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Abstract— Microgrid is a subsystem comprises of distributed 

generator (DG) s, non-conventional generators, storage devices 

and controllable loads. Microgrids are one of the centers for 

penetration of non-conventional energy resources, storage 

backup and management of distribution generation units. It 

results reduction in costs, emission gases, transmission & 

distribution losses and also conventional energy crisis. Simply it 

is highly reliable and ecofriendly. In this paper, we present a 

study of Model Predictive control (MPC) Approach using mixed 

integer linear programming (MILP) technique while satisfying 

operational constraints and a time varying requests.  MILP 

technique is used to formulate the Overall optimization problem 

and commercial solvers are used for substantial improvements 

in solution quality and computational burden. To assess the 

performance of the online optimization-based control strategy a 

microgrid case study is employed and the simulation results are 

discussed. A modification for above case study was done by 

considering uncertainties of non-conventional energy. During 

uncertainties to meet the critical load demand, DG Units are 

increased. The results show the effectiveness and feasibility of 

the proposed approach. 

Index Terms— Microgrids, Conventional Energy, Non-

Conventional Energy, Distributed Generators, Model Predictive 

Control (MPC), Mixed Integer Linear Programming (MILP), 

Commercial solvers, optimization. 

NOMENCLATURE 

DG              : Distributed Generation 

PCC             : Point of Common Coupling 

DER                   : Distributed Energy Resource 

PV                     : Photovoltaic 

WT                    : Wind Turbine 

KW                    : Kilowatt 

DSM             : Demand Side Management 

ISO                    : Independent System Operator 

MPC                  : Model Predictive Control 

MIP                   : Mixed Integer Problem 

MILP             : Mixed Integer Linear Programming 
 

I.INTRODUCTION 

     Countries with abundant electrical energy became 

developed countries. In developing countries also electrical 

energy become a key role to achieve their targets, the reason 

behind this is in three sectors i.e. primary sector, Industrial 

and tertiary sector electrical energy playing vital role.  With 

is there is bulk power generation, transmission, distribution 

and utilization. In this process one side depletion of 

conventional energy resources and the other side transmission 

losses and distribution losses. To balance the power 

generation and energy demand, reduction of losses has to 

takes place. In this there are three major problems 1) Day-by-

day resources are depleting; 2) there is growth in energy 

demand and 3) Transmission and distribution losses are high. 

     High penetration of non-conventional energy resources, 

storage backup, distributed generation units and energy 

efficiency provides a sustainable way to meet the growing 

energy demand. New energy management systems also 

required for optimally managing the DG units, demand side 

policies and interacting with the utility grid. Approach for 

designing a new energy management system for DG unit is 1) 

considering the subsystems of the utility grid; 2) building a 

model of the subsystem which is as simple as possible; 3) 

formulate a feasible operation optimization and 4) deal with 

uncertainty. The two promising models for these energy 

systems are microgrids and energy hubs. 

     Microgrid is one of the solutions for reduction of prices, 

emission gases and also energy crisis. Simply it is highly 

reliable and reduced emissions. It is an energy management 

system comprises of Distributed generators, non-conventional 

energy generator units, storage units, critical and controllable 

loads, which can be operate in parallel with grid or in an 

island mode, see [1] and [2]. Microgrids have ability to 

manage and coordinate DG units, storages and loads in 

decentralized way and it helps to reduce the Centralized 

management and coordination [3]. As management and 

arrangement of Microgrid units is cost effective, efficient 

optimization of microgrid operations are required and also to 

efficiently manage its energy resources [2], [4]. 

     Storage modelling is required to coordinate storage use 

with non-conventional energy generation, energy prices and 

complexity of the charging/ discharging schedule [5] but no 

current modelling tools energy storage model and 

controllable loads in a smart power grid environment [6]. 

     Notice further that overall optimization problem includes 

storage modelling, power exchange with the utility grid and 

the demand side policies for controllable loads like demand 

side management (DSM). Moreover microgrid modelling 

constitutes two types of decision variables i.e. continuous 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080419

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 510



variables (storage charging/discharging rates) and discrete 

(ON/OFF states of DGs and controlled loads) and the 

problem gives no exact solution for mixed integer nonlinear 

technique, which is generally used for the formulation see 

[7]-[9]. Coping up with uncertainties in non-conventional 

energy resources, energy demand and prices further 

complicates the microgrid coordination and management. 

     Several independent system operators (ISOs) and regional 

transmission organizations are run by using mixed integer 

problem (MIP) algorithms. Computational advances and 

modeling capabilities of MIP algorithms gives better solution 

for real-time market and day-ahead problems [10]. Exclusion 

of unit commitment problems to the optimality causes several 

issues [11]. Therefore, a microgrid operation optimization 

problem requires feasible formulation which includes the 

particular key features of a microgrid. 

