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Abstract 

 This paper presents the use of the Walsh function 

based algorithm as an alternative for reactive and 

distortion power measurement. The algorithm 

provides a favorable method for calculating or 

measuring power components by simplifying the 

multiplication procedure that leads to the 

determination of the reactive and distortion power 

from instantaneous power signal. In comparison to the 

known existing fast Fourier transform FFT, it’s faster 

and simple, the method does not require the phase 

shift of pi/2 between the voltage and current and its 

applicable both for stationary and nonstationary load 

conditions as it eliminate the effects of harmonics in 

measurement. Load harmonics affect the FFT 

algorithm and make its result of measurement 

unrealistic in the presence of harmonic distortion. A 

simulation tool developed on Matlab was used to 

validate the proposed Walsh function alternative 

algorithm. 

 

 

1. Introduction 
 

There has been astronomical increase in the number 

of nonlinear loads connected to the energy distribution 

networks. The nonlinear loads characteristics 

negatively impact on the voltage and current signals of 

the system, this affect the accurate measurement of 

power components. The definition of power 

components in power system analysis contained in 

IEEE 1459-2000 for power component signals 

consisting of harmonic is based on fast Fourier 

transform FFT algorithm, this definition which is in 

frequency domain implements power component 

measurement accurately if the system has stationary 

and sinusoidal current and voltage waveforms. When 

the system is made non-stationary and non-sinusoidal 

the reading recorded for the reactive power becomes 

unrealistic [1-3].  Research have shown that in a 

sinusoidal operating condition all known reactive 

energy measurement algorithms provide the same 

results, however, if the system becomes non-sinusoidal 

due to the presence of harmonic distortion the 

algorithms provide diverse results [4]. Meaning that, 

there is no global common definition yet for reactive 

power that takes into cognizance the operating 

environments that are not solely sinusoidal. Reactive 

power measurement is important in determining the 

reactive demand which assist in improving the voltage 

profile while reactive energy measurement is used by 

utility companies to fashion out suitable measures to 

reduce loss in revenue and increase the power supply 

capacity.  Attempts to formulate a generally suitable 

algorithm for measurement of power components 

(reactive power in particular) in both sinusoidal and 

non-sinusoidal conditions have been ongoing for a 

while now [5]. Several authors have defined and 

formulated algorithms based on time-domain [6-9] 

while others used the frequency-domain [10-12] and 

lately a combination of time and frequency domain 

[13-15].  A careful look at the different approaches 

revealed that the time-domain approach is simple and 

easy to implement but then, cannot measure the 

fundamental and each harmonic component separately 

and it also lose frequency content information. The 

frequency domain approach though; it can accurately 

measure the fundamental and each harmonic 

component separately, certain reactive power 
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quantities could lead to a result that have no physical 

meaning, it is difficult to apply for compensations and 

time information is lost since FFT gives only the 

amplitude frequency spectrum of the analyzed 

waveform.  Afterward, the time-frequency domain 

approach for power component measurement using the 

Wavelet transform have been investigated and 

presented.  It has the advantage of being able to 

effectively measure the power component in both 

stationary and non-stationary voltage and current 

waveform conditions, but the computation burden 

associated with Wavelet transform exposes the 

algorithm to errors, and it require the phase shift of 

pi/2 between the voltage and current signals [16-17]. 

This paper present the use of the Walsh function 

based algorithm as an alternative for reactive and 

distortion powers measurement. The advantages of the 

Walsh function based technique for use in energy 

components evaluation are;  

- The Walsh transforms analyzes signals into 

rectangular waveform rather than sinusoidal ones 

and is computed more easily and rapidly when 

compared with fast Fourier transform FFT and 

Wavelet transform. 

- Walsh function based algorithm contains addition 

and subtractions only and hence result in 

considerably simplified hardware implementation 

of power evaluation. 

- A requirement of IEEE/IEC definition of a phase 

shift of pi/2 between the voltage and the current 

signal mainly use for reactive power evaluation is 

eliminated from signal processing operation when 

using Walsh function [18]. 

The remaining part of this paper is arranged as 

follows; section two is a review Walsh function 

analytical expression, section three describes the 

derivation of the Walsh function algorithm, while 

section four is the modeling, simulation of the 

algorithm, five is the conclusion. 
 

