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ABSTRACT 

 

This article presents a novel optimization 

approach to constrained dynamic economic 

dispatch (DED) problems using the hybrid 

particle swarm optimization (HPSO) technique. 

The proposed methodology easily takes care of 

different constraints like transmission losses, 

ramp rate limits and also uses for non-smooth 

cost functions. To illustrate its efficiency and 

effectiveness, the developed HPSO approach is 

tested with different number of generating units 

and comparisons are performed with other 

approaches under consideration.  

 

 

 

 

Convexity in the fuel cost function [3]. Accurate 

modeling of the DED problem will be improved 

when the valve point loadings in the generating 

units are taken into account. Previous efforts on 

solving DED problem have employed various 

mathematical programming methods and 

optimization techniques. Conventional method 

like Lagrangian relaxation [1], gradient 

projection method [2] and dynamic 

programming etc, when used to solve DED 

problem suffer from myopia for non-linear, 

discontinuous search space, leading them to a 

less desirable performance and these methods 

often use approximations to limit complexity. 

 

 

 
 

1. INTRODUCTION 

 

The dynamic economic dispatch (DED) is an 

extension of the traditional economic dispatch 

problem used to determine the schedule of real-

time control of power system operation so as to 

meet the load demand at the minimum operating 

cost under various system and operational 

constraints. DED procedure follows the dynamic 

connection by handling the ramp rate limits of 

generating units and by modifying the steady 

state cost to include the extra fuel consumption. 

The DED problem is not only the most accurate 

formulation of the economic dispatch problem 

(EDP). 

 

  Most of the literature addresses DED 

problem with convex cost function [1-2]. 

However, in reality, large steam turbines have 

steam admission valves, which contribute non

 Recently, stochastic optimization 

techniques such as Genetic algorithm (GA) [4-5], 

evolutionary programming (EP) [6-7], simulated 

annealing (SA) [8-9] and particle swarm 

optimization (PSO) [10-12] have been given 

much attention by many researches due to their 

ability to seek for the near global optimal 

solution. However, all the previous work 

mentioned above neglected the non-smooth 

characteristic of generator, which actually exist 

in the real power system. 

 

 This paper presents a novel optimization 

method based on hybrid particle swarm 

optimization (HPSO) algorithm applied to 

dynamic economic dispatch in a practical power 

system while considering some nonlinear 

characteristics of a generator such as ramp rate 

limits, generators constraints, power loss and 

non-smooth cost function. The proposed 
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methodology emerges as a robust optimization 

technique for solving the DED problem for 

different size power system. 

 

2. DED PROBLEM FORMULATION 
 

The objective of the DED is to schedule the 

outputs economically over a certain period of 

time under various system and operational 

constraints. The conventional DED problem 

minimizes the following incremental cost 

function associated to dispatchable units. 

 
T
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Where F is the total operating cost over the 

whole dispatch period, T is the no. of intervals in 

the scheduled horizon, N is the no. of generating 

units and  itit PF   is the fuel cost in terms of its 

real power output itP  at time„t‟. Taking into 

valve-point effects, the fuel cost of the  
thi  

thermal generating unit is expressed as the sum 

of a quadratic and a sinusoidal function in the 

following form is given by  

 

hPPfeCPbPaPF itiiiiitiitiitit /$_sin min,
2

                                                                     (2) 

 

Where   iii cba ,,  are cost coefficients and  

ii fe ,  are constants from the valve point effect 

of the   
thi  generating unit, subject to the 

following equality and inequality constraints. 

 

a. Real power balance   
 

N

t
LtDtit PPP
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Where t = 1, 2 …T, is the total power demand at 

time   t and   LtP  is the transmission power loss 

at   
thi  interval in  MW. 

 

b. Real power operating limits  
 

  maxmin titt PPP                                         (4)                                                                                                      

 

Where  mintP  and  maxtP  are respectively the 

minimum and maximum real power output of   
thi  generator in MW. 

