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Abstract - Mental health conditions are often accompanied by physiological stress responses that are expressed through 
involuntary facial dynamics. Automated analysis of such facial motion patterns offers a promising, non-invasive pathway for 
continu-ous mental health assessment. In this work, we propose a latent variable model-ing framework for mental health–oriented 
prediction that uses pain-induced facial expressions as a monotonic proxy for stress-related affective states. The frame-work 
explicitly models facial motion using dense optical flow and spatiotemporal motion features, enabling the capture of fine-grained 
temporal variations that are difficult to infer from static appearance alone. To effectively learn long-range tem-poral dependencies 
in facial motion sequences, we introduce a Transformer-based temporal encoder driven by self-attention mechanisms. Given short 
facial video sequences, optical flow magnitude maps are extracted between consecutive frames and structured as temporal motion 
representations, which are then processed by the Transformer to emphasize psychologically salient motion patterns. The pro-
posed model is evaluated on the BioVid heat pain dataset and compared against a motion-based baseline and multiple deep 
spatiotemporal learning architectures. Experimental results demonstrate that self-attention based temporal modeling of facial 
motion leads to consistent performance improvements, underscoring the relevance of explicit motion dynamics for mental health–
related inference. This study highlights the potential of motion-aware, attention-driven frameworks for pain-induced mental 
health assessment.

Keywords: Digital health-informatics, Monotonic Latent Mapping, Multi-algorithm, Transformer, Optical flow

1. Introduction

Mental health disorders is one of the major global health issue which greatly increase disability, worse quality of life, and 
socioeconomic burden globally [1]. Due to their subjective character, societal stigma, and reliance on self-reported as-

sessments, conditions like depression, anxiety, and stress-related illnesses are fre-quently underdiagnosed. Due to these 
constraints, interest in digital informatics systems that employ objective behavioral and physiological cues for early men-tal 
health monitoring and prediction has grown [2]. Due to similar neurobiolog-ical and affective processes, there is a strong 
relation between pain perception and mental health. Emotions like anxiety, depression, and stress-related disor-ders are linked 
to chronic pain responses [3] [4]. According to neuroimaging and psychophysiological research [5], brain areas like the 
anterior cingulate cor-tex, insula, and prefrontal cortex are involved simultaneously in pain processing and emotion 
recognition, which forms a core component for diagnosis of mental health state. Thus, facial dynamics and other pain-induced 
behavioral expressions present a feasible pathway for indirect mental health inference. Recent advance-ment in computer 
vision and affective computing have enabled automatic analysis of facial expressions for emotion, stress, and mental state 
recognition [6]. Among these approaches, optical flow based temporal modeling has gained attention due to its ability to 
capture precise motion patterns that static image features often fail to represent [7] [8]. Temporal facial feature, such as muscle 
activation speed, asymmetry, and persistence, are particularly relevant for identifying affective re-sponses linked to pain and 
emotional distress.

The BioVid Heat Pain Dataset provides a controlled experimental framework for studying physiological and behavioral 
responses [9] that triggers due to pain stimuli. The dataset includes synchronized facial video recordings and five dis-crete pain 
intensity levels, ranging from baseline (BL1) to high pain. While BioVid does not contain explicit mental health labels, prior 
research has estab-lished that graded pain responses correlate strongly with stress, anxiety, and emo-tional regulation 
mechanisms [10]. This makes BioVid particularly suitable for modeling mental health–relevant affective states through pain 
intensity progres-sion. Existing studies using BioVid have primarily focused on pain intensity recognition through handcrafted 
features, deep learning–based physiological anal-ysis, or multimodal fusion [11]. However, limited attention has been given to 
the temporal evolution of facial motion as a standalone indicator for mental health pre-diction. Furthermore, most pain 
recognition systems treat each frame neglecting long-range temporal dependencies that are crucial for modeling emotional 
escalation, sustained distress which are the key indicators of mental health vulnerability.
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To address these gaps, this work proposes a digital informatics system for mental health prediction that exploits 
temporal information encoded in optical flow derived from facial videos. By modeling motion trajectories across five pain 
levels, the system captures dynamic facial responses that reflect stress intensity, emotional regulation capacity, and affective 
transitions. Rather than aiming for clinical diagnosis, the proposed framework focuses on mental health–relevant state 
prediction inferred from pain-induced facial expression. Thus, this study contributes in the formulation of pain-level–driven 
facial motion analysis as a proxy for mental health prediction; the systematic exploitation of optical flow–based temporal 
features to capture fine-grained affective dynamics; and the development of a digital informatics system suitable for real-

world mental health monitoring by bridging affective computing, pain analysis, and digital mental health informatics. The 
flow of the paper is as follows - section 2 discusses about the existing mod-els and related work, section 3 describes the 
datasets that we have used for our experiments, section 4 illustrates the methodology, section 5 provides an insights about 
how we have performed the experiment, section 6 discusses the results and findings that we have obtained, followed by the 
conclusion in section 7.

