A New Application of Generalized Almost Increasing Sequence

Aditya Kumar Raghuvanshi, B.K. Singh, and Ripendra Kumar
Department of Mathematics
IFTM University, Moradabad, (U.P.) India, 244001

Abstract

A new result concerning absolute summability of infinite series using almost increasing sequence is obtained. An application gives some generaliztion of Sulaiman [3].

Keywords: Absolute summability, almost increasing sequence and sequence of bounded variation.

1 Introduction

Let $\sum a_{n}$ be an infinite series with sequence of partial sums $\left(s_{n}\right)$. By $u_{n}^{\alpha}, t_{n}^{\alpha}$ we denote the $\mathrm{n}^{\text {th }}$ Cesaro mean of order $\alpha>-1$ of the sequence $\left(s_{n}\right)$, $\left(n a_{n}\right)$ respectively, that is

$$
\begin{align*}
u_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1.1}\\
t_{n}^{\alpha} & =A_{n}^{\alpha} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{1.2}
\end{align*}
$$

The series $\sum a_{n}$ is summable $|C, \alpha|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k} \equiv \sum_{n=1}^{\infty} n^{-1}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

For $\alpha=1,|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability.
Let $\left(p_{n}\right)$ be a sequence of constants such that

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+\ldots .+p_{n} \rightarrow \infty \text { as } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

The positive sequence $\left(b_{n}\right)$ is said to be almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N
such that, $M c_{n} \leq b_{n} \leq N c_{n}$. Every increasing sequence is almost increasing sequence.

A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in B V$ if

$$
\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|=\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty
$$

2 Main Theorem

Here we generalized the Sulaiman theorem [3].
Theorem 2.1. Let $p>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non increasing sequence (Sulaiman [3]) $\left(X_{n}\right)$ be almost increasing sequence if the following conditions (Bor [1]), (Mazhar [2]) and (Verma [4]). Where $\lambda_{n} \in B V$

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{2.1}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{2.2}\\
n X_{n}\left|\Delta \lambda_{n}\right|=0(1) \text { as } n \rightarrow \infty \tag{2.3}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{2.4}\\
\psi_{v}=O(1) \text { as } v \rightarrow \infty \tag{2.5}\\
v \Delta \psi_{v}=O(1) \text { as } v \rightarrow \infty \tag{2.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{v^{\delta k-1}}{X_{v}^{k-1}}\left|t_{v}\right|^{k}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{2.7}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n} \psi_{n}$ is summable $|C, 1, \delta|_{k}, k \geq 1, \delta \geq 0$.
Proof. Let T_{n} be the n-th $(C, 1)$ means of the sequence $\left(n a_{n} \lambda_{n} \psi_{n}\right)$.
Therefore

$$
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} \psi_{v}
$$

Abel's transformation gives

$$
T_{n}=\frac{1}{n+1}\left(\sum_{v=1}^{n-1} \Delta\left(\lambda_{v} \psi_{v}\right) \sum_{r=1}^{v} r a_{r}+\lambda_{n} \psi_{n} \sum_{v=1}^{n} v a_{v}\right)
$$

$$
\begin{aligned}
& =\frac{1}{n+1}\left(\sum_{v=1}^{n-1}(v+1) t_{v} \Delta \psi_{v} \lambda_{v}+\sum_{v=1}^{n-1}(v+1) t_{v} \psi_{v+1} \Delta \lambda_{v}\right)+t_{n} \psi_{n} \lambda_{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}
\end{aligned}
$$

In order to complete the proof, by Minkowaski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\delta k-1}\left|T_{n, j}\right|^{k}<\infty, j=1,2,3
$$

Applying Hölder inequality, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m+1} n^{\delta k-1}\left|\frac{1}{n+1} \sum_{v=1}^{n-1}(v+1) t_{v} \Delta \psi_{v} \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{n^{k}} \sum_{v=1}^{n-1} v^{k}\left|t_{v}\right|^{k}\left|\Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \cdot\left(\sum_{v=1}^{n-1} 1\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{n^{k}} \sum_{v=1}^{n-1} v^{k}\left|t_{v}\right|^{k}\left|\Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}(n)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k-2} \sum_{v=1}^{n-1} v^{k}\left|t_{v}\right|^{k}\left|\Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k}\left|t_{v}\right|^{k}\left|\Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k-2} \\
& =O(1) \sum_{v=1}^{m} v^{k}\left|t_{v}\right|^{k}\left|\Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \int_{v}^{\infty} x^{\delta k-2} d x \\
& =O(1) \sum_{v=1}^{m} v^{k}\left|t_{v}\right|^{k}\left|\Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}(v)^{\delta k-1} \\
& =O(1) \sum_{v=1}^{m} v^{\delta k-1}\left|t_{v}\right|^{k}\left|v \Delta \psi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m k-1} \frac{v^{\delta k-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}}{X_{v}^{k-1}\left|\lambda_{v}\right|} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k} r^{\delta k-1}}{X_{v}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m-1} \frac{\left|t_{v}\right|^{k} v^{\delta k-1}}{X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m} X_{v}\left|\Delta \lambda_{v}\right|+O(1) X_{m}\left|\lambda_{m}\right|=O(1)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 2}\right|^{k} & =\sum_{n=2}^{m+1} n^{\delta k-1}\left|\frac{1}{n+1}(v+1) t_{v} \psi_{v+1} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{n^{k}} \sum_{v=1}^{n-1} v^{k}\left|t_{v}\right|^{k}\left|\psi_{v+1}\right|^{k}\left|\Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{n^{k}} \sum_{v=1}^{n-1} \frac{v^{k}\left|t_{v}\right|^{k}\left|\psi_{v+1}\right|^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \cdot\left(\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{v^{k}|t v|^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \sum_{n=v+1}^{m+1} n^{\delta k-k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{v^{k}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \cdot v^{\delta k-k} \\
& =O(1) \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k} v^{\delta k-1}}{X_{v}^{k-1}}\left|\hat{v} \Delta \lambda_{v}\right| \\
& \left.=O(1) \sum_{v=1}^{m}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k} r^{\delta k-1}}{X_{r}^{k-1}}+O(1) \right\rvert\, \lambda_{m} \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k} v^{\delta k-1}}{X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{V}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1)
\end{aligned}
$$

And

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|T_{n, 3}\right|^{k} & =\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n} \psi_{n} \lambda_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k} \cdot n^{\delta k-1}}{X_{n}^{k-1}}\left|\lambda_{n}\right| \\
& =O(1) \text { as in the case of } T_{n, 1}
\end{aligned}
$$

This completes the proof of theorem.

References

[1] Bor, H.; On a new application of almost increasing sequences, to be published in Mathem and Computer Modelling, 35 (2011), 230-233.
[2] Mazhar, S.M.; Absolute summablity factor of infinite series Kyungpook Math. J. 39 (1999).
[3] Sulaiman, W.T.; On a application of almost increasing sequences, Bul. of Math. Analysis and applications Vol. 4 (2012), 29-33.
[4] Verma, R.S.; On the absolute Nörlund summability factors Riv. Mat. Univ. Parma (4), 3 (1977), 27-33.

