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Abstract- The demand for high-speed/high-precision machine 

tools is rapidly increasing in response to the development of 

production technology that requires high-precision parts and 

high productivity. The impact of thermally induced errors in 

machine tools is more on the dimensional tolerances of a 

product produced as compared to geometric and cutting force 

errors. In order to achieve sustain accuracy of machine tool; it 

requires an accurate and robust thermal error model. 

Thetraditional thermal error compensation models mostly 

focus on the fitting accuracy without considering the 

robustness of the models, it makes the research results into 

practice is difficult. This paper is a study of the application of 

regularization regression algorithms to solve the problems of 

multi-collinearity of linear thermal error models. The 

primary focus is on optimization of thermal sensors for 

eliminating the redundant sensors in the machine tool. Based 

on analyzing the existing approaches of thermal error 

modeling for machine tools, robust regression technique is 

proposed to improve the accuracy as well as robustness of 

thermal error estimates with respect to techniques least 

squares regression, partial least square regression previously 

used in the literature. More distinctively, the performance of 

the model obtained from robust regression has superior 

results and it can be applied for real-time error compensation 

in CNC machine tools effectively. 

Keywords - Robust regression- Thermal error compensation, 

Robustness, CNC machine tool, Standard Deviation (SD). 

I. INTRODUCTION 

Due to the thermal deformation of machine tools when 

machining, the relative distance between the cutting tool 

and the part being machined, by which the machine 

accuracy is defined, is changed, so the machining error was 

made. And the thermally induced error is the biggest 

contributor to the whole machine errors. The solutions to 

the thermal errors of machine tools include reduction in the 

heat sources, design of a thermally robust structure and 

compensation of thermal error [3]. Among these solutions, 

the reduction in heat sources is not possible beyond a 

certain limit as friction between parts in motion would 

certainly generate some heat. The design of thermally 

robust structure has a limit to the accuracy that could be 

achieved. Errors like thermal and cutting force deformation 

cannot be completely accounted for in design. It is usually 

time consuming and costly and it often ends in over design 

of machine structure. The use of alternative materials for 

machine tool applications is popular amongst machine tool 

builders, but these methods are still incapable of catering to 

changes that take place in the shop floor environment on a 

day to day basis. Compensation after thermal deformation 

gains success these days both on account of its 

implementation as well as its cost-effectiveness. Recently, 

by the help of the development of sensing, modeling, and 

computer techniques, real-time error compensation based 

on software approach has received wide attention to further 

improve the machine accuracy cost effectively [4–7]. One 

of the main difficult issues in thermal error compensation is 

to select appropriate temperature variables as well as to 

obtain an accurate thermal model. For solving this 

problem, the Kandell’s  tau-b Bivariant Correlation and 

Grey correlation analysis are put forward to determine the 

best combination of temperature variables [8–10], so that 

the high accuracy model of thermal error could be obtained 

and the computational time is reduced greatly. 

In this paper, testing set-up for collecting the data of 

temperature field and thermal deformation or errors of a 

turning center is used. Then, the optimal temperature 

variable selected using the Kandell’s  tau-b Bivariant  

correlation and grey correlation analysis for thermal error 

modeling.  Finally, the thermal error optimal model was set 

by the multiple regression analysis (MRA) in the general 

linear form using robust regression approach which is 

alternative to Least squares regression. More distinctively, 

the performance of the model obtained from robust 

regression has superior results and it can be applied for 

real-time error compensation in CNC machine tools 

effectively. 

 
II EXPERIMENTATION 

 

The sensor points for temperature measurement were 

selected by accounting for the key heat sources in the bed 

CNC turning center which have influence on the spindle 
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deformation [7]. The locations for temperature 

measurement include the spindle bearings, chucking 

cylinder and motor.  The temperature sensors (PT100) were 

attached to the structure by heat flow paste and are 

insulated from the environment by foam. The details of the 

temperature points are given below.  

 

T1 = Chucking Cylinder, T2 = hydraulic pack of the 

Chucking Cylinder, T3 =  Spindle Motor, T4 = Spindle 

rear bearing, T5 = Spindle front bearing, T6 = Lubricant 

cover of the spindle, T7 = Headstock Temperature, T8 = 

 Bed underneath the spindle, T9 =  Oil box, 

machine side, T10 = Coolant input close to the spindle, T11 

= Bed close to the transformer, T12 = Bracket of the 

transformer, T13=Bearing of the spindle motor. 

 

 

Fig 1 Locations of temperature sensors 

 

In order to investigate the thermal behavior of the CNC 

turning centre, the following load pattern of spindle has 

been formulated based on the operations performed on the 

machine tool. The selected load cycle is of fluctuating type 

where spindle speed varies between 0 and 2800 rpm. 

 
 

Fig 2 Load pattern of Spindle  

 

In order to facilitate the measurement of spindle 

deformation, an invar rod was mounted on the spindle and 

the eddy current displacement sensors were mounted in a 

fixture connected to the turret as shown in Fig 4. The 

temperature and spindle thermal deformation were 

measured and recorded at a sampling interval of 5 min. 