2.  Walsh Function Analytical Expression 
 

    Generalized Walsh functions and transforms was 

introduced in 1923 by J.L. Walsh but their application 

to engineering and other fields did not happen until 

recently [19] with some basic and enlightening 

properties of these function and transform considered.  

The Walsh function can be applied among others, to 

develop an algorithm that can be applied to non-linear 

loads problem analysis. It is a full orthogonal system 

with exciting distinctiveness, among which is that it 

has only two values i.e. +1 and -1 over stated 

normalized period T. This specificity greatly 

influences the effectiveness of signal processing 

operation as related to measurement of the components 

and characteristics of power distribution system.  

Analytically the Walsh function is expressed as [20]; 

  𝑊𝑎𝑙 𝑛, 𝛽 = (−1) (𝑛𝑚−𝑘+1⊕𝑖𝑚−𝑘)𝛽𝑘
𝑚
𝑘−1  

            (1) 

Where; 𝑛  is the order of the function from 𝑛 =
1,2,3 …𝑛𝑚  is the 𝑚𝑡ℎcoefficients of the 𝑛 represented 

in binary code i.e. 𝑛 = (𝑛0,𝑛1,𝑛3 … 𝑛𝑚 )2
,
  𝑛𝑚 = 0,1. 

with 𝑚  being the highest-order Walsh function WF 

serial number in the system, 𝛽 is the argument of WF 

that defines the coefficients of 𝛽𝑘 in binary code. 𝛽= 

(𝛽𝑘 , 𝛽𝑘 …𝛽𝑘) 2
. 

 𝛽𝑘 = 0,1  and  𝑘 = 1,2,3 … . 𝑚 . From 

equation (1) the graphical representation of the first 

eight WF is generated as shown in figure (1)  

Figure 1: The first 8
th

 order Walsh function 

 

3. Proposed Walsh Function Algorithm 

for Power Measurements 
 

The IEEE standard 1459-2000 for the instantaneous 

fundamental voltages (𝑣𝑎,𝑣𝑏 ,𝑣𝑐 ) and currents (𝑖𝑎 ,𝑖𝑏,𝑖𝑐 ) 

in a three phase sinusoidal distribution network is 

given as [21];  
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𝑣𝑎 =  2 𝑉𝑎 sin 𝑤𝑡  

𝑣𝑏 =  2 𝑉𝑏 sin 𝑤𝑡 − 120°  

𝑣𝑐 =   2𝑉𝑐   sin 𝑤𝑡 + 120°              (2) 

and 

𝑖𝑎 =   2𝐼𝑎  sin 𝑤𝑡 − ∅𝑎  

𝑖𝑏 =   2𝐼𝑏 sin 𝑤𝑡 − ∅𝑏 − 120°  

𝑖𝑐 =   2𝐼𝑐 sin 𝑤𝑡 − ∅𝑏 + 120°              (3)  

Where; 

𝑉𝑎,𝑉𝑏, 𝑉𝑐  and 𝐼𝑎 , 𝐼𝑏 , 𝐼𝑐  are the RMS values of the line to 

neutral voltages and currents for the phases a, b and c 

respectively. 

𝑤 = 2𝜋𝑓              𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)    𝑡 = 1/𝑓               

To derive the improved algorithm for measurement 

when the load current is contaminated with say, third 

orders current harmonic denoted as 𝑖𝑎3 ,  𝑖 𝑏3 and  𝑖 𝑐3 

with 𝜃𝑎3, , 𝜃𝑏3 and, 𝜃𝑐3 being  the phase angle between 

the fundamental voltages and the third order current 

harmonic waveforms of the phases,   𝐼 𝑎3, 𝐼 𝑏3 and 𝐼 𝑐3 

are the RMS values of the third order current harmonic 

as given below; 

𝑖𝑎3= 𝐼 𝑎3 sin 3𝑤𝑡 − 𝜃𝑎3  

𝑖𝑏3= 𝐼 𝑏3 sin 3𝑤𝑡 − 𝜃𝑏3 − 120  

𝑖𝑐3= 𝐼 𝑐3 sin 3𝑤𝑡 − 𝜃𝑐3 + 120                   (4) 