2. Related Work and Contribution

Recent advances in digital mental health informatics have increasingly em-phasized objective, data-driven 
approaches that uses behavioral, physiological, and visual signals to overcome the limitations of self-reported 
assessments. It has shown a clear transition toward multimodal and temporal modeling frameworks, particularly for 
stress, pain, and affective state recognition, which are closely linked to mental health outcomes.

2.1. Multimodal Stress and Mental Health State Recognition
Multimodal learning has become a dominant paradigm for mental health–related affect recognition. Recent study 

proposes a large-scale multimodal stress detec-tion dataset integrating facial expressions with physiological signals such as 
heart rate variability and electrodermal activity, demonstrating that multimodal fusion significantly outperforms unimodal 
approaches for stress detection and emotional state classification [12]. Systematic reviews published during this period 
further highlight the increasing clinical relevance of automated emotion recognition sys-tems. These reviews emphasize the 
role of facial dynamics and temporal infor-mation in identifying emotional states linked to anxiety, depression, and stress 
[13].

2.2. Pain Recognition and the BioVid Dataset
Pain recognition research has advanced significantly with the adoption of deep learning models. Several studies 

between 2021 and 2025 have used the BioVid Heat Pain Dataset to estimate pain intensity from facial videos and physiolog-
ical signals. A recent 2025 study systematically evaluated deep convolutional and transformer-based models for facial-only 
pain recognition on BioVid, establishing new performance benchmarks and confirming that facial motion pat-terns alone 
carry strong discriminative information across graded pain levels [14]. Multimodal approaches combining ECG, EDA, and 
facial expressions have also been explored, showing improved performance through temporal fusion strategies [15]. 
However, these studies primarily focus on pain estimation rather than mental health inference and often underexploit 
ingrainedtemporal facial motion cues.

2.3. Temporal Modeling and Optical Flow in Affective Computing
Temporal modeling has gained traction as a means to capture affective dynam-ics rather than static 

expressions. Optical flow-based representations have proven particularly effective in encoding subtle facial muscle 
movements and micro-expressions. Recent work proposed optical flow-based “driven hierarchical deep learning 
architectures for psychological state prediction, demonstrating that motion-based facial representations significantly 
improve the classification of mental and emo-tional states compared to static image features [16]. In parallel, 
researchers have explored visual encodings of temporal physiological signals such as converting time-series data into 
image representations to enhance stress and emotion classification further underscoring the value of temporal dynamics 
in affective comput-ing [17]. A comparative study on recent work on Biovid dataset is explored in Table 1.

However, the contribution of the existing work not only comply us to meet our research goal but to motivate us in 
proposing a novel temporal optical flow-based architecture for mental health prediction to address the conceptual and 
method-ological gap. This work addresses an identified gap by using temporal optical flow-based facial motion analysis to 
model graded pain responses from the BioVid dataset as proxies for mental health-relevant affective states within a 
digital infor-matics framework.
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3. Dataset

3.1. Biovid Heat Pain Dataset
In this study, we employ the BioVid Heat Pain Database [18], a widely recog-nized benchmark for automatic pain 

recognition research. The dataset was devel-oped jointly by the University of Ulm (Medical Psychology) and the 
University of Magdeburg (Neuro-Information Technology) with the objective of providing a controlled, multimodal 
resource for modeling and analyzing human pain re-sponses. It comprises recordings from approximately 90 
healthy adult participants (aged 20–65 years). Heat pain was induced using a thermode applied to the inner forearm. For 
each subject, four distinct pain intensity levels (PA1-PA4) were in-dividually calibrated between their pain threshold 
and tolerance, in addition to a baseline (BL1) no pain condition. Each condition was repeated 20 times, result-ing in 
highly controlled and balanced experimental data. Thus, each participant contributes 100 samples (5 conditions × 
20 trials), yielding approximately 8,700 video instances.

Although the BioVid Heat Pain Database was originally designed for auto-matic pain recognition, its 
multimodal structure makes it highly relevant for men-tal health research. There is a strong correlation between pain 
and mental health since stress, worry, and depression are known to change how pain is perceived and to cause different 
behavioral and physiological reactions. In stress and emotional computing research, the dataset offers synchronized 
recordings of electromyogra-phy (EMG), galvanic skin response (GSR), electrocardiogram (ECG), and facial expressions 
all of which are recognized biomarkers. A prominent correlation be-tween Biovid modalities and its relevance to mental 
health prediction is illustrated in Table 2.

Table 1: Existing work on Biovid Dataset

Study (Year) Dataset Facial Representa-
tion

Key Limitation

al.Kächele et

(2021)

BioVid CNN-based spatial

features

Motion dynamics un-

derexplored

Werner et al.

(2022)

BioVid Handcrafted + CNN

features

Limited long-range

temporal modeling

Thiam et al.