Among the components of displacement, x-component of 

thermal error (Fig. 5) due to the spindle tilt in the lateral 

direction assumes greater significance in turning centre and 

hence it is considered in the present investigation [8]. 

 

 
 

Fig 4 Displacement sensors mounted in the fixture 

 

 

The transient variation of temperature and the resulting x-

component of thermal error corresponding to load cycle-I are 

depicted in Figures 6, 7 and 8. 

 

 
 

Fig 6  Temperature Variation (T1 to T6)  

 

 

 
 

Fig 7 Temperature Variation (T7 to T13) 
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Fig 8 Transient variation of thermal error 

 

 
 

From the figures 6, 7 and 8, it is conceded that the transient 

temperature and corresponding thermal error is varying 

according to load pattern shown in figure 2. 

 
III SELECTION OF SIGNIFICANT THERMAL SENSORS IN 

MACHINE TOOL 

 

In any system for thermal error compensation, thermal 

sensor location is critical. The selection of the number and 

locations of thermal sensors becomes the first step to carry 

out error compensation. Grey correlation [12], ANN, 

Thermal Mode Analysis [2,11], Fussy logic, etc., are the 

other methods used for optimizing temperature key points 

but they relatively complex and time consuming. 
 

 In present study, Kandell’s tau-b Bivariant correlation 

analysis, Grey correlation analysis are performed to select 

the significant thermal sensors.  

 

 

Correlation analysis is also undertaken to determine the 

dependency of temperature key points. The value of a 

correlation coefficient can vary from minus one to plus 

one. A minus one indicates a perfect negative correlation, 

while a plus one indicates a perfect positive correlation. A 

correlation of zero means there is no relationship between 

the two variables. When there is a negative correlation 

between two variables, as the value of one variable 

increases, the value of the other variable decreases, and 

vise versa. In other words, for a negative correlation, the 

variables work opposite each other. When there is a 

positive correlation between two variables, as the value of 

one variable increases, the value of the other variable also 

increases.  

 

 In Kandell’s tau-b Bivariant correlation analysis, it is 

necessary to calculate the correlation among the 

independent variables. The thermal sensors are grouped 

according to their correlation value since the temperature 

variables with high correlation value represent a 

dependency on each other. The correlation coefficient 

matrix for thirteen temperature key points is shown in the 

Table 1. 

It is seen from Table 1, that the number of temperature 

points which are relatively more sensitive are identified as 

T4, T5, T6, T7 and T8 since the group constituted by the 

above temperatures has the highest correlation value 

(above 0.97). 

 

 

 

 

Table1  Kandell’s  tau-b Bivariant correlation Matrix 

 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

T1 1 .867 .887 .914 .895 .886 .800 .800 .692 .905 .557 .575 .734 

T2 .867 1 .945 .819 .838 .848 .686 .686 .668 .829 .578 .543 .830 

T3 .887 .945 1 .820 .820 .830 .705 .705 .697 .811 .615 .579 .845 

T4 .914 .819 .820 1 .981* .971* .848 .848 .622 .910 .493 .500 .667 

T5 .895 .838 .820 .981* 1 .990* .829 .829 .610 .950 .493 .479 .667 

T6 .886 .848 .830 .971* .990* 1 .819 .819 .610 .961 .503 .490 .676 

T7 .800 .686 .705 .848 .829 .819 1 1.000* .564 .838 .407 .532 .552 

T8 .800 .686 .705 .848 .829 .819 1.000* 1 .564 .838 .407 .532 .552 

T9 .692 .668 .697 .622 .610 .610 .564 .564 1 .610 .856 .676 .644 

T10 .905 .829 .811 .910 .950 .961 .838 .838 .610 1 .482 .490 .657 

T11 .557 .578 .615 .493 .493 .503 .407 .407 .856 .482 1 .623 .696 

T12 .575 .543 .579 .500 .479 .490 .532 .532 .676 .490 .623 1 .606 

T13 .734 .830 .845 .667 .667 .676 .552 .552 .644 .657 .696 .606 1 
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3.1 GREY CORRELATION ANALYSIS USING 

INITIAL VALUE TRANSFORM METHOD 

 

Grey correlation analysis is a principle theory of grey 

system theory, which can be applied in grey system 

analysis and random variables processing. The correlation 

between factors is represented by the similarity level of 

geometry which is called grey correlation degree, and the 

correlation degree between reference sequences and 

comparison sequences can be quantitatively estimated. 

Grey correlation degree describes the relative change 

between different factors in the process of system 

evolution, and the larger the correlation degree is, the 

higher the similarity level is [12]. Thus, the correlation 

degree can represent the impact of different sensors on the 

spindle thermal error behavior. By the calculation of 

improved correlation degree between thermal error and 

different sensors, the sensors with a relatively large 

correlation degree are selected since they have a larger 

impact on the thermal error. The steps involved in grey 

correlation degree calculation are given below. 