The instantaneous powers 𝑝𝑎3 , 𝑝𝑐3  and 𝑝𝑐3  for the 

three phases a, b and c under this harmonic condition 

are; 𝑝𝑎3 = 𝑣𝑎 ∗ (𝑖𝑎 + 𝑖𝑎3) ,   𝑝𝑏3 = 𝑣𝑏 ∗ (𝑖𝑏 + 𝑖𝑏3)   

and   𝑝𝑐3 = 𝑣𝑐 ∗ (𝑖𝑐 + 𝑖𝑐3)  

Substituting and solving yields, 

𝑝𝑎3 = 𝑃𝑎 +  𝑃𝑎3−𝑃𝑎 𝑐𝑜𝑠2𝑤𝑡 + (𝑄𝑎3 − 𝑄𝑎)𝑠𝑖𝑛2𝑤𝑡 −

              𝑃𝑎3𝑐𝑜𝑠4𝑤𝑡 − 𝑄𝑎3 sin 4𝑤𝑡   

𝑝𝑏3 = 𝑃𝑏 +  𝑃𝑏3 + 𝑃𝑏 −  3𝑄𝑏 𝑐𝑜𝑠2𝑤𝑡 +

            (𝑃𝑏 3 + 𝑄𝑏3 − 𝑄𝑏)𝑠𝑖𝑛2𝑤𝑡 − ( 3𝑄𝑏3 −

             𝑃𝑏3)𝑐𝑜𝑠4𝑤𝑡 +  (𝑄𝑏3 + 𝑃𝑏 3)sin 4𝑤𝑡    

   

𝑝𝑐3 = 𝑃𝑐 +  𝑃𝑐3 + 𝑃𝑐 +  3𝑄𝑐 𝑐𝑜𝑠2𝑤𝑡 +

           (𝑃𝑐 3 + 𝑄𝑐3 − 𝑄𝑐)𝑠𝑖𝑛2𝑤𝑡 − ( 3𝑄𝑐3 −

                 𝑃𝑐3)𝑐𝑜𝑠4𝑤𝑡 + (𝑄𝑐3 + 𝑃𝑐 3)sin 4𝑤𝑡         (5) 

Where,  

𝑃𝑎 = 𝑉𝑎 𝐼𝑎𝑐𝑜𝑠𝜃𝑎 , 𝑃𝑏 = 𝑉𝑏𝐼𝑏𝑐𝑜𝑠𝜃𝑏 , 𝑃𝑐 = 𝑉𝑐𝐼𝑐𝑐𝑜𝑠𝜃𝑐 ,  

𝑄𝑎 = 𝑉𝑎 𝐼𝑎 sin 𝜃𝑎 , 𝑄𝑏 = 𝑉𝑏𝐼𝑏 sin 𝜃𝑏  and  

𝑄𝑐 = 𝑉𝑐𝐼𝑐 sin 𝜃𝑐 ,  𝑃𝑎3 = 𝑉𝑎 𝐼𝑎3 cos 𝜃𝑎3,  

 𝑃𝑏3 = 𝑉𝑏𝐼𝑏3 cos 𝜃𝑏3,  𝑃𝑐3 = 𝑉𝑐𝐼𝑐3 cos 𝜃𝑐3,  

𝑄𝑎3 = 𝑉𝑎 𝐼𝑎3 sin 𝜃𝑎3, 𝑄𝑏3 = 𝑉𝑏𝐼𝑏3 sin 𝜃𝑏3,  

and 𝑄𝑐3 = 𝑉𝑐𝐼𝑐3 sin 𝜃𝑐3 respectively  

To find the reactive power we apply the Walsh 

function by multiplying equations (5) with the third 

order WF i.e. 𝑊𝑎𝑙(3, 𝑡) and integrate over the period 

T. According to the Walsh functions all the integrals 

of the right hand side terms of equations (5) that 

involves the multipliers of 𝑐𝑜𝑠2𝑤𝑡 , 𝑐𝑜𝑠4𝑤𝑡 , sin 4𝑤𝑡  

and the constant 𝑃 are all equal to zero. Hence; 

1

𝑇
 𝑝𝑎 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 =           

1

𝑇
 (𝑄𝑎3 

𝑇

0
− 𝑄𝑎 )𝑠𝑖𝑛2𝑤𝑡 𝑤𝑎𝑙 3, 𝑡   𝑑𝑡            

   
1

𝑇
 𝑝𝑏 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 = 

1

𝑇
 (𝑃𝑏 3 + 𝑄𝑏3 −

𝑇

0

𝑄𝑏) 𝑠𝑖𝑛2𝑤𝑡 𝑤𝑎𝑙 3, 𝑡   𝑑𝑡  

           
1

𝑇
 𝑝𝑐 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 = 

1

𝑇
 (𝑃𝑐 3 + 𝑄𝑐3 −

𝑇

0

𝑄𝑐) 𝑠𝑖𝑛2𝑤𝑡 𝑤𝑎𝑙 3, 𝑡   𝑑𝑡                (6)         