(2023) [15]

BioVid Deep visual embed-

dings

Focused on pain, not

mental health

al.Alshamsi et

(2024) [13]

Multiple datasets

(Review)

Facial expressions Identifies lack of tem-

poral facial modeling

Li et al. (2025)

[16]

healthMental

video dataset

Optical flow + deep

networks

Not validated on pain

datasets

al.Kächele et

(2025) [14]

BioVid CNN / Transformer

spatial features

Static bias in facial

modeling
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Modality
(BioVid)

Extracted Features Mental Health Relevance

Facial Video Micro-expressions, facial

action units (e.g., brow

furrow, lip press)

Negative affect recognition,

depression symptom detec-

tion, anxiety-related facial

tension

ECG Heart rate (HR), heart

rate variability (HRV:

LF/HF ratio, RMSSD,

pNN50)

Stress and anxiety biomark-

ers; dysregulation in depres-

sion

GSR (EDA) Skin conductance level

(SCL), phasic peaks, rise

time

Autonomic arousal indicator;

heightened responses linked

to stress and anxiety

EMG (Facial
Muscles)

Muscle activation inten-

sity, frequency bands

Muscle tension associated

with stress; reduced expres-

siveness linked to depression

Pain Inten-
sity Labels
(BL1,PA1–PA4)

Stimulus-based affective

states

Can be reinterpreted as proxy

levels for stress/negative af-

fect burden

4. Proposed Methodology

This study proposes a motion-aware spatiotemporal deep learning framework for mental health state prediction by 
utilizing pain-induced facial dynamics from the BioVid Heat Pain dataset. The central hypothesis is that temporal facial 
mo-tion patterns corresponding to different pain intensities are indicative of underly-ing mental stress and affective 
states, and can be effectively modeled using op-

Table 2: Mapping BioVid modalities to their relevance in mental health prediction.

Figure 1: Proposed Framework.
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tical flow–based representations combined with modern temporal learning archi-tectures. Figure 1 
represents the proposed framework for stress detection.

4.1. Problem Formulation
Let V = {I1, I2, . . . , I14} denote a facial image sequence of 14 consecutive frames extracted from a 

video segment corresponding to a specific pain stimu-lus. Each sequence is associated with a discrete 
pain level label

y ∈ {BL1,PA1,PA2,PA3,PA4},

where increasing pain levels are treated as indicators for escalating mental stress intensity. The 
objective is to learn a function f : V → y. More specifically, the input video sequences V are collection 
of several image frames In, mathematically can be written as V = {I1, I2, . . . , I14}. Before classification, 
V is transformed into a motion representation:

φ(V )  =  {M1,M2, . . . ,M13}
where Mt is the optical flow magnitude map between frames It and It+1 and Op-tical flow is computed 
using Farnebäck’s dense optical flow algorithm. Thus, f : V → y can be written as f (V ) = g(φ(V )), 
where g() is learned from data across different experiments.

4.2. Motion Representation Using Dense Optical Flow
To explicitly encode facial dynamics, dense optical flow is computed between consecutive frames using 
the Farnebäck algorithm. Given two adjacent grayscale

frames It and It+1 dense optical flow estimates a motion field: Ft =
(
ut(x,y), vt(x,y)

)
,

where ut and vt represent the horizontal and vertical displacement vectors at pixel

location (x,y). The optical flow magnitude is computed as:

Mt(x,y) =
√

ut(x,y)2 + vt(x,y)2 −−−−− [8]

For each 14-frame sequence, this yields 13 optical flow magnitude maps, cap-turing the intensity and 
distribution of facial muscle movements over time. This motion-centric representation is critical, as pain 
expressions are dominated by subtle non-rigid facial movements that are poorly captured by static 
appearance features alone.

4.3. Spatiotemporal Feature Construction
Depending on the experimental configuration, the optical flow information is represented in two 

forms: 1. The mean optical flow magnitude is computed for each frame pair, producing a compact 13-

dimensional temporal motion vector can be called as Statistical Motion Descriptor (Baseline). 2. Full 
Spatiotemporal Mo-tion Tensor where optical flow magnitude maps are stacked temporally to form a 5D 
tensor: X ∈ RN×13×H×W×1 preserving both spatial motion patterns and tem-poral evolution. This second 
representation forms the foundation of the proposed deep learning models.

4.4. Deep Learning Architectures
To systematically study the role of motion and temporal modeling, multiple architectures 

were implemented.The deep-learning architecture is represented in Figure 2.
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Figure 2: Deep Learning Architecture for Pain Estimation.

4.4.1. CNN-(Bi)LSTM with Attention (Motion-Based)
TimeDistributed CNN layers extract frame-wise spatial motion features from optical flow maps. These features are 

passed to a Bidirectional LSTM, enabling learning of temporal dependencies in both forward and backward directions. An 
attention mechanism assigns higher importance to frames exhibiting peak pain expressions, producing a weighted 
temporal representation for classification.

4.4.2. Transformer Temporal Encoder with Optical Flow (Proposed Model)
The core contribution of this work is a Transformer-based temporal encoder that replaces recurrent units with multi-

head self-attention. After spatial projec-tion, the optical flow sequence embeddings are processed by Transformer encoder 
blocks consisting of Multi-head self-attention, Feed-forward networks, Residual connections and layer normalization. This 
design allows the model to capture long-range temporal dependencies and global motion interactions, which are cru-cial 
for modeling gradual and non-linear pain progression patterns.

