A New Adaptive Technique in Development of IT Based Island Scheme For The Power System Utility Needs.

M. Balasubramanyam

Divisional Engineer
Power System Protection, APTRANSCO Vidyut souda, Hyderabad-INDIA
R.V.S.Satyanarayana

Professor
Dept of Electronics and Communication Eng. SV University College of Engineering

Tirupathi, Andhra Pradesh-INDIA

Abstract

:

This paper provides a new strategy in design and development of simple power system controlled separation scheme, aimed at maintaining of supply to certain important sector of loads and making fast restoration of the grid in the events of cascade outages leading to blackouts. This is found to be the need of an hour, particularly with respect to the emerging structural changes in power system and in the operation paradigms of utility grid. Special emphasis is given for modeling of the state grid with the base case, from which the reduced system is derived by making unique approach of load groping based on island participation index, for making the island scheme to extend supply to metros, in case of severe disturbances leading to blackout. The motivation behind is, that the recent blackout of new grid, occurred on $30^{\text {th }} \& 31^{\text {st }}$ July 2012, in India, wherein the complete nations capital activity got paralyzed.

Keywords : Islanding, Island participation index, blackout, metros, slow cohesive generators, SCADA.

INTRODUCTION:

The power system network in this new scenario of deregulation and restructuring, is experiencing higher degree of stress, whatever so be the reasons like rapid load growth, penetration of large generators, without associated transmission system in place, maximum utilization of transmission system oscillating around maximum permissible limits etc. The ability of power system to be stable depends on the operation states. The various probable states that may occur during any disturbance are normal, alert, emergency, extreme emergency and restorative. In the extreme emergency the effective control strategy is to resort for control system islanding. The blackouts and disturbances which were experienced in US and Italy in 2003 and in central Europe in 2006 have demonstrated the vulnerability of new grids. In this trade the ultimate challenge for the system operators and transmission system planners is to ensure the system reliability and security by aiming to prevent the total system blackout by implementing proper control action to limit the extent of disturbance. The bases of formation of island is to reduce in to a small grid, making loadgeneration balance, thereby facilitating the easy restoration process in making final integration of the whole system

In this article the various aspects are described under different sections. In section II, the research aspects in island formation discussed. In section III, the analytical basis to form island by making use of new proposed approach in modeling of the system is presented. In section IV, the study results along with the simulation results are provided. section V , presents the conclusion and Section VI, includes References.

SECTION II - Research Aspects in Vogue

2.1: Preamble

In the power system major blackouts were initiated by local disturbances that cascaded across the transmission network. Based on various studies and inferences, it is to understand that the power system contingencies comprises three stages, depending on the duration of fault persistence. Initial stage wherein the temporary system fault occur and cleared rapidly in mille seconds. Intermediate stage, where in the system separates in seconds and final stage where the load and generation imbalance in minutes causes a blackout. In power systems which are now operated critically resulting in growing risk for a local failure, to cascade into catastrophic blackout. At this inception of disturbance, relays located on faulty transmission lines, operate to clear the fault. Because of these outages, depending on the severity, it induces variations in electrical power outputs, with the generator mechanical inputs remaining almost constant. The resultant effect of this power imbalance is formation of groups of coherent generators operating at different speeds swinging one against the other, which leads to the loss of synchronism and the splitting of the network.

2.2 Various adopted Methodologies

However the islands so formed unintentional, may not have a balance of generation and load, which makes the failure to propagate further until a complete collapse of the system occurs. In order to prevent this, intentional controlled island schemes came in to the existence, based on many research contributions. The studies depicts that in the intentional islands, the power system is designed to deal with the situation and can survive, as this scenario has been planned. In unintentional island mode, there was no design and islanding occurs in unplanned fashion and hence the survival is doubtful. Controlled islands would occur, when the
whole power system is divided into several islands, wherein the load generation should be in balance. The problem and the aim of research in this field is, where to form? When to form ? and how to form? The various approaches for island formations are

1. Controlled islanding approach based on the graph spectral method [1]
2. Slow coherency grouping of generators and determination of minimal cut sets [2], [3] by using DYNRED (Dynamic Reduction Program Software)
3. Graph theoretical approach called OBDD i.e., ordinary binary decision diagram [4], [5]