The product of the 3rd order WF by the (𝑄𝑎3 −

𝑄𝑎 )𝑠𝑖𝑛2𝑤𝑡 , (𝑃𝑏 3 + 𝑄𝑏3 − 𝑄𝑏)𝑠𝑖𝑛2𝑤𝑡 and (𝑃𝑐 3 +

𝑄𝑐3 − 𝑄𝑐)𝑠𝑖𝑛2𝑤𝑡 result in the full wave rectification 

of the terms. 

1

𝑇
 𝑝𝑎  𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 = 

1

𝑇
 (𝑄𝑎3 

𝑇

0
− 𝑄𝑎 )𝑠𝑖𝑛2𝑤𝑡 𝑑𝑡 

 
1

𝑇
 𝑝𝑏 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 = 

1

𝑇
 (𝑃𝑏 3 + 𝑄𝑏3 −

𝑇

0

                                   𝑄𝑏) 𝑠𝑖𝑛2𝑤𝑡 𝑑𝑡 

1

𝑇
 𝑝𝑐 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 = 

1

𝑇
 (𝑃𝑐 3 + 𝑄𝑐3 −

𝑇

0

                                   𝑄𝑐) 𝑠𝑖𝑛2𝑤𝑡 𝑑𝑡             (7) 

Solving for 𝑄𝑎 , 𝑄𝑏  and 𝑄𝑐  respectively, 

  𝑄𝑎  =   −
𝜋

2𝑇
 𝑝𝑎 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
  + 𝑄𝑎3     

  𝑄𝑏 =  −
𝜋

2𝑇
 𝑝𝑏 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 + 𝑝𝑏 3 + 𝑄𝑏3   

  𝑄𝑐 =  −
𝜋

2𝑇
 𝑝𝑐 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 + 𝑝𝑐 3 + 𝑄𝑐3       (8) 

𝑄𝑎3 , 𝑄𝑏3  and 𝑄𝑐3 are the reactive power components 

of the distortion power in the phases. It shows the 

influence of the third order current harmonics 𝑖𝑎3 , 

𝑖𝑏3 and 𝑖𝑐3  on the reactive power measurement 

algorithm. The final terms of equations (5) are the 

distortion power terms i.e. 𝑄𝑎3 sin 4𝑤𝑡  , (𝑄𝑏3 +

𝑃𝑏 3)sin 4𝑤𝑡  and (𝑄𝑐3 + 𝑃𝑐 3)sin 4𝑤𝑡 . They are 

oscillating with the frequency of 4𝑤 which is similar 

to the oscillating frequency of the 7
th

 order WF,  

𝑊𝑎𝑙(7, 𝑡) as can be seen in the figure 2. 
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(a)  

(b)  

Figure 2: (a) 7
th

 order Walsh function (b) Sin 4𝑤𝑡    

waveform 

 

To estimate these distortions power terms we multiply 

the both sides of equation (5) by the 7
th

 order WF and 

then integrate over the period T and simplify to obtain 

equation (9). 

1

𝑇
 𝑝𝑎  𝑊𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
=    

                      −
1

𝑇
 𝑄𝑎3 

𝑇

0
𝑠𝑖𝑛4𝑤𝑡 𝑊𝑎𝑙 7, 𝑡   𝑑𝑡       

1

𝑇
 𝑝𝑏  𝑊𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
= 

            
1

𝑇
 (𝑄𝑏3 +

𝑇

0
𝑃𝑏 3)𝑠𝑖𝑛4𝑤𝑡 𝑊𝑎𝑙 7, 𝑡   𝑑𝑡 

1

𝑇
 𝑝𝑐  𝑊𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
=            

      
1

𝑇
 (𝑄𝑐3

𝑇

0
+ 𝑃𝑐 3)𝑠𝑖𝑛4𝑤𝑡 𝑊𝑎𝑙 7, 𝑡   𝑑𝑡            (9) 

The 7
th

 order WF shown in the figure 2 is the odd 

function with the frequency similar to the frequency of 

the distortion terms. The product of the 7
th

 order WF 

with the distortion terms results in their rectification. 