4.4.3. Ensemble Learning Framework
To enhance robustness, multiple independently trained CNN–(Bi)LSTM mod-els are combined using probability-level 

(soft-voting) fusion. Final predictions are obtained by averaging class probabilities across models, reducing variance 
and improving class-wise stability.

4.5. Mental Health Interpretation

In this study, pain intensity levels are treated as an observable quantized indi-cation of latent mental stress. Under 
controlled experimental conditions, increas-ing pain induces monotonic escalation in affective and cognitive stress 
responses, which are reflected in facial dynamics. All implemented models learn to discrim-inate pain classes based on 
facial dynamics, after which a monotonic mapping is applied to infer discrete stress levels. This formulation enables mental 
health oriented interpretation while avoiding direct clinical stress diagnosis. In this ap-proach, we introduced Latent 
Variable Modeling (LVM), a statistical approach that uses unobserved (latent) variables to explain patterns and correlations 
among a set of directly measured (observed) variables, helping quantify mental-health state from measurable pain 
indicators. In this approach, we define stress as a latent variable as it cannot be observed directly, while pain as an 
observable or-dinal variable. So mathematically, we can denote stress S ∈ R+ and pain level P ∈ {0,1,2,3,4}, where 0 = 
BL1 (no pain), 4 = PA4 (maximum pain). We assume:
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P = Q(S+N)+ ε (1)

where Q() is a quantization function, ε denotes measurement noise, and N cap-

tures input-level perturbations and measurement uncertainty.

Under controlled stimulus conditions (BioVid applies fixed thermal stimuli), N =
0 so, (1) can be reduced to:

P = Q(S)+ ε , (2)

This makes pain a quantized observation of latent stress and corresponds to the

baseline (no nociceptive stimulation) condition. To establish a principled rela-

tionship between pain intensity and stress level, we define a monotonic mapping

function ψ : P → Sd , where P denotes the discrete pain intensity and Sd represents

the corresponding discrete stress intensity. The mapping is formally expressed as

Sd = ψ(P) = αP+β , (3)

where α > 0 is a scaling factor controlling the sensitivity of stress variation with

respect to pain intensity, and β ≥ 0 represents a baseline stress offset. The mono-

tonicity constraint ensures that higher pain levels induce proportionally higher

stress responses, satisfying the condition

Pi > Pj ⇒ ψ(Pi)> ψ(Pj). (4)

This formulation is consistent with psychophysiological findings that pain percep-

tion and stress activation exhibit a positive correlated relationship, thereby provid-

ing a mathematically sound and interpretable basis for modeling stress as a latent

mental-health state inferred from pain intensity.

4.6. Functional Composition in the Experiments
The proposed experiments implement the following composed functional map-

ping:

φ
V −→ P̂Z −g−θ→ −ψ→ Ŝ, (5)

where V denotes the input facial video sequence, Z represents the encoded

motion features, P̂ is the predicted pain intensity, and Ŝ denotes the inferred stress

intensity.

4.6.1. Motion Encoding
The motion encoding function φ(·) extracts stress-induced facial dynamics

using optical flow:

φ(V ) = {OpticalFlow(It , It+1)}t
13
=1 , (6)
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where It and It+1 denote consecutive video frames. This representation cap-

tures subtle facial motor activity associated with stress responses.

4.6.2. Learned Pain Classifier
The encoded motion features are mapped to pain intensity through a learned

classifier:

P̂ = gθ
(
φ(V )

)
, (7)

where gθ denotes a parameterized deep learning model, such as a CNN–LSTM

or transformer architecture with optical flow. The model learns the functional

relationship

P ≈ f (facial stress dynamics), (8)

motivated by the fact that facial muscle tension and micro-movements serve

as reliable biomarkers of stress.

Figure 3: Functional Components for Stress Mapping.

4.6.3. Stress Inference Function
Finally, the predicted pain intensity is mapped to latent mental stress intensity

via a monotonic inference function:

Ŝ = ψ(P̂), (9)

which converts observable behavioral stress indicator into an estimate of in-

ternal mental stress intensity.

Thus, the overall mental stress prediction is formulated as a composition of

three functional modules, given by
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5. Experiment

Experiments are conducted on the BioVid Heat Pain dataset, which comprises facial video recordings collected under 
controlled thermal pain stimulation condi-tions. The dataset includes five discrete pain levels, namely a baseline condition 
(BL1) and four progressively increasing pain intensities (PA1–PA4). All exper-iments are performed on a machine 
equipped with an NVIDIA GPU NVIDIA GPU (8 GB Virtual RAM), an Intel Core i7 CPU, and ≥ 16 GB of system RAM. 
The models are implemented using Python with deep learning frameworks such as PyTorch and TensorFlow, and CUDA-

enabled GPU. The video segments contain-ing exactly 14 consecutive frames are retained for experiment to ensure 
tarining consistency and fair comparison across all models..

5.1. Preprocessing
To perform the experiment, each video sample is represented as a fixed-length sequence of 14 consecutive facial 

frames. Temporal ordering of frames is strictly maintained to ensure accurate motion estimation. Prior to feature 
extraction, all frames undergo standardized preprocessing. First, frames are converted to grayscale to reduce 
computational complexity while preserving essential motion indicators. Then, the frames are cropped and resized to a 
fixed spatial resolution of either 128×128 or 32×32, depending on the architectural requirements of the model.

