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                          Abstract 

 

Efficient algorithms and architectures have been introduced 

for the design of low complexity bit-parallel multiple constant 

multiplications (MCM)[1]. But all these results in an 

additional complexity for the system operation, digit-serial 

MCM design[1] offers alternative low complexity MCM 

operations at the cost of an increased delay. Canonical signed 

digit based recoding is proposed with a new reconfigurable 

architecture[21] of low complexity.  

A better digit-based method decomposes into both adds and 

subtracts by recoding the number into the canonical signed 

digit (CSD) representation [Avizienis 1961], which allows 

negative digits. The straightforward method for decomposing 

the multiplication into adds and 

shifts translates 1’s in the binary representation of the 

constant ‘t’ into shifts, and adds up the shifted inputs. For 

example, consider t = 71, 

 

 
with 3 shift operations and 3 addition operations. The 

proposed method is using CSD[11], the previous example can 

be improved to use only 2 add/subtract operations viz: 

 

 
 

The proposed architecture is capable of operating for different 

word length filter coefficients without any overhead in the 

hardware circuitry. Dynamically reconfigurable filters[21] 

can be efficiently implemented by using CSD[11]. Design 

examples show that the proposed architectures offer good 

area and power reductions and speed improvement compared 

to the best existing one. Algorithms and schemes for 

computing several common arithmetic expressions defined in 

the complex domain as hardware-implemented operators. 

Mapping the expression to a system of linear equations, apply 

a complex-to-real transform, and compute the solutions to the 

linear system using a digit-by-digit, the  

most significant digit first, recurrence method are also tested. 

Index Terms— Complex arithmetic, Canonical signed 

digit(CSD),high level synthesis, reconfigurable, Finite Impulse 

Response (FIR) filters . 

 
 

 
Figure 1: Transposed form of a digital FIR filter 
design 
 

 
 

Figure 2: Transposed form mcm block. 
 
 
 
 

I. INTRODUCTION  

 

In digital signal processing (DSP) systems finite impulse 

response (FIR) filters are of great importance. Transposed 

Direct form is the usually used computational technique as it 

offers a higher power efficiency and hence higher 

performance. The multiplier block as of in fig – b involves 

multiplication of a single input with different filter coefficients 

which are also constants. Full flexibility of a multiplier is not 

necessary for the constant multiplications. Here only constants 

are to be multiplied and no floating point multiplication is 

involved. 

      Although area-, delay-, and power-efficient multiplier 

architectures, such as Wallace and modified Booth multipliers, 

have been proposed, the full flexibility of a multiplier is not 
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necessary for the constant multiplications, since filter 

coefficients are fixed and determined beforehand by the DSP 

algorithms .Hence, the multiplication of filter coefficients with 

the input data is generally implemented under a shift adds 

architecture, where each constant multiplication is realized 

using addition/subtraction and shift operations in an MCM 

operation[1]. 

   The complexity of FIR filters is dominated by the 

complexity of coefficient multipliers. It is well known that the 

common sub expression elimination (CSE) methods based on 

canonical signed digit (CSD)[11] coefficients produce low 

complexity FIR filter coefficient multipliers. The goal of 

CSE[1]  is to identify multiple occurrences of identical bit 

patterns that are present in the CSD [11]representation of 

coefficients, and eliminate these redundant multiplications. A 

modification of the 2-bit CSE[1] technique for identifying the 

proper patterns for elimination of redundant computations and 

to maximize the optimization impact was proposed. Another 

technique was to minimize the logic depth (LD) (LD is 

defined as the number of adder-steps in a maximal path of 

decomposed multiplications  and thus to improve the speed of 

operation. The  proposed method use binary common sub 

expression elimination (BCSE)[21] method which provides 

improved adder reductions and thus low complexity FIR 

filters . In a method based on the pseudo floating point method 

was used to encode the filter coefficients and thus to reduce 

the complexity of the filter. But the method is limited to filter 

lengths less than 40.In general, the methods are only suitable 

for application specific filters where the coefficients are fixed 

and hence not suitable for reconfigurable filters[21]. 