So taking cognizance of these rectifying effects, 

equations (9) is written as in equation (10).  

 
1

𝑇
 𝑝𝑎  𝑤𝑎𝑙 7, 𝑡  𝑑𝑡 

𝑇

0
=  −

1

𝑇
 𝑄𝑎3 

𝑇

0
𝑠𝑖𝑛4𝑤𝑡 𝑑𝑡  

1

𝑇
 𝑝𝑏  𝑊𝑎𝑙 7, 𝑡  𝑑𝑡 

𝑇

0
= 

1

𝑇
 (𝑄𝑏3 +

𝑇

0
𝑃𝑏 3)𝑠𝑖𝑛4𝑤𝑡 𝑑𝑡 

1

𝑇
 𝑝𝑐  𝑊𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
= 

1

𝑇
 (𝑄𝑐3 +

𝑇

0
𝑃𝑐 3)𝑠𝑖𝑛4𝑤𝑡 𝑑𝑡  

              (10) 

Solving for 𝑄𝑎3 , 𝑄𝑏3 and 𝑄𝑐3  respectively, 

𝑄𝑎3 = −
𝜋

2𝑇
 𝑝𝑎  𝑤𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
   

𝑄𝑏3 =
𝜋

2𝑇
 𝑝𝑏  𝑤𝑎𝑙 7, 𝑡  𝑑𝑡 −

𝑇

0
𝑃𝑏 3. 

𝑄𝑐3 =
𝜋

2𝑇
 𝑝𝑐  𝑤𝑎𝑙 7, 𝑡  𝑑𝑡 −

𝑇

0
𝑃𝑐 3.          (11) 

Equation (11) is the Walsh function algorithm for 

measuring the distortion power in a three-phase load 

system. This distortion power occurs as a result of the 

effect of the reactive power resulting from the 

harmonic load condition.  

Substituting in the equation (8) 

𝑄𝑎 =   −
𝜋

2𝑇
[ 𝑝𝑎  𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
  + 

                                𝑝𝑎  𝑤𝑎𝑙 7, 𝑡  𝑑𝑡
𝑇

0
] 

𝑄𝑏 =  [ 𝑝𝑏  
 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
+   𝑝𝑏   𝑤𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
] 

𝑄𝑐 =  [ 𝑝𝑐  
 𝑤𝑎𝑙 3, 𝑡  𝑑𝑡

𝑇

0
 +  𝑝𝑐  𝑤𝑎𝑙 7, 𝑡  𝑑𝑡

𝑇

0
] 

          (12) 

This algorithm eliminates the effect of the 3
rd

 and 7
th
 

order harmonics on the reactive power measurement 

and also essentially reduced the effect of the higher 

order current harmonics. In other to overcome 

complex computation involved, the 3
rd

 and 7
th

 order 

Walsh function are added together which gives a new 

improved algorithm.  

𝑤𝑎𝑙 3; 7, 𝑡 = 
1

2
(𝑤𝑎𝑙 3, 𝑡 +  𝑤𝑎𝑙 7, 𝑡 ) 

(a)  

(b)  

(c)  

Figure 3: (a) 𝑊𝑎𝑙(3, 𝑡),  (b) 𝑊𝑎𝑙(7, 𝑡)  

 (c) 𝑊𝑎𝑙(3; 7, 𝑡) 

From Figure 3 it can be noticed that the proposed new 

Walsh function analytical graph as a result of the 

addition of standard 3
rd

 and the 7
th

 order WF is defined 

as 𝑤𝑎𝑙 3; 7, 𝑡 = 

       +1, if t is in the interval [0; T/8], [T/2; 5T/8] 

        0, if t is in the interval [T/8; 3T/8], [5T/8; 7T/8] 

      -1, if t is in the interval [3T/8; T/2], [7T/8; T] 

The new proposed Walsh function is derived by 

multiplying equations (5), with 𝑤𝑎𝑙 3; 7, 𝑡  and taking 

the integral over the period T. When done, the 

integrals after the equal sign, the first is a constant so 

is equal to zero because 𝑝𝑎 , 𝑝𝑏 and 𝑝𝑐 are constants 

and the proposed Walsh function is a periodic 

function, 2
nd

 and 4
th

 integrals also equal to zero as they 

include cosine functions that are orthogonal with the 
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proposed Walsh Function WF. The 3
rd

 and 5
th

 integrals 

comprise the rectification of the sin functions 

waveform, so these integrals are not equal to zero. 

