
A Modified Decomposition Covariance Matrix 

Estimation for Undirected Gaussian Graphical 

Model 
 

 

Ridawarni P., Yenny Hermiana A., Saprilina G. 

Graduate School of Mathematics, 

University of Sumatera Utara 

Medan, Indonesia
 

 

 

 

Abstract - A covariance matrix is an undirected graph that 

associated with a multivariate probability of a given random 

vector where each vertex represents the different components of 

the random vector. Graphical model are framework for 

representing and conditional independence structures with 

distribution using graph G. This paper discussed a distribution 

estimation in determining decomposable covariance matrix in 

an undirected Gauss graphical model related to sparsity of 

invers covariance (concentration matrix). It showed 

decomposable covariance estimation with lower computational 

complexity. The result showed the correlation each different 

components in a given random vector that determined from 

decomposition covariance matrix estimation. 
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I.  INTRODUCTION 

 

Graphical models are a framework in determine a 

conditional independence structures within distributions that 

represented by a graph. In representing a distribution, 

undirected graph is used as a common model to describe a 

distribution problem in high dimension. Some previous 

researches that related to undirected graph model has been 

successfully applied to determine a conditional independence 

structures within a multivariate distribution and computation 

techniques that implemented using a graph for complexity 

enhancement problem of a high dimension data [1]. 

 

Covariance is an estimation of the two certain variables, x 

and y, in n sizes of data sample. This estimation is used to 

determine a variance and linear correlation of a multivariate or 

multi-dimension data. Estimation of covariance in a Gaussian 

distribution is basically a common problem in statistical signal 

processing such as speech recognition [2], [3], image 

processing [4], [5], sensor networks [6], computer networks 

[7] and other fields that related to statistical graphical models. 

Efficient Bayesian inference in Gaussian graphical models is 

well established [8] – [10]. 

 

A conditional independence among some random 

variables that distributed to some estimated covariance 

inverse. Estimation of covariance in a high dimension data can 

be classified to two categories: estimation that based on the 

sequence of the variables and estimation that based on 

estimator, permutation of invariance to each available variable 

index. Some researches of undirected graphical model was 

studied and developed to determine a conditional 

independence structure in a multivariate distribution, and 

extended with a computation method using a representation by 

a graph, especially for dimension enhancement and 

complexity problem. The results showed a sum of weighted 

path of all available paths that connected the two variables in 

an undirected independence graph [11]. 

 

An estimation of decomposition covariance matrix is the 

main focus topic in this paper. The estimation is focused on an 

undirected Gaussian graphical model of two random variables 

that gives correlation of each vertex on a Gaussian graph as a 

result. 

 

II. REVIEWS 

 

The Gaussian distribution is also referred to as the normal 

distribution or the bell curve distribution for its bell-shaped 

density curve. The formula for a d-dimension Gaussian 

probability distribution is 
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where x is a d-element column vector of variables along each 

dimension,  is the mean vector, calculated by 

 

 [ ] ( ) E x x x dx     (2.2) 

 

and  is the d d covariance matrix, calculated by 

 

[( )( )] ( )( ) ( ) T TE x x x x p x dx           (2.3) 

 

with the following form 
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The covariance matrix is always symmetric and positive 

semidefinite, where positive semidefinite means that for all 

non-zero , 0d Tx R x x   . We normally only deal with 

covariance matrices that are positive definite where for all 

non-zero , 0d Tx R x x   , such the determinant | | will 

be strictly positive. The diagonal elements, ii  are the 

variances of the respective ix , i.e., 
2
i , and the off-diagonal 

elements, ij , are the covariances of ix  and jx . If the 

variables along each dimension is statistically independent, 

then 0ij  , and we would have a diagonal covariance 

matrix 
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 (2.5) 

 

If the covariances along each dimension is the same, then we 

will have an identify matrix multiplied by a scalar, 

 

 2I  (2.6) 

 

by the Eq. (2.6), the determinant of  becomes 

 

 
2| | d   (2.7) 

 

and the inverse of  becomes 
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For 2-d Gaussian where d = 2, 1 2[ ]Tx x x , 
4| |   , the 

formulation becomes 
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 (2.9) 

 

then we often denote a Gaussian distribution of Eq. (2.1) as 

( ) ( , )p x N   . 