 

               For the implementation of constant multiplications 

using addition/ subtraction and shift operations, a straight 

forward method, generally known as the digit-based recoding 

[7], initially defines the constants in multiplications in binary 

representation. Then, for each 1 in the binary representation of 

the constant, according to its bit position, it shifts the variable 

and adds up the shifted variables to obtain the result. As a 

simple example, consider the constant multiplications 29x and 

43x using the digit-based recoding method [7]. The 

decompositions of 29x and 43x in binary are listed as follows: 

          29x = (11101)binx = x>>4+x>>3+x>>2+x 

          43x = (101011)binx = x>>5+x>>3+x>>1+x 

and require 6 addition. 

However, the implementation of constant multiplications in a 

shift-adds architecture enables the sharing of common partial 

products among the constant multiplications, that significantly 

reduces the area and power dissipation of the MCM design.       

Hence, the MCM problem[1] is defined as finding the 

minimum number of addition/ subtraction operations that 

implement the constant multiplications, since shifts can be 

realized using only wires in hardware. Note that the MCM 

problem is an NP-complete problem [4]. The algorithms 

designed for the MCM problem can be categorized in two 

classes as Common Sub expression Elimination (CSE)[1]  

methods and graph-based (GB) techniques. While the 

maximization of the partial product sharing is common in 

these algorithms, they differ in the search space that they 

explore. The CSE algorithms [1, 13] initially define the 

constants under a particular number representation namely, 

binary, Canonical Signed Digit (CSD)[11],or Minimal Signed 

Digit (MSD), and then, find the “best" sub expression, 

generally the most common, among the constant 

multiplications. The GB algorithms [2, 6, 14] are not restricted 

to any particular number representation and consider a large 

number of alternative implementations of a constant 

multiplication, yielding better solutions than the CSE 

algorithms as shown in [2, 14]. Returning to our example in 

Figure 2, the exact CSE algorithm [1] gives a solution with 4 

operations by finding the most common partial products 3x = 

(11)binx and 5x = (101)binx when constants are defined under 

binary, (Figure 2(b)). The exact GB algorithm [2]. 

    However, the digit-based recoding technique does not 

exploit the sharing of common partial products, which allows 

great reductions in the number of operations and, 

consequently, in area and power dissipation of the MCM 

design at the gate level. Hence, the fundamental optimization 

problem, called the MCM problem[1], is defined as finding 

the minimum number of addition and subtraction operations 

that implement the constant multiplications. Note that, in bit-

parallel design of constant multiplications, shifts can be 

realized using only wires in hardware without representing 

any area cost. 

II. REVIEW OF PREVIOUS METHODS 

       This section presents the main concepts related to the 

proposed algorithms, introduces the problem definitions, and 

gives an overview on previously proposed algorithms. 

 

 

A. Number Representation 

 
The binary representation decomposes a number in a set of 

additions of powers of 2. The representation of numbers using 

a signed digit system makes use of positive and negative 

digits, {1, 0,−1}. The CSD representation [18] is a signed 

representation. 

 

       The digit-based recoding technique does not 

exploit the sharing of common partial products, which allows 

great reductions in the number of operations and, 

consequently, in area and power dissipation of the MCM 

design at the gate level. Hence, the fundamental optimization 

problem, called the MCM problem, is defined as finding the 

minimum number of addition and subtraction operations that 

implement the constant multiplications. Note that, in bit-

parallel design of constant multiplications, shifts can be 

realized using only wires in hardware without representing 

any area cost. 

      The algorithms designed for the MCM problem can be 
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Figure 3: Example for combinational circuit with its CNF formula 

 

 
 
Figure 4: The coefficient c is obtained from (a) two 
existing fundamentals or (b) three existing 
fundamentals. 

 
categorized in two classes: common subexpression 

elimination(CSE) algorithms [9] and graph-based (GB) 

techniques [12]. The CSE algorithms initially extract all 

possible subexpressions from the representations of the 

constants when they are defined under binary, canonical 

signed digit (CSD) , or minimal signed digit (MSD) [8]. Then,  

they find the “best” sub expression, generally the most 

common, to be shared among the constant multiplications. The 

GB methods are not limited to any particular number 

representation and consider a larger number of alternative 

implementations of a 

constant, yielding better solutions than the CSE algorithms, as 

shown in [11] and [12]. 

       The exact CSE algorithm of [9] gives a solution with four 

operations by finding the most common partial products  

             3x = (11)binx and 5x = (101)binx 

when constants are defined under binary, as illustrated in 

Fig. 2(b). On the other hand, the exact GB algorithm [12] 

finds a solution with the minimum number of operations by 

sharing the common partial product 7x in both multiplications, 

Note that the partial product  

            7x =(111)binx 

 cannot be extracted from the binary representation 

of 43x in the exact CSE algorithm [9]. 