5.2. Feature Extraction
Pain-related expressions are often indicated through micro and transient fa-cial movements. To capture these fine-

grained temporal variations, the proposed framework uses motion-based feature extraction strategy centered on dense opti-

cal flow analysis. After preprocessing the images, Dense optical flow is computed betweeen consecutive frames using the 
Farnebäck algorithm. For two successive frames It and It+1, the optical flow algorithm estimates a dense displacement 
field that encodes pixel-wise motion in both horizontal and vertical directions. For each 14-frame sequence, this results in 
13 optical flow maps, corresponding to motion between adjacent frame pairs.

From the estimated optical flow vectors, the horizontal and vertical compo-nents are transformed into motion 
magnitude maps, which quantify the intensity of movement at each pixel location. This transformation suppresses 
directional variability while emphasizing motion strength, making it more robust to subject-specific facial structure 
differences. Two complementary feature representations are derived from these motion magnitude maps:

Ŝ = ψ
(
gθ (φ(V ))

)

where φ() extracts stress-induced motion features, gθ () estimates pain inten-

sity, and ψ() maps pain intensity to the corresponding mental stress-level. Figure

3 illustrates the model encoding functions.

Statistical Motion Features: In the baseline configuration, the mean optical flow magnitude is 
computed for each frame pair, resulting in a compact 13 dimen-sional temporal motion vector per 
sample. This representation summarizes the overall evolution of facial motion intensity across time 
and serves as a lightweight handcrafted feature descriptor. The average pixel intensity between two 
consecu-tive frames is represented in Figure 4.

Figure 4: Average Pixel Intensity for BL1 between Frame 1 and Frame 2.
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Spatiotemporal Motion Features: For deep spatiotemporal models, the full motion magnitude maps are retained and 
stacked temporally, forming a high-dimensional 5-D tensor of shape (samples, 13, H, W, 1), where H and W denote the 
spatial resolution. This representation preserves both spatial motion patterns and temporal progression, enabling deep 
neural networks to learn discriminative facial motion characteristics automatically. Figure 5 represents the feature extrac-

tions strategy based on low, medium and high motion dynamics obtained from the average and maximum optical flow 
magnitude and its motion significance be-tween consecutive frames for a particular subject.

After this, all extracted features are standardized to zero mean and unit vari-ance to facilitate stable and efficient 
model training. Corresponding pain-level labels are encoded using label encoding followed by one-hot representation to 
support multi-class classification.

5.3. Model Training
For model training, the dataset is partitioned into training and testing subsets using 80-20 split. Model training 

is performed using the Adam optimizer with cat-egorical cross-entropy as the loss function. A small batch size 
ranging from 8 to 16 is employed to accommodate sequence-based temporal models. The performance

Figure 5: Spatio-Temporal Feature Extraction.

is evaluated using multiple standard classification metrics, including overall accu-racy, class-wise precision, recall, and 
F1-score. In addition, macro-averaged and weighted-averaged F1-scores were reported to account for class imbalance. 
Con-fusion matrix analysis is further employed to provide detailed view into class-level prediction behavior. We have 
evaluated a diverse set of models to assess the effec-tiveness of different spatial, temporal, and motion-based 
representations. These include: (i) a baseline statistical optical-flow model combined with a deep neural network 
(DNN); (ii) a CNN–BiLSTM with attention mechanism using raw facial appearance features without optical flow; (iii) a 
ResNet18–BiLSTM with atten-tion for appearance-based temporal modeling; (iv) CNN–(Bi)LSTM architectures 
incorporating optical flow features; (v) ensemble CNN–(Bi)LSTM models to im-prove robustness; and (vi) a 
Transformer-based temporal encoder utilizing optical flow features, which constitutes the proposed approach.
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6. Result and Discussion

This section presents a comparative analysis of all implemented approaches to evaluate the effectiveness of different 
facial motion representations and temporal modeling strategies for pain-inferred mental health prediction across models.

6.1. Baseline Model: Statistical Optical Flow Features
The handcrafted statistical optical flow and deep neural network baseline es-tablish the lowest reference point among 

all evaluated methods. By compress-ing each frame-to-frame optical flow map into a single mean magnitude value, this 
approach captures only coarse motion intensity trends while discarding spa-tial structure and detailed temporal dynamics. 
A total of 1799 samples with 13-dimensional features were represented. A fully connected deep neural network was 
employed for multi-class classification of pain intensity levels. The network architecture consists of an input layer 
corresponding to the 13-dimensional fea-ture vector, followed by four hidden layers with 256, 128, 64, and 32 neurons, 
respectively. Each hidden layer uses the ReLU activation function to introduce non-linearity. Batch normalization is applied 
after the first three hidden layers to stabilize training and accelerate convergence, while dropout with a rate of 0.3 is 
incorporated to mitigate overfitting. The output layer employs a softmax ac-tivation function to predict the probability 
distribution over the five pain classes (BL1, PA1–PA4). The model is trained using the Adam optimizer with categorical 
cross-entropy as the loss function. Training is conducted for 50, 100, 150, 200 and 250 epochs with a batch size of 8 and 16, 
and model performance is observed on validation set. Results exhibit that a huge drop in validation accuracy over train-

accuracy which is represented in Figure 6.