 

An undirected graph ( , )G V E  is a set of nodes 

{1, ,| |}V V  connected by undirected edges 

1 1 | | | |{( , ), , ( , )}E i j i j   , where each node is connected to 

itself, i.e., ( , )i i E for all i V . Let 1[ , , ]Tpx x x  be a 

zero random vector of length | |p V  whose elements are 

indexed by the nodes in V. The vector x satisfies the Markov 

property with respect to G, if for any pair of nonadjacent 

nodes the corresponding pair of elements in x are 

conditionally independent of the remaining elements, i.e., ix  

and jx  are conditionally independent of rx  for any 

{ , }i j E  and { \ , }r V i j where 

 

 ( , | ) ( | ) ( | )i j r i r j rp x x x p x x p x x  (2.10) 

 

Therefore, the joint distribution satisfies the following 

factorization: 

 

 
( , ) ( , )

( , , )
( )

i r j r

i j r
r

p x x p x x
p x x x

p x
  (2.11) 

 

In the Gaussian setting, this factorization leads to sparsity in 

the concentration (inverse covariance) matrix. The 

multivariate Gaussian distribution is defined as 

 

 1/2 1/2( ; ) | |
Tx Kxp x K c K e  (2.12) 

 

where c’ in an appropriate constant and the marginal 

concentration matrix is 

 

 1 1
,([ ] )r r rK K   (2.13) 

 

Together with Eq. (2.11) this implies that 

 
1 1 0 0 0

,([ ] ) ; [ ] [ ] [ ]r r r ir jr rK K K K K K      (2.14) 

 

| || |
| |
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ir jr

r

K K
K

K
   (2.15) 

where irK , jrK and rK are the marginal concentrations of 

{ , },{ , }i r j rx x x x  and { }rx , respectively, and are defined in a 

similar manner to Eq. (2.13). All the matrices in the right 

hand side of Eq. (2.14) have a zero value in the { , }i j th 

position, and therefore 

 

,[ ] 0i jK   for all { , }i j E  

 

This property is the core of Gaussian graphical models: the 

concentration matrix K has a sparsity pattern which 

represents the topology of the conditional independence 

graph. 

 

Decomposable models are a special type of graphical 

model in which the conditional independence graphs satisfy 

an appealing structure. A decomposable graph can be divided 
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into an ordered sequence of fully connected subgraphs known 

as cliques and denoted by 1, , kC C  

 

III. DECOMPOSITION COVARIANCE MATRIX 

 

In our estimation, we use some notations in determine 

covariance matrix in Gaussian graphical model. Assume 

pVX X where {1, , }pV p   is a random vector with 

normal multivariate distribution with p-dimension, 
1(0, )pN K . Set a graph ( , )pG V E where for each vertex 

i V is pair to a variable iX  and p pE V V  which is an 

undirected graph. Set the definition that ( , )i j E  if and only 

if ( , )j i E . A Gaussian graphical model with conditional 

independence graph is determined with the limit of diagonal 

elements of K that not pair to any edge in G.  If ( , )i h E  , 

then iX  and jX  is conditionally independence of a given 

random variables. Concentration matrix 1 ,( )ij i j pK K   is a 

limit to a symmetric positive definite matrix with diagonal 

entry 0ijK  for all ( , )i j E . Using G-Wishart distribution, 

( , )GWis D with density 

 

𝑝 𝐾 𝐺, 𝛿,𝐷 =
1

𝐼𝐺 𝛿 ,𝐷 
det 𝐾(𝛿−2)/2 exp⁡{−

1

2 𝐾,𝐷 
} (3.1) 