However, all these algorithms assume that the input data 

x is processed in parallel. On the other hand, in digit-serial 

arithmetic, the data words are divided into digit sets, 

consisting of d bits, that are processed one at a time [13]. 

Since digit serial operators occupy less area and are 

independent of the data word length, digit-serial architectures 

offer alternative low complexity designs when compared to 

bit-parallel architectures. 

              However, the shifts require the use of D flip-flops, as 

opposed to the bit-parallel MCM design where they are free in 

terms of hardware. Hence, the high-level algorithms should 

take into account the sharing of shift operations as well as the 

sharing of addition/subtraction operations in digit-serial MCM 

design. Furthermore, finding the minimum number of 

operations realizing an MCM operation does not always yield 

an MCM design with optimal area at the gate level [15]. 

Hence, the high-level algorithms should consider the 

implementation cost of each digit-serial operation at the gate 

level. 

 

B. Boolean Satisfiability 

 

       Conjunctional normal form(CNF) is a representation of a 

propositional formula consisting of a conjunction of 

propositional clauses where each clause is a disjunction of 

literals. if a literal of a clause assumes value 1, then the clause 

is satisfied. The satisfiability (SAT) problem is to find an 

assignment on n variables of the Boolean formula in CNF that 

evaluates the formula to 1, or to prove that the formula is 

equal to the constant 0. The derivation of CNF formulas of 

basic logic gates can be found in [19]. 

       A combinational circuit is a directed acyclic graph with 

nodes corresponding to logic gates and directed edges 

corresponding to wires connecting the gates. Incoming edges 

of a node are called fanins and outgoing edges are called 

fanouts.      

  Consider the combinational circuit and its CNF formula 

given in Fig. 3. In this Boolean formula, the first three clauses 

represent the CNF formula of a two-input AND gate, and the 

last three clauses denote the CNF formula of a two-input OR 

gate. Here first three clauses represent the CNF formula of a 

two-input AND gate, and the last three clauses denote the 

CNF formula of a two-input OR gate. 

 

C. Digit-Serial Multiplication(20). 

 
A new algorithm is a hybrid of the RAG-n (Reduced Adder 

Graph) and RSAG-n(Reduced Shift and Add Graph)  

algorithms. RASG-n work with odd coefficients like RAG-n 

and only realizes one coefficient in each iteration, like RSAG-

n. These algorithms are graph based. Node values are referred 

to as fundamentals. Realized coefficients are removed from 

the coefficient set and added to an interconnection table that 

specifies how the value is obtained. The termination condition 

of the algorithm is that the coefficient set is empty. The steps 

in the 

RSAG-n algorithm are as follows: 

 

1.Divide even coefficients by two until odd, and save 

the number of times each coefficient is divided. 

These shifts at the outputs can be considered to be 

free when other coefficients are synthesised. 

2. Remove zeros, ones, i.e., coefficients which corresponds to 

a power-of-two, and repeated coefficients 

from the coefficient set. 

3. Compute the single-coefficient adder cost for each 

coefficient, which is done by using a look-uptable. 

 4. Compute a sum matrix based on power-of-two 

multiples of the fundamental values included in 

the interconnection table. At start this matrix is and is then 

extended when new fundamentals are added. If any required  
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coefficients are found in the matrix, compute the required 

number of shifts. Find the coefficients which require the 

lowest number of additional shifts, and select the smallest of 

those. Add this coefficient to the interconnection 

Table and remove it from the coefficient set. 

5. Repeat step 4 until no required coefficient is found 

in the sum matrix. 

6. for each remaining coefficient, check if it can be 

obtained by the strategies illustrated in Fig. 4. For 

both cases two new adders are required. If any 

coefficients are found, select the smallest coefficient 

of those which require the lowest number of 

additional shifts. Add this coefficient and the extra 

fundamental to the interconnection table. Remove 

the coefficient from the coefficient set. 

7. Repeat step 5 and 6 until no required coefficient is 

found. 

8. Choose the smallest coefficient with lowest single 

coefficient adder cost. Different sets of fundamentals 

that can be used to realize the coefficient are obtained from a 

look-up-table. For each set, remove fundamentals that are 

already included in the interconnection table and compute the 

required 

number of shifts. Find the sets which require the 

lowest number of additional shifts, and of those, 

select the set with smallest sum. Add this set and 

the coefficient to the interconnection table. 