The results indicate that such compact statistical descriptors are insufficient for fine-grained discrimination among 
closely related pain levels. Frequent con-fusion is observed between adjacent pain classes, suggesting that global motion 
intensity alone cannot adequately represent subtle facial expressions associated with stress and pain perception. This 
baseline confirms the necessity of richer spatiotemporal motion modeling. Furthermore, the baseline DNN was extended to 
a hybrid CNN–LSTM architecture to better capture local feature interactions and sequential dependencies within the 13-

dimensional facial motion descriptors. Prior to modeling, all features were standardized using z-score normalization and 
reshaped into a three-dimensional tensor of size (N,13,1),treating the feature di-mension as a temporal sequence. Class 
labels corresponding to the five pain levels

Figure 6: Training and validation accuracy for Baseline.

(BL1–PA4) were encoded using label encoding followed by one-hot representa-tion. The dataset was split into training 
and testing subsets with an 80:20 ratio. The proposed model begins with a stack of one-dimensional convolutional layers 
comprising 64, 128, and 256 filters, each with a kernel size of 3 and ReLU ac-tivation, enabling hierarchical feature 
extraction from the input sequence. Batch normalization and dropout regularization (rate = 0.3) are applied after each 
con-volutional block to improve training stability and reduce overfitting, while max-pooling is employed after the first 
convolutional layer to downsample feature maps. The extracted features are then fed into an LSTM layer with 32 hidden 
units to model temporal correlations across the feature sequence, followed by an additional dropout layer with a rate of 
0.4. The final classification is performed using a fully connected softmax layer corresponding to the five output classes. 
The model is trained using the Adam optimizer with a learning rate of 0.0005 and categorical cross-entropy loss for 50, 
100, 150, 200 and 250 epochs with a batch size of 8 and 16, and performance is evaluated using accuracy, class-wise 
preci-sion–recall metrics. The training and validation accuracy is illustrated in Figure 7.

The accuracy for both the baseline DNN model and extended hybrid CNN-LSTM model remains an area of 
concern with an empirical value of 26% and 25% respectively. In spite of adding temporal modeling with the 
baseline DNN model, it fails to achieve better performance. In order to enhance the model perfor-mance, we capture the 
spatial information as well. The confusion matrix analysis is illusrated in Figure 8.
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Figure 7: Training and validation accuracy for CNN+LSTM.

True / Pred
BL1 19 18 12 13 7

PA1 22 20 14 13 12

PA2 23 8 15 11 8

PA3 16 9 15 18 10

PA4 10 7 17 20 23

(a) Baseline DNN

BL1 PA1 PA2 PA3 PA4 True / Pred BL1 PA1 PA2 PA3 PA4

BL1 17 9 71 21 14

PA1 14 20 22 14 11

PA2 15 10 13 17 10

PA3 9 10 21 18 10

PA4 10 14 15 17 21

(b) CNN+LSTM

Figure 8: Comparison of confusion matrices for the baseline DNN and CNN+LSTM model.

6.2. Appearance-Based Spatiotemporal Models
A spatiotemporal deep learning model based on a TimeDistributed CNN–LSTM architecture was designed to 

jointly learn spatial facial representations and their temporal evolution. Each input sample consists of a sequence of 13 
grayscale frames with a spatial resolution of 32×32 pixels, represented as a five-dimensional tensor. Spatial feature 
extraction is performed independently on each frame using a two-dimensional convolutional layer with 16 filters of size 
3×3 and ReLU acti-vation, followed by max-pooling for spatial downsampling. The resulting feature maps are flattened 
within a TimeDistributed framework to preserve the temporal ordering of frame-level features. These sequential 
embeddings are then processed by an LSTM layer with 64 hidden units to model temporal dependencies across frames. 
Dropout regularization with a rate of 0.5 is applied to mitigate overfitting, and the final classification is performed using 
a fully connected softmax layer to predict one of the five pain intensity classes (BL1–PA4). Figure 9 shows that train-