They are written as in equations (13); 
1

𝑇
  𝑝𝑎𝑤𝑎𝑙 3; 7, 𝑡  𝑑𝑡

𝑇

0
 =  

1

𝑇
  𝑤𝑎𝑙 3; 7, 𝑡  (𝑄𝑎3 –𝑄𝑎) 

𝑇

0
sin 2𝑤𝑡 𝑑𝑡 −

1

𝑇
 𝑤𝑎𝑙(3; 7, 𝑡)𝑄𝑎3 

𝑇

0
𝑠𝑖𝑛4𝑤𝑡 𝑑𝑡. 

1

𝑇
  𝑝𝑏3𝑤𝑎𝑙 3; 7, 𝑡  𝑑𝑡

𝑇

0
=

1

𝑇
  𝑤𝑎𝑙 3; 7, 𝑡  

𝑇

0
(𝑃𝑏 3 + 𝑄𝑏3 − 𝑄𝑏)𝑠𝑖𝑛2𝑤𝑡 𝑑𝑡 +

 
1

𝑇
  𝑤𝑎𝑙 3; 7, 𝑡  

𝑇

0
(𝑄𝑏3 + 𝑃𝑏 3)sin 4𝑤𝑡 𝑑𝑡  

1

𝑇
  𝑝𝑐3𝑤𝑎𝑙 3; 7, 𝑡  𝑑𝑡

𝑇

0
=

1

𝑇
  𝑤𝑎𝑙 3; 7, 𝑡  

𝑇

0
(𝑃𝑐 3 + 𝑄𝑐3 − 𝑄𝑐)𝑠𝑖𝑛2𝑤𝑡 𝑑𝑡 +

 
1

𝑇
  𝑤𝑎𝑙 3; 7, 𝑡  

𝑇

0
(𝑄𝑐3 + 𝑃𝑐 3)sin 4𝑤𝑡  𝑑𝑡          (13) 

 Solving equations (13) and factorizing we obtain the 

new algorithm for measuring reactive power in 

sinusoidal and noise (harmonics) conditions as follow:   

 𝑄𝑎,3,7 =   −
𝜋

𝑇
 𝑝𝑎  𝑤𝑎𝑙 3; 7, 𝑡  𝑑𝑡

𝑇

0
 

𝑄𝑏,3,7 =   −
𝜋

𝑇
 𝑝𝑏  𝑤𝑎𝑙 3; 7, 𝑡  𝑑𝑡

𝑇

0
+  (𝑝𝑏 3 + 𝑄𝑏3 ) 

𝑄𝑐3,7 = −
𝜋

𝑇
 𝑝𝑐  𝑤𝑎𝑙 3; 7, 𝑡  𝑑𝑡

𝑇

0
+  (𝑝𝑐 3 + 𝑄𝑐3 ) 

              (14)     

Equations (14) above is the improved Walsh function 

algorithm that will measure the reactive power 

component in both sinusoidal and non-sinusoidal load 

system thereby eliminating  the effect of  harmonics in 

the three phase power measurement system. Suffice it 

to say that in actual cases only lower order harmonics 

are present in power system signal [22]. 
 

4. Modeling of the Proposed Algorithm 

for Power Measurement 

 

Equations (11) and (14) are the proposed Walsh 

functions algorithm for measuring the reactive and 

distortion powers in a three-phase network. It is used 

to configure the model of the instrument for the 

measurement using the Matlab Simulink software tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flowchart for the implementation of the 

proposed Walsh function algorithm for reactive and 

distortion power measurement. 

 

Figure 5: The model of the subsystems of the proposed 

measurement algorithm 

4.1 Simulation of the Non-Harmonic load 

condition 

For the purpose of this simulation the line to neutral 

voltages (V phases) were synthetically chosen as 

follows; 

𝑉𝑎 = 50∟0°, 𝑉𝑏 = 50∟ − 120° and 𝑉𝑐 = 50∟120°.  