Remove the coefficient from the coefficient set. 

9. Repeat step 5, 6, 7, and 8 until the coefficient set is 

empty. The basic ideas for the RAG-n [5], RSAG-n [10], and 

RASG-n algorithms are similar, but the resulting difference is 

significant. The main difference between 

the first two algorithms is that RAG-n chooses to realize 

coefficients by using extra fundamentals of minimum value, 

while RSAG-n chooses fundamentals that require a minimum 

number of shifts. The result of these two different strategies is 

that RAG-n is more likely to reuse fundamentals, due to the 

selection of smaller fundamental values and by that reduce the 

adder cost, while RSAG-n is more likely to reduce the number 

of shifts. As the proposed algorithm, RASG-n, is a hybrid of 

these strategies realizations with both few adders and few 

shifts are obtained. It is worth noting that if all coefficients are  

 

 
Figure 5: Architecture of proposed method. 

 

realized before step 6 of the algorithm, the implementation has 

optimal adder cost  

 

 

II. Review of BCSE Method 
 

This[6]  deals with the elimination of redundant binary 

common subexpressions (BCSs) that occur within the 

coefficients. The BCSE technique focuses on eliminating 

redundant computations in coefficient multipliers by reusing 

the most common binary bit patterns (BCSs) present in 

coefficients.  

An n-bit binary number can form 2n − (n + 1) 

BCSs among themselves. For example, a 3-bit binary 

representation can form four BCSs, which are [0 1 1], 

[1 0 1], [1 1 0], and [1 1 1]. These BCSs can be expressed as 

[0 1 1] = x2 = 2−1x + 2−2x, [1 0 1] = x3 = x + 2−2x, [1 1 0]= 

x4 = x + 2−1x, and [1 1 1]= x5 = x + 2−1x + 2−2x, where x is 

the input signal. Note that other BCSs such as [0 0 1], [0 1 0], 

and [1 0 0] do not require any adder for implementation as 

they have only one nonzero bit. A straightforward realization 

of above BCSs would require five adders. However x2 can be 

obtained from x4 by a right shift operation (without using 

any extra adders): x2 = 2−1x + 2−2x = 2−1(x + 2−1x) = 2−1x4. 

Also, x5 can be obtained from x4 using an adder: 

x5 = x + 2−1x + 2−2x = x4 + 2−2x. 

 Thus, only three adders are needed to realize the BCSs x2 to 

x5. The number of adders required for all the possible n-bit 

binary sub expressions is 2n−1 − 1 [6]. The number of adders 

needed to implement the 

Coefficient multipliers using the binary representation-based 

BCSE is considerably less than the CSD-based CSE methods 

[6]. The proposed FIR filter architecture is based on 

transposed direct form as shown in Fig. 1. In the transposed 

direct form, the coefficient multipliers (shown as dotted 

outline in Fig. 1) share the same input and hence commonly 

known as multiplier block (MB). The MB reduces the  
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Figure 6: Architecture of shift and add unit. 

 

complexity of the FIR filter implementations, by exploiting 

the redundancy in MCM. Thus, redundant  

computations (partial product additions in the multiplier) are 

eliminated using BCSE. The BCSE method in [6] was 

formulated as a low complexity solution to realize 

application specific filters where the coefficients are fixed. 

In the case of channel filters for SDR receivers, the 

coefficients need to be changed as the filter specification 

changes with the communication standard. Therefore, 

reconfigurability is a necessary requirement for SDR channel 

filters. In the next section, we propose two architectures that 

incorporate reconfigurability into the BCSE-based low 

complexity filter architecture. We use CSD[11] to illustrate 

proposed reconfigurable filter architectures[21]  in this paper, 

it must be noted that the proposed architectures can be used 

for any CSE method with appropriate modifications. 