accuracy vs validation-accuracy for this experiment achieves the peak value

of 43% for validation with 120 epochs and then it gradually decreases.
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Figure 9: Training and validation accuracy of the TimeDistributed CNN–LSTM model .
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To observe the importance of optical flow in the above experiment we have modeled a CNN–BiLSTM Attention 
architecture for spatial facial representations. Given an input tensor of dimensions (B,T,C,H,W), where B denotes the 
batch size and T the number of frames and C × H ×W the spatial dimensions of each grayscale frame, spatial feature 
extraction is first performed using a convolutional neural network. The CNN backbone consists of three convolutional 
blocks with 32, 64, and 128 filters, respectively, each employing a 3×3 kernel with padding, followed by ReLU 
activation. Max-pooling layers are applied after the first two convolutional blocks to progressively reduce spatial 
resolution, while an adaptive average pooling layer produces a fixed spatial output of 4×4, ensuring robust-ness to 
variations in input frame size. The resulting feature maps are flattened to form compact frame-level embeddings. For 
temporal dynamics, the sequence of CNN-extracted features is fed into a bidirectional LSTM with 256 hidden units in 
each direction, enabling the network to exploit both past and future contextual information. The BiLSTM outputs a 
sequence of 512-dimensional hidden states, which are subsequently processed by an attention mechanism to learn a 
set of nor-malized weights over the temporal dimension, allowing the model to emphasize salient frames that 
contribute most strongly to pain-related facial expressions. A weighted temporal context vector is computed as a 
weighted sum of the BiLSTM outputs and serves as a global representation of the input sequence. Finally, this context 
vector is passed through a fully connected layer with softmax activation to predict one of the five pain intensity classes 
(BL1–PA4). This shows a major

drop in the performance of the model with an accuracy of 17%.

We have also employed high-level appearance-based spatio-temporal model using pretrained ResNet18 
backbone for spatial feature extraction followed by Bidirectional LSTM (BiLSTM) and an attention mechanism 
for temporal model-ing to compare with the statistical motion baseline. By jointly modeling spatial facial features 
and temporal evolution, these approaches are able to capture sus-tained expression patterns over time, thus 
improving the overall accuracy to 26% . The two models CNN-BiLSTM and RESNET- BiLSTM are evaluated on 
certain performance metrics, which is represented in Table 3.

Table 3: Class-wise performance comparison of CNN+BiLSTM and ResNet+BiLSTM models

Class CNN + BiLSTM ResNet + BiLSTM
Prec. Rec. F1 Prec. Rec. F1

BL1 0.17 1.00 0.29 0.22 1.00 0.35

PA1 0.00 0.00 0.00 0.19 0.00 0.24

PA2 0.00 0.00 0.00 0.00 0.00 0.00

PA3 0.00 0.00 0.00 0.00 0.00 0.00

PA4 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.17 0.21

From these experiments, we observed that the models are unable to classify the PA2, PA3, PA4 classes as the motion-

awareness mechanism was missing. To handle this, we used optical flow based motion modeling to capture the frame to 
frame stimuli. Table 4 demonstrates the comparison study of different appearance-based spatio-temporal model.

Table 4: Comparison of Appearance based spatio-temporal model.

Model Motion Modeling Appearance Modeling Role
No Moderate

No Strong

CNN + BiLSTM + Attention

ResNet18 + BiLSTM + Attention

Optical flow–based models Yes Moderate

Baseline

Enhanced appearance baseline

Motion-aware

However, despite the use of bidirectional temporal modeling and attention mechanisms, these models exhibit 
limitations in distinguishing low-intensity and intermediate pain levels. The absence of explicit motion encoding restricts 
their ability to capture micro-movements and subtle facial muscle activations, which are critical indicators of stress-related 
mental states. These observations sug-gest that strong appearance modeling alone is not sufficient for robust mental 
health–oriented pain prediction.

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010509 Page 13

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



6.3. Motion-Aware Spatiotemporal Modeling with Attention
In our experiments, incorporating dense optical flow representations as input consistently improved performance 

across all evaluated deep learning architec-tures, underscoring the critical role of explicit motion modeling in pain and 
stress inference. By applying CNN-based spatial encoders to optical flow magnitude maps, the proposed framework 
effectively captured localized facial motion pat-terns, while recurrent temporal layers modeled their evolution over time. 
Our LSTM-based temporal modeling results significantly outperform appearance-only approaches, confirming that 
dynamic facial information provides complementary and more discriminative cues beyond static visual features. 
Furthermore, replac-ing unidirectional LSTM with bidirectional LSTM (BiLSTM) yielded additional performance gains, 
indicating that using contextual information from both past and future frames enhances the interpretation of precise facial 
motion dynamics associated with pain-induced stress. By assigning higher weights to temporally salient frames, such as 
those corresponding to peak facial responses to pain stim-uli enables the network to focus on the most informative 
segments while sup-pressing less relevant or redundant temporal information. Qualitative analysis suggests that attention 
particularly benefits the recognition of pain levels charac-terized by brief or localized facial reactions, thereby improving 
robustness under inter-subject variability. Overall, these findings demonstrate that motion-aware spatiotemporal learning, 
augmented with adaptive attention, is critical for captur-ing the nuanced facial responses underlying pain-related stress 
and mental health inference.

6.4. Transformer-Based Temporal Modeling
The proposed two-stream Transformer-based framework was evaluated on the BioVid Heat Pain dataset using 

synchronized facial frame sequences and dense optical flow representations. Each video clip was uniformly sampled to 14 
grayscale frames of size 128×128, and dense optical flow between consecutive frames was computed using Farnebäck’s 
algorithm, yielding horizontal and vertical motion components that were normalized on a per-clip basis. Appearance and 
motion streams were independently encoded using ResNet-18, projected into a shared embedding space, and temporally 
modeled using Transformer encoder layers with positional encoding to capture long-range facial dynamics. The resulting 
clip-level representations were fused and classified into five pain levels. Training was performed using weighted cross-

entropy loss to address class imbalance, opti-mized with AdamW and cosine annealing learning-rate scheduling. 
Performance was evaluated using accuracy and macro-averaged F1-score on validation and test

splits, with early stopping applied based on validation F1-score. Quantitative results demonstrating the 
effectiveness of motion-aware temporal modeling and two-stream fusion are reported in Figure 10.