SECTION-III proposed new approach and modeling

3.1 Why is it needed?

With the increased size of the grid, the various approaches earlier presented based on main principle of grouping of various generators on slow coherency and determining the minimal cut sets taking into account the least generation load imbalance, doesn't ensure the choice of specific essential loads grouping. This is required to be addressed on top priority for ensuring supply atleast to metro's in the event of black out. Earlier the power plant capacities were of lower capacity and are distributed apart. Now with the increased available size of the unit, to the extent of around 800MW per each unit, the power plant capacity is increased. A light is thrown on the search of new methodology, were in the large power plant as source, the major computational burden involving grouping of generators with slow coherency could be avoided. In this paper, the issue is addressed in new dimension by grouping all the required essential loads like metro's, maintaining the generation load balance.

3.2 Modeling

AP power system is modeled with the 89 generators and 575 load buses. The transmission system is also modeled consisting of $400 \mathrm{kv}, 220 \mathrm{kv}$ and 130 kv EHT lines making 1215 branches in the study. The basic power flow study is conducted for the maximum demand condition of 11946 MW. CYME international software is used for carrying over the power flow studies. The next steps involves the identification of specified loads and designing of the island with single large power plant. Here RTPS (Ramagundam thermal power
station) is considered as the large single source with installed capacity of 2600 MW . The power flows are obtained for all the loads grouped based on the I_{px}, which determines the inclusion of the loads in the proposed island schemes. The cut sets obtained for fixing the island boundaries are made use in bifurcation of the whole system. The resulting island consists of RTPS, metro's and other essential loads observing the generation load balance. The methodology adopted for island detection is, by providing of under frequency relays [6] on the determined cut set edges.

SECTION-IV Simulation Results

4.1 Scenario (1)

The table (1) and the power flow diagram(1) shows power flows of whole system intact. The total generation found required is 11946MW for meeting the demand of 11527 MW . In this the RTPS was injecting 2074MW.With the automatic islanding initiation by the under frequency relays, the predetermined inter connecting lines are disconnected in facilitating for the formation of the required islanding.

Figure 1. Power Flow Diagram of an Integrated System

Table 1. Modeled Integrated System Power Flow Results.

		---VOLTAGE---		----LOAD-	
NAME	ZN K	KVOLT	DEGREE	MW	MVAR
403RST	214	404.012	21.2	0.00	0.00
->	225 RST	21 1M	1 M FX	205.12	-7.79
->	225RST	21 2M	2M FX	205.12	-7.79
->	299RST	21 1M	1M FX	198.37	105.25
->	402 GHP	15 3M	3M	274.79	-42.86
	402 GHP	15 4M	4M	274.79	-42.86
	404 TPL	231		209.18	-86.88
->	404 TPL	232		209.18	-86.88
	413 DICH	H 181		255.92	-17.88