Two case studies 1 and 2 were considered as shown 

for linear sinusoidal unbalanced load system; 
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𝐶𝑎𝑠𝑒 1:  𝑍𝑎 = 36 + 𝑗20Ω;    𝑍𝑏 = 55 + 𝑗15Ω;  

  𝑍𝑐 = 15 + 𝑗11Ω 

 𝐶𝑎𝑠𝑒 2:  𝑍𝑎 = 25 + 𝑗20Ω;    𝑍𝑏 = 17 + 𝑗60Ω; 

  𝑍𝑐 = 18 + 𝑗38Ω 

 

 
Figure 6: Three phase sinusoidal voltage waveform 

 

 
Figure 7: Three phase sinusoidal unbalance current 

waveform  

Table 1: The result of case A 

 

 

 

 

 

 

Table 2: The results of case B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FFT analysis tool in Matlab Simulink tool 

analyzes and display the measured signal one phase at 

a time. Figure 8 shows the linear sinusoidal load 

waveform and the harmonic spectrum of one of the 

phases of the system under test and the same is 

applicable to the other two phases. Since it is a linear 

sinusoidal load system with no harmonic effect, the 

fundamental frequency becomes the only frequency, 

with no harmonic distortion as can be seen. 

 

 
Figure 8: Linear sinusoidal load waveform and 

harmonic spectrum 

From the simulation results shown in tables 1 and 2 

it can be observed that the proposed algorithm 

practical validity is ascertained under linear sinusoidal 

unbalance load system. It accurately measures both the 

reactive and distortion powers of the system under test 

based on the linear sinusoidal unbalance load current 

conditions. The true values were determined using the 

IEEE standard 1459-2000 which is formulated using 

the fast Fourier transform approach for reactive and 

distortion powers measurement in AC circuits [23], 
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Distortion  
Power D 
(var) 

FFT Approach 
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Phase b 
Phase c 
Total 

 
569.5 
223.3 
1538.9 
2331.7 

 
285 
111.7 
770 
1166.7 

Proposed Method 
Phase a 
Phase b 
Phase c 
Total 

 
569.6 
223.8 
1539 
2332.4 

 
284.8 
112.0 
769.5 
1165.2 
 

 Reactive 
Power Q 

(var) 

Distortion 
Power D 
(var) 

FFT Approach 
Phase a 
Phase b 
Phase c 
Total 

 
  944.2 
  762.8 
1039.8 
2746.8 

 
472 
381.9 
520 
1373.9 

Proposed Method 
Phase a 
Phase b 
Phase c 
Total 

 
  944.5 
  763.5 
1040.2 
2731.4 

 
472.2 
381.7 
520.1 
1374.0 
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while simulation of the model give the propose results 

for phase a, b and c respectively.  A close looks at the 

results shows that the error or differences is negligible 

the result also shows the performance of the proposed 

algorithm over a wide variation of the unbalanced load 

conditions to be satisfactory. 

 

4.2 Simulation of Harmonic Load   Condition 

 

Assuming that the fundamental voltage component is 

50V sinusoidal and fundamental current component of 

25A contaminated with a third order current harmonic 

of 10A that has time varying amplitude. The voltage 

component leads the current component by 40
o
 and the 

sampling frequency is 32 samples per 50Hz of 

fundamental frequency. The simulation is 

implemented for FFT with window of 10 cycles and 

the proposed Walsh function. The true values of the 

power component are computed using time domain 

formula. The FFT graphical user interface analyzes 

signal one phase at a time so the figure shown is for 

one of the phases and all other ones which are the 

same has been withheld for convenience, clarity and 

space.  

 

 

     Figure 9: Nonlinear nonsinusoidal load waveform 

and harmonic spectrum. 

 

 

 

 

 

 Table 3: Nonlinear simulation result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

The results recorded from the simulations of the model 

using the  IEEE standard 1459-2000 which is based on 

fast Fourier transform algorithm FFT have high 

accuracy rate when the load is linear sinusoidal with 

no harmonic effects,  but shows significant error  in an 

unstable nonsinusoidal harmonic load condition. On 

the other hand the proposed alternative algorithm 

using the Walsh function approach gives accurate 

measurement result both for the linear sinusoidal 

harmonic free scenario and the nonlinear 

nonsinusoidal load condition. This shows that the 

proposed algorithm has the potential to effectively 

measure reactive and distortion power components 

under different load conditions. The algorithm can be 

integrated into the circuitry of energy meter to 

improve on the efficiency and reliability of 

measurement reading.   
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