Figure 10: Training and validation accuracy for Augmented and Un-augmented Data.

The Transformer Temporal Encoder with Optical Flow exhibits the most con-sistent and discriminative behavior 
among all evaluated approaches. By using self-attention, the Transformer is able to model global temporal 
dependencies across the entire motion sequence, overcoming the limitations of recurrent memory-based models. 
Performance on the test set before any parameter tuning is rep-resented on Table 5. The test accuracy that we 
have obatined was 88% while validation accuracy indicates a major drop to 25%
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Table 5: Classification performance on the test set

Class Precision Recall F1-score Support
BL1 0.35 0.28 0.31 60

PA1 0.10 0.03 0.05 60

PA2 0.21 0.20 0.21 60

PA3 0.16 0.10 0.12 60

PA4 0.27 0.62 0.37 60

0.25 300

0.22 0.25 0.21 300

Accuracy
Macro Avg
Weighted Avg 0.22 0.25 0.21 300

The performance observed a huge validation loss. To address the issue of high validation loss, two new classes were 
introduced. The first, TwoStream-BioVid V2, incorporates stronger data augmentation strategies, including random

resized cropping and horizontal flipping applied to the training samples. The second, TwoStreamTransformer V2, 
adopts a more regularized architecture by reducing model complexity through a smaller embedding dimension, fewer 
at-tention heads and transformer layers, a reduced feedforward dimension, and in-creased dropout rates to mitigate 
overfitting by replacing original training, valida-tion, and test dataset instances with the new train,test and validation 
datasets. The performance is illustrated in Table 6.

Table 6: Performance after Data augmentation and horizonatal flipping

Class Precision Recall F1-score Support
BL1 0.47 0.38 0.45 60

PA1 0.52 0.43 0.45 60

PA2 0.39 0.32 0.38 60

PA3 0.56 0.60 0.52 60

PA4 0.57 0.62 0.37 60

Accuracy 0.47 300

Unlike LSTM-based approaches, the Transformer processes all temporal steps in parallel and dynamically 
attends to the most informative motion patterns. The results indicate improved separation between pain levels, 
particularly for cases involving subtle or temporally distributed facial motion. Figure 11 illustrates the 
performance comparison between the two tansformer-based encoder approach that we have integrated in our 
experiment with respect to different epochs

(a) Accuracy vs. Epochs without data augmentation. (b) Accuracy vs. Epochs with data augmentation.

Figure 11: Comparison of test and validation accuracy trends across training epochs under differ-ent training strategies.
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The two-stream formulation using dense optical flow further reinforces this in-terpretation. Optical flow 
explicitly captures involuntary facial muscle activations, which are known behavioral correlates of both pain and 
stress. The empirical improvement observed when motion-aware representations are introduced sup-ports the 
hypothesis that the learned model is responding to stress-induced facial dynamics, rather than superficial visual 
cues. Consequently, the predicted pain intensity P̂ can be interpreted as an intermediate representation of facial 
stress dy-namics, as formalized by P ≈ f (facial stress dynamics). Furthermore, the mono-tonic mapping from 
predicted pain to latent inferred mental stress is experimen-tally justified by the ordinal structure of the 
classification task. This monotonicity constraint ensures physiological plausibility while avoiding the need for 
direct self-reported stress annotations.

Under this formulation, the model does not merely perform pain classifica-tion; instead, it provides an indirect 
yet objective estimation of mental stress de-rived from observable behavioral stress indicators encoded in facial 
dynamics. This hierarchical mapping from facial behavior to pain, and from pain to mental stress enables the 
proposed framework to serve as a non-invasive stress assess-ment model, particularly relevant for mental health 
monitoring in scenarios where direct stress measurement is impractical or unreliable.

7. Conclusion

Although the model is trained using pain labels, the learned representations en-code facial stress dynamics that 
provide an indirect yet objective estimate of latent mental stress. The hierarchical inference formulation mapping 
facial behavior to pain intensity and subsequently to mental stress via a monotonic function offers a principled 
bridge between observable behavioral stress indicators and internal mental states, without relying on subjective 
self-reports. This makes the proposed framework particularly suitable for mental health monitoring in controlled 
or clin-ical environments where direct stress measurement is challenging. Moreover, the absence of explicit 
mental stress ground truth restricts the evaluation to proxy-based validation. Future work will focus on 
addressing these limitations by incor-porating multimodal physiological signals (e.g., ECG, EDA, or thermal 
imaging) to strengthen stress inference, and by exploring ordinal or regression-based for-mulations that better 
respect the continuous nature of stress intensity. Domain adaptation and subject-independent learning 
strategies will also be investigated to improve generalization across individuals.
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