259MLI	152	214.671	-10.5	0.00	0.00
-> 2	272MLK	151		-110.62	1.45
	272MLK	152		-110.62	1.45
->10	089MLI	15 1M	M FX	51.98	-0.68
->10	089MLI	15 2M	M FX	84.62	-1.11
->10	089MLI	15 3M	3M FX	84.62	-1.11
245 GBL	152	212.095	-12.7	0.00	0.00
-> 2	226 SHN	15 1M	M	-122.87	-10.77
-> 2	226 SHN	15 2M		0.00	0.00
-> 2	226 SHN	15 3M		-83.99	-8.54
-> 2	226SHN	154 M		0.00	0.00
-> 2	237 ymL	17 1M		69.74	19.68
-> 2	294 TND	151		125.74	43.02
-> 3	311 SVR	151		-78.37	-25.81
-> 3	311 SVR	152		-125.87	-37.07
->11	189 GBL	15 1M	M FX	46.59	4.21
->11	189 GBL	15 2M	2M FX	46.59	4.21
->11	189GBL	15 3M	3M FX	46.59	4.21
->11	189GBL	154 M	4M FX	75.85	6.86
272MLK	152	215.035	-10.0	0.00	0.00
-> 2	210 GHP	15 1M		-88.65	-8.80
-> 2	210 GHP	15 2M	2M	-88.65	-8.80
-> 2	226 SHN	15 1M		169.60	17.90
-> 2	226 SHN	15 2M		169.60	17.90
-> 2	259MLI	15 1M		110.82	-1.70
-> 2	259MLI	15 2M		110.82	-1.70
-> 2	283NRK	231		-85.49	-25.15
-> 2	283NRK	232		-85.49	-25.15
-> 2	284 BHN	231		-56.65	-7.22
-> 2	284 BHN	232		-56.65	-7.22
-> 2	288 MDC	151		121.37	50.53
-> 2	288MDC	152		121.37	50.53
-> 4	491MLK	151	FX	-201.38	-40.45
-> 4	491MLK	152	FX	-201.38	-40.45
->14	474 MLK	15 1M	M FX	60.77	29.7
291HYD	152	216.451	-10.5	0.00	0.00
-> 2	205 CHG	15 1M		0.00	0.00
-> 30	309HIAL	L 151 m		124.77	49.75
-> 30	309 HIAL	L 15 2M		109.89	44.04
-> 3	311 SVR	151		185.33	59.07
-> 36	363SHAM	M 141		189.12	57.27
-> 36	364 SHAD	D 161		168.56	47.87
-> 4	411HYD	151	FX	-259.22	-86.00
-> 4	411HYD	152	FX	-259.22	-86.00
	411HYD	153	3 FX	-259.22	-86.00
311 SVR	152	214.183	-11.6	0.00	0.00
-> 2	245 GBL	15 1M		78.69	23.83
-> 2	245 GBL	15 2M		126.45	35.11
-> 2	291HYD	15 1M		-184.52	-56.57
-> 30	309 HIAL	L 151		-214.62	-57.42
->11	147 SVRP	P 151 m	M FX	64.67	18.35
->11	147 SVRP	P 15 2M	M FX	64.67	18.35
->11	147 SVRP	P 15 3M	M FX	64.67	18.35
241DIC1	182	212.019	-5.8	0.00	0.00
-> 2	240DIC	18 1M		127.10	23.99
-> 2	240DIC	18 2M		127.10	23.99
	413DICH	H 181	FX	-127.10	-23.99
->	413 DICH	H 182	FX	-127.10	-23.99
25RST	21216	6.486	-3.4	0.00	0.00

From the study, the elements of cut sets, which determines the formation of the proposed island are shown in the table no (2)

Table 2. Elements of Cut set

Sl. No	Form bus	To bus
1	403	435
2	403	404
3	408	411
4	409	411
5	291	368
6	291	363
7	245	237
8	245	294
9	226	217
10	272	284
11	272	283

4.2 Scenario (2)

The table (3) and the power flow diagram(2) shows power flows of the proposed new island. The total generation found required is 1976MW form RTPS power plant alone to meet the demand of 1934MW including 38 number of buses and 91 number of branches feeding the essential loads of metro's.