 

1. Conversion of input data into dimensionless form using 

initialization value transform method. 

 

 

Xi(K)= 
Xi(K)

Xi(1)
   (3) 

 

Δi (K) = δx K − Xi(K)    (4) 

 

 

 

 

δx K  =  Thermal Error 

Xi(K) =  Temperature data 

 

2. Grey Correlation coefficient between thermal error and 

sensors 

 

ξi(K)=
Min Δi K +ρMax Δi K 

Δi K +ρMax Δi K 
   (5) 

 

3. Mean of the correlation coefficient 

 

ri= 
1

𝑛
 ξ

i
 K ,𝑛

𝑘=1  K= 1,2,…..n  (6) 

 

4. Correlation degree with consideration of the diversity of 

correlation coefficients at different point  
 

S(ri) = 
1

𝑛
 (ξ

i
 K − ri)

2𝑛
𝑘=1   (7) 

\ 

5. Adjusted Grey Correlation Degree 

 

𝜌i=
𝑟𝑖

1+𝑆(𝑟𝑖)
    (8) 

 

The temperature key points are ranked according to the 

relative value of grey correlation degree. The temperature 

key points are selected by setting the threshold value in the 

range of 0.97 to 1. From the results of grey correlation 

analysis as shown in Table 3, it is inferred that the four 

temperature key points, viz, T4, T5, T7 and T8 have the 

highest impact on the overall spindle thermal error. 
 

 

Table 2  

Grey Correlation Analysis results 

 

Sensor  𝝆𝒊 
Relative Value of 

𝝆𝒊 
Rank 

1 0.70286 0.712 7 

2 0.69762 0.437 12 

3 0.69871 0.492 10 

4 0.70822 1.000 1 

5 0.70799 0.988 2 

6 0.70731 0.956 5 

7 0.70791 0.984 3 

8 0.7077 0.976 4 

9 0.70123 0.625 8 

10 0.70713 0.945 6 

11 0.6895 0.000 13 

12 0.69841 0.4841 11 

13 0.70002 0.5625 9 

From the grey correlation and Kandell’s tau-b Bivariant 

correlation analysis, the common four temperature key 

points selected for thermal error modeling. 

IV THERMAL ERROR MODELLING 

 
The  linear thermal error model will be of the form   

 

δ = β
1
T1 + β

2
T2 + β

3
T3 +⋯+ β

𝑛
Tn + ɛ  (1) 

 

Linear least squares regression is by far the most widely 

used modeling method. Not only is linear least squares 

regression the most widely used modeling method, but it 

has been adapted to a broad range of situations. It plays a 

strong underlying role in many other modeling methods. 

The method of least squares assumes that the best-fit curve 

of a given type is the curve that has the minimal sum of the 

deviations squared (least square error) from a given set of 

data. 

 

  Di − f(Ti) 
2

n

i=0

= Minimum 

Robust regression works by assigning a weight to each data 

point. Weighting is done automatically and iteratively 

using a process called iteratively reweighted least squares. 

In the first iteration, each point is assigned equal weight 

and model coefficients are estimated using ordinary least 

squares. At subsequent iterations, weights are recomputed 

so that points farther from model predictions in the 
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previous iteration are given lower weight. Model 

coefficients are then recomputed using weighted least 

squares. The process continues until the values of the 

coefficient estimates converge within a specified tolerance. 

The model developed by the robust regression through the 

use of MATLAB software is given below. 

 

Δx = 25.116 − 0.047773 T4 − 0.9292 T5 − 16.312 T7 + 

16.008 T8 

 
 

Fig 9 Fitting Accuracy of Robust Regression  

(With 13 Key Points) 

 
 

Fig 10 Fitting Accuracy of Robust Regression  

(With 4 Key Points) 

 

 

Fig11 Residuals from LS fit 

 

Fig 12 Residuals from Robust fit 

 

A comparison between the measured error data and the 

predicted values using the model is represented in Fig. 9 

and 10. It can be observed that the model with 13 key 

points (SD= 0.218 µm) and 4 key points (SD = 0.63µm) 

have the 0.412 µm difference of standard deviation. There 

is no that much difference in residuals of thermal error 

model with 13 and 4 thermal key points. So, the developed 

model greatly reduces the working load, computation time 

as well as the experimental cost. 
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V CONCLUSION 

 

1. The thermal error range for lateral direction (X-axis) 

on this precision turning center is approximately 26 

μm, which is much larger than we expected.  

2. Grey correlation and Kandell’s tau-b Bivariant 

correlation analysis for selecting the best combination 

of temperature variables, by which the thermal error 

model can be set accurately and quickly with fewer 

temperature variables. 

3. More distinctively, the performance of the model 

obtained from robust regression has superior results 

and it can be applied for real-time error compensation 

in CNC machine tools effectively. 
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