 

 III. Proposed Filter Architectures 

 
In this section, the architecture of the proposed FIR filter is 

presented. Our architecture is based on the transposed direct 

form FIR filter structure as shown in Fig. 1. The dotted 

portion in Fig. 1 represents the MB. In Fig. 1, PE-i represents 

the processing element corresponding to the ith coefficient. PE 

performs the coefficient multiplication operation with the help 

of a shift and add unit which will be explained in the latter 

part of this section. The architecture of PE is different for 

proposed CSM and PSM. In the CSM, the filter coefficients 

are partitioned into fixed groups and hence the PE architecture 

involves constant shifters. But in the PSM, the PE consists of 

programmable shifters (PS). The FIR filter architecture can be 

realized in a serial way in which the same PE is used for 

generation of all partial products by convolving the 

coefficients with the input signal (h ∗  x[n]) or in a parallel 

way, where parallel PE architectures are employed. The first 

option is used when power consumption and area are of prime 

concern. The basic architecture of the PE (dotted portion) is 

shown in Fig. 5 . The functions of different blocks of the PE 

are explained below. 

 

1) Shift and Add Unit: 

 
                                        It is well known that one of the 

efficient ways to reduce the complexity of multiplication 

operation is to realize it using shift and add operations. 

In contrast to conventional shift and add units used in 

previously proposed reconfigurable filter architectures, 

we use the BCSs-based shift and add unit in our proposed 

CSM and PSM architectures. The architecture of shift and add 

unit is shown in Fig. 3. The shift and add 

unit is used to realize all the 3-bit BCSs of the input 

signal ranging from [0 0 0] to [1 1 1]. In Fig. 3, “x>>k” 

represents the input x shifted right by k units. All the 

3-bit BCSs [0 1 1], [1 0 1], [1 1 0], and [1 1 1] of a 3-bit 

number are generated using only three adders, whereas 

a conventional shift and add unit would require five 

adders. Since the shifts to obtain the BCSs are known 

beforehand, PS are not required. All these eight BCSs 

(including [000]) are then fed to the multiplexer unit. 

In both the architectures (CSM and PSM) proposed in 

this paper, we use the same shift and add unit. Thus, 

the use of 3-bit BCSs reduces the number of adders 

needed to implement the shift and add unit compared to 

conventional shift and add units. 

 

2) Multiplexer Unit:  
 

                                        The multiplexer units are used to 

select the appropriate output from the shift and add unit. All 

the multiplexers will share the outputs of the shift and add 

unit. The inputs to the multiplexers are the 8/4 inputs from the 

shift and add unit and hence 8:1/4:1 multiplexer units are 

employed in the architecture. The select signals of the 

multiplexers are the filter coefficients which are previously 

stored in a look up table (LUT). The CSM and PSM 

architectures basically differ in the way filter coefficients are 

stored in the LUT. In the CSM, the coefficients are directly 

stored in LUTs without any modification whereas in PSM, the 

coefficients are stored in a coded format. The number of 

multiplexers will also be different for PSM and CSM. In 

CSM, the number of multiplexers will be dependent on 

the number of groups after the partitioning of the filter 

coefficient into fixed groups. The number of multiplexers 

in the PSM is dependent on the number of non-zero 

operands in the coefficient for the worst case after the 

application of BCSE algorithm. 

 

3) Final Shifter Unit:  
 
                             The final shifter unit will perform 

the shifting operation after all the intermediate additions 

(i.e., intra-coefficient additions) are done. This can be 

illustrated using the output expression 
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After obtaining the intermediate sums (x + 2−2x) and 

(x + 2−1x) from the shift and add units with the help of 

multiplexer unit, the final shifter unit will perform the 

shift operations 2−4and 2−15 in (2). The PSM and CSM 

architectures also differ in the nature of final shifters. In 

the CSM, the final shifts are constants and hence no PS 

are required. In the PSM, we have used PS. 

 

4) Final Adder Unit: 
  

                            This unit will compute the sum of all 

the intermediate additions 2−4(x + 2−2x) and 2−15(x + 

2−1x) as in (2). As the filter specifications of different 

communication standards are different, the coefficients 

change with the standards. In conventional reconfigurable 

filters, the new coefficient set corresponding to the 

filter specification of the new communication standard 

is loaded in the LUT. Subsequently, the shift and add 

unit performs a bitwise addition after appropriate shifts. 

On the contrary, the proposed CSM and PSM architectures 

perform a binary common subexpression (BCS)- wise addition 

(instead bitwise addition). Thus, the same hardware 

architecture can be used for different filter 

specifications to achieve the necessary reconfigurability. 

Moreover, the proposed BCS-based shift and add unit 

reduces addition operations and hence offers hardware 

complexity reduction. In the next section, the CSM is 

explained in a detailed manner. 