 

c. Generating unit ramp rate limits 

 

 

NiURtPP iiit ,....,3,2,1,1               (5)                                                                           

NiDRiPtP iti ,....,3,2,1,1    (6)                                                                   

 

Where  iUR  and   iDR  are the ramp-up and 

ramp- down limits of   
thi  unit in MW. So the 

constraint given by Eq. (5) is modified as 

follows:                                                                                                   

    

itiiitii URPPDRPP 1max1min ,min,max

                                                                          (7)        

                                                                            

3. OVERVIEW OF PSO 
     

The particle swarm optimization method 

conducts its search using a population of 

particles, corresponding to individuals. It starts 

with a random initialization of a population of 

individuals in the search space and works on the 

social behavior of the particles in the swarm, like 

birds flocking, fish schooling and the swarm 

theory. Therefore, it finds the global optimum by 

simply adjusting the trajectory of each individual 

towards its own best location and towards the 

best particle of the swarm at each generation of 

evolution. The position and the velocity of the 
thi particle in the d dimensional search space can 

be represented as 
T

idiii xxxX ,........,, 21 and 

T
idiii vvvV ,........,, 21 . Each particle has its 

own best position (Pbest)  
T

idiii tptptptP .,,........., 21

corresponding to the personal best objective 

value obtained so far at generation „t‟ . The 

global best particle (Gbest) is denoted by 
T

gdggg tptptptP .,,........., 21 . The new 

velocity of each particle is calculated as follows: 

 

djtxtprc

txtprctvtv

ijgi

ijijijIJ

,.........2,1

1

22

11
                                                                                  

                                                                          (8) 

Where  1c and  2c are constants of acceleration 

coefficients corresponding to cognitive and 

social behavior, is the inertia factor , n is the 

population size , 1r and 2r are two independent 

random numbers. Thus, the position of each 

particle at each generation is updated according 

to the following equation: 
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11 tvtxtx ijijij  

ni ,.......,2,1 and j=1,2,…….,d                       (9)   

                                                                                                                                     

4. MODIFIED PSO : 

     In the conventional PSO method, the inertia 

weight is made constant for all the particles in a 

single generation, but the most important 

parameter that moves the current position 

towards the optimum position is the inertia 

weight ω. In modified PSO, the particle position 

is adjusted such that the highly fitted particle 

(best particle) moves slowly when compared to 

the lowly fitted particle. This can be achieved by 

selecting different ω values for each particle 

according to their rank, between ωmin and  ωmax  

as in the following form: 

 

PopulationTotal

Ranki
i

minmax
max           (10)                                                                                                      

 

So, from Eq. (9), shows that the best particle 

takes first rank, and the inertia weight for that 

particle is set to minimum value while for the 

lowest particle takes the maximum inertia 

weight, which particle move a high velocity. The 

velocity of each particle is updated using Eq. 

(15), and if updated velocity goes beyond 

maximum velocity maxV , than it is limited to  

maxV   

 

txtprc
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                                                                        (12)                   

 

nianddj ,......,2,1,......,2,1  

 

The new particle position is obtained by using 

Eq. (17), and if any particle position beyond the 

rang e specified, it is limited to its boundary 

using Eq. (18), 
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The concept of re-initialization is introduced in 

the proposed HPSO method after a specific 

number of generations if there is no 

improvement in the convergence of the 

algorithm. At the end of the method the specific 

generation is re-initialized with new randomly 

generated individuals. The number of new 

individuals is selected from „k‟ least individuals 

of the original population, where „k‟ is the 

percentage of total population to be changed. 

This re-initialization of population is performed 

after checking the change in the „Fbest‟ value in 

each and every specific generation. 

 

5. SEQUENTIAL QUADRATIC 

PROGRAMMING (SQP): 

 
Sequential quadratic programming (SQP) [13] is 

widely used to solve practical optimization 

problems. It outperforms every other nonlinear 

programming method in terms of efficiency, 

accuracy and percentage of successful solutions. 