 

based on Lebesgue estimation (see [12]; [13]; [14]). If G is a 

complete graph ( )p pE V V  , then ( , )GWis D is a G-

Wishart distribution ( , )GWis D . We then using Cholesky 

decomposition for matrix K with GK P is GK P where 

𝑄 =  𝑄𝑖𝑗  1≤𝑖≤𝑗≤ 𝑝
 and 𝜓 =  𝜓𝑖𝑗  1≤𝑖≤𝑗≤ 𝑝

 is an upper triangle 

where 𝐷−1 = 𝑄𝑇𝑄 is the decomposition Cholesky of 𝐷−1. 

 

 Estimation of covariance matrix is a basic problem of 

multivariate statistical that related to signal processing, 

financial mathematics, pattern recognition and convex 

geometry computation. Set a sample of n points that 

independent, 𝑋1,… ,𝑋𝑛 , from distribution. We then have a 

sample of covariance matrix  

 

 
1

1 1n
T T

n k k

i

X X A A
n n

    (3.1) 

with Σ𝑛  is a random matrix. Then we estimated the 

covariance matrix Σ with rate of accurancy, 𝜀 = 0.01 that 

represented by a norm operation as follows. 

 

 n      (3.2) 

 

Assume 𝑋 = (𝑋1 ,𝑋2,… ,𝑋𝑛) of a multivariate Gaussian 

distribution 𝒩𝑑(0, Σ) where Σ is a regular matrix. Then we 

determined likelihood function 

 

 
/2 ( )(det )

( )
2

n tr KwK e
L K



  (3.3) 

 where 𝑊 =  𝑋𝑣 𝑋𝑣 𝑇𝑛
𝑣=1

 

as a result of sum and multiple 

matrix. Thus, the likelihood equation of Gaussian matrix can 

be formulated as
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1log(det )
ij

K K
k





 

(3.8)

 

 

 

 IV.

 

DECOMPOSITION COVARIANCE MATRIX FOR 

UNDIRECTED GAUSSIAN GRAPH

 

 

 

Adopted by a basic structure of variance component and 

time series problem, we suggest

 

definition of linear 

covariance formula model that represented as 

 

 

 

1 1 q qa U a U   

 

(4.1)

 

 𝑈𝑖are symmetric matrices and 𝛼𝑖

 

is an unknown parameter 

that supposed to be a requirement so that the matrix is 

positive definite.

 

Eq. (4.1) represents a common formula of 

time-series covariance model, mixed-linear and graph model.

 Specifically, high dimension q for any covariance matrix can

 be denoted as

 

 1 1

( )
p q

ij ij ij

i j

U 
 

  
 

(4.2)

 

 with 𝑈𝑖𝑗

 

is matrix with dimension 𝑝 × 𝑝

 

with element 1 at 

 𝑖, 𝑗 

 

and 0 otherwise.

 

For each column and row, we can set 

variance matrix with these following steps.

 

 Step 1. Set matrix X as a deviation for x where 𝑥 = 𝑋 −

11′𝑋  
1

𝑛
 .

 Step 2.

 

Calculate 𝑥′𝑥

 

as a result of sum and multiple matrix 

with dimension 𝑘 × 𝑘

 

at matrix x.

 Step 3.

 

Each element of matrix x is divided by n. Thus, we 

determined variance-covariance matrix of matrix x, 

𝑉 = 𝑥 ′𝑥  
1

𝑛
 , where

 

 1

 

: column vector with element 1 of dimension 𝑛 × 1

 x

 

: deviation matrix of dimension 𝑚 × 𝑛

 X

 

: data matrix of dimension 𝑚 × 𝑛

 V

 

: covariance matrix of dimension 𝑚 × 𝑛

 𝑥′𝑥: result of sum and multiple matrix

 n

 

: number of trial of matrix X
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Thus, we then determined a decomposition covariance matrix 

that showed correlation partial of the two random variables 

by 

 
ij

ij

ii jj

k

k k
    (4.3) 

 

V. RESULTS 

 

A. Matrix m × m 

  

 For illustration, we use a given matrix data of dimension 

𝑚 × 𝑚 . Assume that there exist matrix 𝐴3×3 as follows. 

