if the

wordlength is reduced, the format of the LUT can be changed

if required. The main advantage of reducing the precision is

that some of the adders in the PSM architecture will be

unloaded resulting in zero dynamic power. To the best of our

knowledge, the

PSM architecture is the first approach toward programmable

coefficient wordlength FIR filter architecture. This means that

the coefficient wordlength of the proposed PSM architecture

can be changed dynamically without any change in hardware.

Hence transposed direct form posses the architecture as shown

in figure 8.

V. Experimental Results

 In this section, the synthesis and design results of the

proposed CSM and PSM architectures are presented and

compared with the recently proposed reconfigurable FIR filter

architectures in the literature [11], [12], [14], [15], [20], [21

 A. Synthesis Results

 We have used Xilinx 8.1i ISE for synthesizing

purposes. The synthesis has been done on Xilinx’s Spartan-3E

FPGA. Table I shows the synthesis results of the CSM and

1210

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

PSM 20-tap FIR filter that has a coefficient wordlength of 16

bits. We have done the implementation of filters with different

passband edge (ωp) and stopband edge (ωs) specifications.

 Even though the proposed architectures are known to

reconfigurable, the usage of adders and shifters is dependent

on the filter coefficient values. Some of the adders may not be

used by the multiplexers. As a result of this, they are unloaded

and do not consume any dynamic power. Hence, the power

and speed values of the synthesis results are dependent on the

filter coefficients and hence we have considered an average of

the synthesis results in all the tables in this paper. From the

comparison it is very evident that the CSM requires 475 gates

more than that of PSM, whereas PSM requires 6.82 ns more

for the data to arrive at the output compared to CSM. Thus,

the CSM results in higher speed whereas the PSM results in

lower area. The reason for lower speed of PSM is due to the

presence of programmable shifters and that of less area

is due to elimination of redundant additions by using BCSE

algorithm. We have also analyzed the effect of the MB for

different filter coefficient word lengths of 8, 12, and 16 bits

for the PSM architecture.

B. CSD Based Reconfigurable FIR Filter

Architecture

 CSD based CSE algorithms are considered to be one of

the best algorithms that can result in low complexity

fixedcoefficient FIR filter implementations. However to the

best of our knowledge, the implementation of the CSD-CSE

based reconfigurable filter architectures has not been

addressed in the literature. We have implemented a CSD

based FIR filter using the CSM architecture (CSD-CSM) and

a CSD-CSE based FIR filter using the PSM architecture

(CSD-PSM). For low complexity, we have employed the CSE

algorithm in [3] on the coefficients before they are stored in

LUT. We have implemented

a CSD based shift and add unit to generate common

subexpression (CSs) such as [1 0 1], [1 0 −1], [1 0 0 1] and [1

0 0 −1] and their negated versions. In the previous works

based on CSE algorithm [3]–[5], it was considered

that common subexpressions (CSs) such as [−1 0 − 1] and [−1

0 1] can be generated from their respective negated

versions [1 0 1] and [1 0 − 1] without using any extra adder

by configuring the existing adder as a subtractor. But this is

applicable only for fixed coefficient filters. An n-bit adder

circuit would require n additional XOR gates to reconfigure

the adder to subtractor mode. These additional XOR gates

would increase the critical path of the adder circuit (equivalent

to the delay imposed by n

half-adders) and impose overheads for CSD implementation

of the FIR filter. Another drawback

of CSD implementation is with the storage of coefficients in

LUT. The CSD value like [1 0 − 1 0 − 1 0 1 0 − 1] can be

stored in an LUT like [01 00 11 00 11 00 01 00 11] with

“00” corresponding to 0, “01” corresponding to 1, and “11”

corresponding to −1. Therefore, for the worst-case scenario,

an 8-bit CSD coefficient requires 16 bits for its representation.

 This can be optimized as no adjacent bits in CSD are ones.

But still CSD requires more number of bits than binary. Since

all the bits in binary representation are positive, this problem

will not come. Thus, the additional half-adders required for

implementing the dder/subtractor circuit and the additional

storage space required for CSD will increase the area and the

additional half-adders in the adder/subtractor unit reduces the

speed of operation of the CSD based reconfigurable FIR filters

compared to binary based FIR filter implementations.

 This becomes highly significant, as the order of the channel

filters in wireless communication transceivers is very high.

We have done the synthesis using Synopsys tool. The

synthesis results for a 20-tap FIR filter with 16-bit coefficient

wordlength are summarized in Table 1. The proposed CSM

and PSM architectures which employ binary representation of

filter coefficients are denoted as BCSM and BPSM,

respectively. The CSD based implementations of CSM and

PSM are denoted as CSD-CSM and CSD-PSM, respectively.