 

 

IV.  Architecture of PSM 
     

 
          The PSM is based on the BCSE algorithm presented in 

our previous work [6]. The PSM architecture presented in this 

section incorporates reconfigurability into BCSE. The PSM 

has a pre-analysis part in which the filter coefficients are 

analyzed using the BCSE algorithm in [6]. Thus, the 

redundant computations (additions) are eliminated using the 

BCSs and the resulting coefficients in a coded format are 

stored in the LUT. The coding format is explained in the latter 

part of this section. The shift and add unit is identical for both 

PSM and CSM. The number of multiplexer units required can 

be obtained from the filter coefficients after the application of 

BCSE [6]. The number of multiplexers is selected after 

considering the number of non-zero operands (BCSs and 

unpaired bits) in each of the coefficients after the application 

of the BCSE algorithm. The number of multiplexers will be 

corresponding to the number of non-zero operands for the 

worst-case coefficient (worst-case coefficient being defined as  

 

 
 
Figure 7: Architecture of  PE for PSM. 

 

coefficient that has the maximum number of non-zero 

operands). 

     The architecture of PE for PSM is shown in Fig. 5. The 

coefficient wordlength is fixed as 16 bits. We have done the 

statistical analysis for various filters with coefficient precision 

of 16 bits and different filter lengths (20, 50, 80, 120, 200, 

400, and 800 taps) and it was found that the maximum number 

of non-zero operands is 5 for any coefficient. The analysis was 

done for filters with different passband (ωp) and stopband 

(ωs) frequency specifications given by (1) is ωp = 0.1π, ωs = 

0.12π; 2) ωp = 0.15π, ωs = 0.25π; 3) ωp = 0.2π, ωs = 0.22π; 

and 4) ωp = 0.2π, ωs = 0.3π, respectively. 

      Based on our statistical analysis, we have fixed the number 

of multiplexers as 5 (same as the number of non-zero  

operands). The LUT consists of two rows of 18 bits for each 

coefficient of the form        SDDDDXXDDDDXXMMMML 

 and DDDDXXDDDDXXDDDDXX, where “S” represents 

the sign bit, “DDDD” represents the shift values from 20 to 

2−15  and “XX” represents the input  “x” or the BCSs 

obtained from the shift and add unit. In the coded format, XX 

= “01” represents “x,” “10” represents  x+2−1x, “11” 

represents x + 2−2x, and “00” represents x + 2−1x + 2−2x, 

respectively. 

    Thus, the two rows can store up to five operands which is 

the worst case number of operands for a 16-bit coefficient. In 

most of the practical coefficients, the number of operands is 

less than the worst case number of operands, 5. In that case 
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“MMMML” can be used to avoid unnecessary additions. The 

values “MMMM” will be given as select signal to the Mux6 

and “L” to Mux8. “MMMML” indicates the presence of five 

operands. A “1” in each position indicates the presence of 

each operand. Thus, for all operands to be present will be 

indicated by “MMMML” = “11111.” This means the Mux6 

will select the output from the output of adder, A4 and Mux8 

will select the output of adder, A2. If only first operand is 

present, “MMMML” = “10 000.” This means the Mux8 will 

select the output of PS, shr4 and Mux6 will select the output 

of PS, shr1. As a result of this none of the adders shr1 to shr4 

will be loaded saving significant amount  

of dynamic power. The coding can be explained as given 

below. Consider the positive coefficient h operands. A “1” in 

each position indicates the presence of each operand. Thus, for 

all operands to be present will be indicated by “MMMML” = 

“11111.” This means the Mux6 will select the output from the 

output of adder, A4 and Mux8 will select the output of adder, 

A2. If only first operand is present, “MMMML” = “10 000.” 

This means the Mux8 will select the output of PS, shr4 and 

Mux6 will select the output of PS, shr1. As a result of this 

none of the adders shr1 to shr4 will be loaded saving 

significant amount of dynamic power. 