Figure 2. Power Flow Diagram of Designed Island to Feed Metros

Table 3. Modeled Island System Power Flow Results

-> 205CHG	15	1 M	33.33	29.44
-> 291HYD	15	1	-125.41	-30.81
-> 291HYD	15	2	-110.49	-27.42
-> 311SVR	15	1	194.33	24.79

311 SVR	15	201.642	-17.6	0.00	0.00

-> 272MLK $151 \quad-110.00-15.99$
-> 272MLK $152 \quad-110.00-15.99$
->1089MLI 15 1M FX $51.69 \quad 7.51$
->1089MLI 15 2M FX $84.15 \quad 12.23$
->1089MLI 15 3M FX $84.15 \quad 12.23$
1089MLI $15120.643-20.0 \quad 220.00 \quad 110.00$
-> 259MLI 151 FX $-51.69 \quad-4.26$
-> 259MLI 152 FX -84.15 -6.93
-> 259MLI 153 FX $-84.15 \quad-6.93$
1189GBL $15 \quad 119.746-22.7 \quad 275.00 \quad 130.00$
-> 245GBL 151 FX $-59.42 \quad 7.47$
-> 245GBL 152 FX $-59.42 \quad 7.47$
-> 245GBL 153 FX $-59.42 \quad 7.47$
-> 245GBL $\quad 154$ FX $-96.73 \quad 12.17$
226SHN 15 200.364-18.0 $0.00 \quad 0.00$
$\begin{array}{lllll}-> & 245 G B L & 15 & 66.93 & -21.05\end{array}$
$\begin{array}{llll}-> & 245 G B L & 15 & 0.00 \\ 0.00\end{array}$
-> 245GBL $153 \quad 45.84$-14.79
$\rightarrow 245 \mathrm{GBL} \quad 154 \quad 0.00 \quad 0.00$
-> 272MLK $151 \quad-181.38 \quad-3.70$
-> 272MLK $152 \quad-181.38 \quad-3.70$
->1138SHN 15 1M FX $94.46 \quad 16.34$
->1138SHN 15 2M FX $94.46 \quad 16.34$
->1138SHN 15 3M FX $61.08 \quad 10.56$
291HYD 15 203.211-16.4 $0.00 \quad 0.00$
-> 205CHG 15 1M $42.27 \quad 27.56$
-> 309HIAL 15 1M $125.49 \quad 30.92$
$\begin{array}{lllll}-> & 309 H I A L & 15 & 2 M & 110.56 \\ 27.45\end{array}$
$\begin{array}{lllll}-> & 311 S V R & 15 & 170.25 & 29.23\end{array}$
-> 411HYD 151 FX -149.53 -38.39
-> 411HYD 152 FX $-149.53-38.39$
-> 411HYD 153 FX $-149.53-38.39$
316GJWL $17208.083-9.0 \quad 0.00 \quad 0.00$
-> 288MDC 15 1M $152.88 \quad 23.83$
-> 420GAJWL 17 FX $\quad-76.44 \quad-11.91$
-> 420GAJWL 172 FX -76.44 -11.91

The validity of the adopted process in formation of island is compared with the real time SCADA data by modeling the same. The figure (3) shows the real time simulation snapshot of the proposed, utility modeled and implemented island scheme.

Figure 3. Simulated Islanding Scheme

SECTION-V

Conclusion:

The methodology proposed for providing an island of the required capacity to feed the metro's and other essential loads, which is the concern of the state grid is addressed by suitably modeling. The survival of this island, will help in extending the restorative support in integration of the whole state power system during the black out, as the extension of the startup power for generating plants during the restoration is a very critical and time consuming. This is the first largest island modeled and implemented in the entire southern region of the country. The simulation results demonstrates the validation of the model by comparing with the real time SCADA model for its performance operation.

SECTION-VI

References:

[1] Li, H., Rosenwald, G., Jung, J., and Liu, C. (2005). Strategic power infrastructure defense. Proceedings of the IEEE, 93(5), 918-933.
[2] Haibo You, Student Member, IEEE, Vijay Vittal, Fellow, IEEE, and Zhong Yang. Self-

Healing in Power Systems: An Approach Using Islanding and Rate of Frequency Decline-Based Load Shedding.
[3] Haibo You, Student Member, IEEE, Vijay Vittal, Fellow, IEEE, and Xiaoming Wang, Student Member, IEEE. Slow CoherencyBased Islanding.
[4] Q. Zhao, K. Sun, D. Z. Zheng, J. Ma and Q. Liu, "A study of System Splitting Strategies for Island Operation of Power System: A Two Phase Method Based on OBDD," IEEE Transactions on Power System, Vol. 18, No. 4, pp. 1556-1565, Nov. 2003.
[5] K. Sun, D. Z. and Q. Liy, "Splitting Strategies for Islanding Operation of Large-Scale Power System Using OBDD-Based Methods," IEEE Transactions on Power Systems, Vol. 18, No. 2, pp. 912-923, May 2003.
[6] P. M. Anderson and M. Mirheydar, "An Adaptive Method for Setting Underfrequency Load Shedding Relays" IEEE Transaction on Power Systems, Vol. 7, No. 2, May 1992, pp. 720-729.