The method closely mimics Newton‟s method 

for constrained optimization just as is done for 

unconstrained optimization. At each major 

iteration, an approximation is made of the 

Hessian of the Lagrange function using Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-

Newton updating method. This is then used to 

generate a quadratic programming subproblem 

whose solution is used to form a search direction 

for a line search procedure. 

As the objective function to be minimized is 

nonconvex, SQP requires a local minimum for 

an initial solution. In this paper, SQP is used as a 

local optimizer for fine-tunning the better region 

explored by AIS. Here, the formulation of SQP 

subroutine is taken from [15]. 

For each iteration, a QP is solved to obtain the 

search direction which is used to update the 

control variables. QP problem can be described 

as follows 

 

Minimize the following 

                        
1

2
k k k K kF d d d  

subject to 

                      0kkki dgg        

emi ,....,1  

                     0kkki dgg        

mmi e ,...,1   
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where 

k      the Hessian matrix of the Lagrangian 

function at the k th iteration 

kd       the search direction at the k th iteration 

k       the real power vector at the k th iteration 

kg  constraints from (3) to (4) 

em       number of equality constraints 

6. m        number of constraints  
 

                       ,L F g  

 

where  is the vector of Lagrangian multiplier. 

 

k  is calculated using quasi-Newton formula 

given by, 

 

                      

kkk

kkkk

kk

kk
kk
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Sq

qq
1

 

where  

                     
kkkS 1

 

 

111 ,, kkkkk LLq  

For each iteration of the QP sub-problem the 

direction kd  is calculated using the objective 

function. The solution obtained forms a new 

iterate given by, 

 

                      
kkkk d1

 

The step length value k  is determined to 

produce a considerable reduction in an 

augmented Lagrangian merit function as follows 

 

                     

, ,
2

L F g g g  

 

where  is a nonnegative scalar. The procedure 

is repeated until the value of  kS  has reached 

some tolerance value. 

                      

6. HPSO ALGORITHM 
 

6.1) Initialize number of population of particles 

dimension d with random position velocities 

and get the input parameters such as range 

[min, max] for each variable, c1, c2 and 

iteration counter. Set iteration counter = 0. 

6.2) Increment iteration counter by one. 

6.3) Find out the fitness function of all particles 

in the population and update the objective 

function. 

6.4) If stopping criterion is reached than go to 

step (5.9). Otherwise continue. 

6.5) Evaluate the inertia factor according to Eq. 

(10). 

6.6) Update the velocity given in Eq. (11) and 

correct it using Eq. (12). 

6.7) Update the position of each particle using 

Eq. (13) and if the new position goes out of 

range, set it to boundary value using Eq. 

(14). 

6.8) For every 5 generations, the {Fbest, new 

value} is compared with the {Fbest, old 

value}. If there is no change, then use the re-

initialization concept and go to step (5.3). 

6.9) Output the Gbest particle and its objective 

value. 

6.10) solve the DED problem using the SQP   

method with the selected solution obtained from 

PSO. 

 

7. SIMULATION RESULTS 

 

 The five unit system with non-smooth fuel cost 

function is used to demonstrate the performance 

of the proposed HPSO. We have used the same 

system data as done by Panigrahi et al. [8]. The 

load demand of the system is taken over 24 hour. 

The result of the proposed method is given in 

Table 1. The earlier reported result for the cost is 

47356 $. For the present simulation, the cost is 

found to be 44568 $. 

 

8. CONCLUSIONS 

 

The paper has employed the HPSO algorithm on 

constrained of dynamic economic dispatch 

problem. The proposed approach has produced 

comparable to or better than those generated by 

other algorithms, and the solution has superior 

quality and good convergence characteristics.  

from this limited comparative study, it can be 

concluded that the HPSO can be effectively used 

to solve non-smooth as well as smooth 

constrained economic load dispatch problems. In 

the future, the work will can be made to 

incorporate more realistic constraints to the 

problem and the large size problems will be 

solved by the proposed methodology. 
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Table1: Result for five unit system with 24 h load demand 
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