    The coding can be explained as given below. Consider the 

positive coefficient h 

 

      (3) 

By using the BCSE [6], substituting 2 = [1 1], 3 = [1 0 1], 

(11) becomes 

 

             (4) 

 

 

  Then (12) will be stored in the LUT as 

000001101011011110 and 100111111010000000. It must 

be noted that as (12) has only four operands, the fifth 

operand values “DDDDXX” are substituted as 000000 and 

“MMMML” as “11110.” The XX values are given as select 

signals for Mux1 to Mux5. The values of DDDD are fed 

to corresponding PS. The multiplexer Mux6 and Mux8 will 

select the appropriate output in case the number of operands 

after BCSE is less than 5. The use of Mux6 and Mux8 reduces 

the number of adders utilized by selecting the output from the 

appropriate adder as all the adders in the PE are not always 

needed. For example, in (12), as only four operands occur, 

output can be taken from the output of PS, shr4 without using 

adder, shr2. Mux8 will do this and hence the adder shr2 is not 

loaded and consumes zero current and power. The select 

signals of Mux6 and Mux8 have five bits and hence 25 

different control signals are possible which adds lots of 

flexibility to the architecture which can be employed in future 

if required. Mux7 is used to complement the output in case of 

a negative coefficient and its select signal is the sign bit “S” of 

the coefficient. 

The PSM architecture has two advantages;  

TABLE1: Synopsys Synthesis Results for 20-Tap FIR 
Filter Implementation  
 

 
 
 

 
 
Figure 8:Transposed direct form of an FIR filter. 

 

 

first, it guarantees a reduced number of additions compared to 

CSM, and second it offers the flexibility of changing the 

wordlength of coefficients. The same PSM architecture 

designed for 16-bit coefficients is capable of operating for any 

coefficient wordlength less than 16 bits. This means, if the 

wordlength is reduced, the format of the LUT can be changed 

if required. The main advantage of reducing the precision is 

that some of the adders in the PSM architecture will be 

unloaded resulting in zero dynamic power. To the best of our 

knowledge, the 

PSM architecture is the first approach toward programmable 

coefficient wordlength FIR filter architecture. This means that  

the coefficient wordlength of the proposed PSM architecture 

can be changed dynamically without any change in hardware. 

Hence transposed direct form posses the architecture as shown 

in figure 8. 

 

V. Experimental Results 
 
   In this section, the synthesis and design results of the 

proposed CSM and PSM architectures are presented and  

compared with the recently proposed reconfigurable FIR filter 

architectures in the literature [11], [12], [14], [15], [20], [21 

 

 A.   Synthesis Results 

 
           We have used Xilinx 8.1i ISE for synthesizing 

purposes. The synthesis has been done on Xilinx’s Spartan-3E 

FPGA. Table I shows the synthesis results of the CSM and 

1210

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100405



PSM 20-tap FIR filter that has a coefficient wordlength of 16 

bits. We have done the implementation of filters with different 

passband edge (ωp) and stopband edge (ωs) specifications. 

        Even though the proposed architectures are known to 

reconfigurable, the usage of adders and shifters is dependent 

on the filter coefficient values. Some of the adders may not be 

used by the multiplexers. As a result of this, they are unloaded 

and do not consume any dynamic power. Hence, the power 

and speed values of the synthesis results are dependent on the 

filter coefficients and hence we have considered an average of 

the synthesis results in all the tables in this paper. From the 

comparison it is very evident that the CSM requires 475 gates 

more than that of PSM, whereas PSM requires 6.82 ns more 

for the data to arrive at the output compared to CSM. Thus, 

the CSM results in higher speed whereas the PSM results in 

lower area. The reason for lower speed of PSM is due to the 

presence of programmable shifters and that of less area 

is due to elimination of redundant additions by using BCSE 

algorithm. We have also analyzed the effect of the MB for 

different filter coefficient word lengths of 8, 12, and 16 bits 

for the PSM architecture.  

 

 