Table I shows that the CSDCSM and CSD-PSM architectures

consume more area, power, and has less speed compared to

our binary representation based BPSM and BCSM

architectures. The BCSM architecture has area reduction of

10% and 1% over CSD-CSM and CSD-PSM architectures,

respectively, and the area reduction for BPSM architecture

over CSD-CSM and CSD-PSM architectures are 15% and 7%,

respectively. The improvement in the speed of operation for

the BCSM architecture over the CSD-CSM and CSD-PSM

architectures is 10% and 22%, respectively. The

BPSM architecture offers an improvement in the speed of

operation of 4% and 12% over the CSD-CSM and CSD-PSM

architectures, respectively. The dynamic power reductions for

the BCSM architecture are 22% and 44% over the CSD-CSM

and CSD-PSM architectures, respectively. The BPSM

architecture[21] offers the dynamic power reductions of 40%

and 57% over the CSD-CSM and CSD-PSM[21] architectures,

respectively. The BPSM architecture offers area and power

reductions of 6% and 23% over the BCSM architecture,

respectively. The BCSM architecture offers in improvement in

the speed of operation by 7% compared to the BPSM

architecture. In Table 1, the proposed architectures are also

compared with the MMCM architecture based FIR filter in

[15]. The BCSM architecture offers an area reduction of

49.7%, power reduction of 51.3%, and a speed improvement

of 50.8% over the MMCM [15]. The area and power

reductions offered by the BPSM architecture over MCM [15]

are 52.7% and 62.5%, respectively.

 VI. Implementation Results

 We have implemented the proposed CSM and PSM

architectures for a 20-tap FIR filter with 16-bit coefficient

precision on Xilinx’s Spartan-3E FPGA associated with

the dual DSP-FPGA Signal master kit . The PSM also

provides the flexibility of changing the filter coefficient

1211

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

wordlengths dynamically. Using CSD, the worst case cost

remains b2 + O(1), but the average case is now improved to

b3 + O(1. The optimal decomposition in terms of add/subtract

operations is in general not obtained with CSD, and its worst

case and average costs are unknown.

 VII. CONCLUSION

In this paper, designing of digit-serial MCM operation with

optimal area is done. Also a new reconfigurable architecture

using PSM is proposed which provides the flexibility of

changing the filter coefficient word lengths dynamically. The

experimental results indicate that the complexity of digit-serial

MCM designs can be further reduced using the high-level

optimization algorithms proposed in this paper.

 VIII. REFERENCES

[1] Levent Aksoy, Cristiano Lazzari, Eduardo Costa, Paulo Flores,

and José Monteiro, “Design of Digit-Serial FIR Filters: Algorithms,

Architectures, and a CAD Tool” ,IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,
VOL. 21, NO. 3, MARCH 2013

[2] J. Mitola, “Object-oriented approaches to wireless systems

engineering,” in Software Radio Architecture. New York: Wiley,

2000.

[4] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D.

Durackova,

“A new algorithm for elimination of common subexpressions,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no.

1, pp. 58–68, Jan. 1999.

[6] R. Mahesh and A. P. Vinod, “A new common subexpression

elimination

algorithm for realizing low complexity higher order digital filters,”

IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no.

2, pp.

217–219, Feb. 2008

[7] A. P. Vinod and E. Lai, “Low power and high-speed

implementation of FIR filters for software defined radio

receivers,”IEEETrans.Wireless

[8] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on

minimal

signed digit representation,” in Proc. DAC, 2001, pp. 468–473.

[9] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and

approximate

algorithms for the optimization of area and delay in multiple constant

multiplications,” IEEE Trans. Comput.-Aided Design Integr.

Circuits
Syst., vol. 27, no. 6, pp. 1013–1026, Jun. 2008.

[10] A. Dempster and M. Macleod, “Use of minimum-adder

multiplier blocks

in FIR digital filters,” IEEE Trans. Circuits Syst. II, Exp. Briefs,

vol. 42,

no.9,pp.569–577,Sep.1995.

[11] Y. Voronenko and M. Püschel, “Multiplierless multiple constant

multiplication,”

ACM Trans. Algor., vol. 3, no. 2, pp. 1–39, May 2007.

[12] L. Aksoy, E. Gunes, and P. Flores, “Search algorithms for the

multiple

constant multiplications problem: Exact and approximate,” J.

Microprocess.
Microsyst.,vol.34,no.5,pp.151–162,Aug.2010.

[13] X. Chenghuan, C. He, Z. Shunan, and W. Hua, “Design and

implementation of a high-speed programmable polyphase FIR filter,”

in Proc.5th Int. Conf. Applicat.-Specific Integr. Circuit, vol. 2.

Oct. 2003, pp. 783–787.

[14] S. S. Demirsoy, I. Kale, and A. G. Dempster, “Efficient

implementation of digital filters using novel reconfigurable multiplier

blocks,” in Proc. 38th Asilomar Conf. Signals Syst. Comput.,
vol. 1. Nov. 2004, pp. 461–464.

[15] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of

area

in digital FIR filters using gate-level metrics,” in Proc. DAC, 2007,

pp.

420–423.

[18] A. Avizienis, “Signed-digit number representations for fast

parallel

arithmetic,” IRE Trans. Electron. Comput., vol. 10, no. 3, pp. 389–

400,

Sep. 1961.

[19] T. Larrabee, “Test pattern generation using Boolean

satisfiability,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no.

1, pp.

4–15,Jan.1992.

[20] K. Johansson, O. Gustafsson, and L. Wanhammar, “Multiple

constant

multiplication for digit-serial implementation of low power FIR

filters,”

WSEAS Trans. Circuits Syst., vol. 5, no. 7, pp. 1001–1008, 2006.

[21] R. Mahesh, A. P. Vinod “New Reconfigurable Architectures for

Implementing FIR Filters with Low Complexity”, IEEE

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 2,
FEBRUARY 2010.

1212

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405