 

𝐴3×3 =  
1 4 1
2 1 4
3 3 1

  

 

Then, covariance matrix of matrix A is determined by the 

definition 𝐶𝑜𝑣 𝐴 = 𝐴 − 11′𝐴. Thus, 

 

5 4 5

cov( ) 4 7 2

3 5 5

A

   
 

    
    

 

 

Because 𝑛 = 3, for each element of covariance matrix we 

have 

 

5 4 5 1.667 1.333 1.667
1

cov( ) 4 7 2 1.333 2.333 0.667
3

3 5 5 1.000 1.667 1.667

A

        
    

           
            

 

 

with the decomposition of inverse matrix is 

 

1.172 0.234 1.266

0.656 0.469 0.469
( )

0.047 0.609 0.890
inv A

  
 

  
 
 
 

 

 

and for each correlation of the two random variables, we 

determined 

 

𝜌 12 3 =
0.2344

  −1.1719  −0.4688 
=

0.2344

0.7412
= 0.3162 

 

𝜌 13 3 =
−0.0469

  −1.1719  −0.8906 
=

−0.0469

1.0216
= −0.0459 

 

𝜌 23 3 =
0.4788

  −0.4688  −0.8906 
=

0.4688

0.6461
= 0.7255 

 

 

 

B. Matrix m × n 

 

Assume that there exist matrix 

 

5 3

4.0 2.0 0.60

4.2 2.1 0.59

3.9 2.0 0.58

4.3 2.1 0.62

4.1 2.2 0.63

A 

 
 
 
 
 
 
 
 

 

 

which the covariance matrix of matrix A is determined by 

the definition 𝐶𝑜𝑣 𝐴 = 𝐴 − 11′𝐴. Thus, 

 

0.1 0.08 0.004

0.1 0.02 0.014

cov( ) 0.2 0.08 0.024

0.2 0.02 0.016

0.0 0.12 0.026

A

   
 

 
    
 
 
 
 

 

 

Because 𝑛 = 5, for each element of covariance matrix we 

have 

 

0.1 0.08 0.004

0.1 0.02 0.014
1

cov( ) 0.2 0.08 0.024
5

0.2 0.02 0.016

0.0 0.12 0.026

0.02 0.006 0.0014

          0.006 0.0056 0.0011

0.0014 0.0011 0.0003

A

   
 

  
      
  
 
 
 

 
 

  
 
 

 

 

with the decomposition of inverse matrix is 

 

76.1 55.3 136.2

( ) 20.8 492.8 1322.1

136.2 1322.1 7612.2

inv A

 
 

  
  

 

 

and for each correlation of the two random variables, we 

determined 

 

𝜌 12 3 =
55.3

  76.1  492.8 
=

55.3

193.65
= 0.285 

 

𝜌 13 3 =
55.3

7612.2
=

55.3

761.109
= 0.072 

 

𝜌 23 3 =
1322.1

  492.8  7612.2 
=

1322.1

1936.825
= 0.682 
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VI. CONCLUSIONS 

 

 In this paper, we studied the decomposition of 

covariance for undirected Gaussian graph. Estimation of 

covariance in a Gaussian distribution is a common problem in 

statistic. Gaussian graphical model is a method that can be 

used to represent the structure are independent among 

different independence random variables in a graph. This 

paper has examined the results of the covariance estimation 

for undirected Gaussian  by using a likelihood function in 

order to obtain the concentration of each random variables. 

The results of the decomposition matrix is decomposed and 

can be used in solving problems that related to signal 

transmission, patter recognition and other concentrations 

matrix problem. 
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