B. CSD Based Reconfigurable FIR Filter 

Architecture 
 

    CSD based CSE algorithms are considered to be one of 

the best algorithms that can result in low complexity 

fixedcoefficient FIR filter implementations. However to the 

best of our knowledge, the implementation of the CSD-CSE 

based  reconfigurable filter architectures has not been 

addressed in the literature. We have implemented a CSD 

based FIR filter using the CSM architecture (CSD-CSM) and 

a CSD-CSE based FIR filter using the PSM architecture 

(CSD-PSM). For low complexity, we have employed the CSE 

algorithm in [3] on the coefficients before they are stored in 

LUT. We have implemented 

a CSD based shift and add unit to generate common 

subexpression (CSs) such as [1 0 1], [1 0 −1], [1 0 0 1] and [1 

0 0 −1] and their negated versions. In the previous works 

based on CSE algorithm [3]–[5], it was considered 

that common subexpressions (CSs) such as [−1 0 − 1] and [−1 

0 1] can be generated from their respective negated 

versions [1 0 1] and [1 0 − 1] without using any extra adder 

by configuring the existing adder as a subtractor. But this is 

applicable only for fixed coefficient filters. An n-bit adder 

circuit would require n additional XOR gates to reconfigure 

the adder to subtractor mode. These additional XOR gates 

would increase the critical path of the adder circuit (equivalent 

to the delay imposed by n  

half-adders) and impose overheads for CSD implementation 

of the FIR filter. Another drawback 

of CSD implementation is with the storage of coefficients in 

LUT. The CSD value like [1 0 − 1 0 − 1 0 1 0 − 1] can be 

stored in an LUT like [01 00 11 00 11 00 01 00 11] with 

“00” corresponding to 0, “01” corresponding to 1, and “11” 

corresponding to −1. Therefore, for the worst-case scenario, 

an 8-bit CSD coefficient requires 16 bits for its representation. 

  This can be optimized as no adjacent bits in CSD are ones. 

But still CSD requires more number of bits than binary. Since 

all the bits in binary representation are positive, this problem 

will not come. Thus, the additional half-adders required for 

implementing the dder/subtractor circuit and the additional 

storage space required for CSD will increase the area and the 

additional half-adders in the adder/subtractor unit reduces the 

speed of operation of the CSD based reconfigurable FIR filters 

compared to binary based FIR filter implementations. 

   This becomes highly significant, as the order of the channel 

filters in wireless communication transceivers is very high. 

We have done the synthesis using Synopsys tool. The 

synthesis results for a 20-tap FIR filter with 16-bit coefficient 

wordlength are summarized in Table 1. The proposed CSM 

and PSM architectures which employ binary representation of 

filter coefficients are denoted as BCSM and BPSM, 

respectively. The CSD based implementations of CSM and 

PSM are denoted as CSD-CSM and CSD-PSM, respectively. 

Table I shows that the CSDCSM and CSD-PSM architectures 

consume more area, power, and has less speed compared to 

our binary representation based BPSM and BCSM 

architectures. The BCSM architecture has area reduction of 

10% and 1% over CSD-CSM and CSD-PSM architectures, 

respectively, and the area reduction for BPSM architecture 

over CSD-CSM and CSD-PSM architectures are 15% and 7%, 

respectively. The improvement in the speed of operation for 

the BCSM architecture over the CSD-CSM and CSD-PSM 

architectures is 10% and 22%, respectively. The 

BPSM architecture offers an improvement in the speed of 

operation of 4% and 12% over the CSD-CSM and CSD-PSM 

architectures, respectively. The dynamic power reductions for 

the BCSM architecture are 22% and 44% over the CSD-CSM 

and CSD-PSM architectures, respectively. The BPSM 

architecture[21] offers the dynamic power reductions of 40% 

and 57% over the CSD-CSM and CSD-PSM[21] architectures, 

respectively. The BPSM architecture offers area and power 

reductions of 6% and 23% over the BCSM architecture, 

respectively. The BCSM architecture offers in improvement in 

the speed of operation by 7% compared to the BPSM 

architecture. In Table 1, the proposed architectures are also 

compared with the MMCM architecture based FIR filter in 

[15]. The BCSM architecture offers an area reduction of 

49.7%, power reduction of 51.3%, and a speed improvement 

of 50.8% over the MMCM [15]. The area and power 

reductions offered by the BPSM architecture over MCM [15] 

are 52.7% and 62.5%, respectively. 

 

 VI. Implementation Results 
           

             We have implemented the proposed CSM and PSM 

architectures for a 20-tap FIR filter with 16-bit coefficient 

precision on Xilinx’s Spartan-3E  FPGA associated with 

the dual DSP-FPGA Signal master kit . The PSM also 

provides the flexibility of changing the filter coefficient 
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wordlengths dynamically. Using CSD, the worst case cost 

remains b2 + O(1), but the average case is now improved to 

b3 + O(1. The optimal decomposition in terms of add/subtract 

operations is in general not obtained with CSD, and its worst 

case and average costs are unknown.  

 

 

   

 VII. CONCLUSION 
 

In this paper, designing of digit-serial MCM operation with 

optimal area is done. Also a new reconfigurable architecture 

using  PSM is proposed which  provides the flexibility of 

changing the filter coefficient word lengths dynamically. The 

experimental results indicate that the complexity of digit-serial 

MCM designs can be further reduced using the high-level 

optimization algorithms proposed in this paper. 
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