     In this paper, we tackle the operation optimization 

problem of a microgrid. This aims at minimization of overall 

operating costs of the system to meet the predicted load 

demand of a certain period typically one day i.e. 24 hour 

horizon while satisfying operational constraints. 

A. Literature Survey 

      Microgrid has complexity in operation optimization 

problem, optimization algorithms and appropriate modeling 

frameworks gives large economic benefits from its improved 

solution. Power dispatch problem for microgrids can be 

solved by metaheuristics and heuristics such as genetic 

algorithms [12], tabu search algorithms and evolutionary 

strategies [13]. 

     From studies microgrids can achieve high performance 

through: 1) prediction based advanced control algorithms 

accounting for system uncertainty; 2) Deployment of demand 

side policies; 3) compensation of physical imbalances with 

the optimal usage of storage devices; and 4) applying optimal 

based approaches gives better solution than heuristic based 

approaches (see [14]-[17]). The proposed approaches may not 

be suitable for real-time applications as those are 

computationally intensive and can produce suboptimal 

solutions (see [17]-[19]). Further, the optimal problem may 

stays nonlinear or features such as minimum up time, down 

time and demand side policies may neglected. To get the 

feasible solution, the microgrid optimization problem may 

solve as several MINLPs such as one separate problem for 

storage management, one for unit commitment and so on 

[20]. 

     Recently several factors in the power system community 

have led usage model predictive control (MPC) approach 

[21]: 1) it is based on predictions and future behaviour of the 

system i.e. demands forecasts; 2) feedback mechanism makes 

the system robust against uncertainty. 3) It can handle system 

constraints. MPC method gives better results for unit 

commitment problem with wind generation [22]. During 

island mode of operation, for reactive power control, MPC-

based dynamic voltage and var control scheme has developed 

[23]. MPC approach is used for optimal dispatch in power 

system especially to describe hybrid systems 

continuous/discrete dynamics and switching at different 

operating conditions [24]. Without considering storage 

modelling, demand side polices and ON/OFF conditions of 

generation units, MPC algorithm is proposed to solve 

economic dispatch problem with large intermittent sources 

[25]. 

      [26] and [27] propose an MPC algorithm to manage the 

energy flows of microcombined heat and power unit inside a 

household system. In addition, the household can 

sell/purchase electrical energy to/from the utility grid and 

heat and electrical energy can be stored in specific storage 

devices. In [28] and [29], an MPC framework is applied to 

minimize the generating cost of a certain period. Demand has 

to meet using power dispatch subject to limits on power 

generation and ramp rates. A supervisory control system 

which includes MPC is designed to compute the power 

references of wind/solar energy generation subsystem at each 

sampling time, minimizing cost function. These power 

references are sent to local controllers to drive the subsystems 

at requested power references [30]. In [31], two distributed 

supervisory MPC controllers are applied instead of the 

centralized supervisory MPC controller, to the local 

controller, optimal reference trajectories are provided. For 

this start-up/shut down are not addressed and the problem is 

nonconvex and nonlinear. 

      For an islanded microgrid, which comprises PV panels, 

two WTs, a DG unit and an energy storage system, rolling 

horizon strategy has proposed based on an energy 

management system [32]. The optimization problem includes 

nonlinear constraints (DG unit and storage device) and are 

approximated by piece-wise linear models. MILP technique 

is used to solve the problem and to yield suboptimal 

solutions. 
 

B. Assumptions 

      In a microgrid control structure, different control 

approaches and time scales should be addressed: 1) individual 

components phase, frequency and voltage electrical control 

can be done fast within seconds or less. 2) Economic dispatch 

and unit commitment of all DG units, non-conventional 

energy units, storage devices, load forecasting, demand side 

policies and energy exchange with the utility grid on time 

scales of hours. Thus a hierarchical control structure is a 

reasonable approach to develop two controllers i.e. high level 

controller is a centralized and it is on the top of the hierarchy 

and the second level consists Distributed Energy Resources 

(DER) and load controllers [33]. The main aim of the 

centralized algorithm is to economically optimize power 

dispatch by generate suitable set points for all sources and 

storages and to meet the given demand. The task of the local 

controllers is to guarantee that the system tracks the power 

reference values. 
 

C. Main Contributions 

     In [34] and [35], for a microgrid, a control oriented 

approach, a high level optimization and use of MPC in 

combination with MILP is presented. Based on the 

predictions of future behaviour of the system, non-

conventional energy production and demand forecasts, 

microgrid operations are decided. We utilized the mixed 

logical dynamical framework and the approach described in 

[36]. To state the problem formulation, we assume DG units 

fuel consumption and emission functions. 
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     In our approach, without resorting to decomposition 

techniques or heuristics, by considering solvers an 

optimization problem is developed by including as many 

details as possible and also we modelled the DG units 

physical and technical features by considering low number of 

constraints and variables. 

     Further, An MPC approach is considered which is a 

feedback mechanism used to compensate the uncertainties 

such as non-conventional power outputs, the time-varying 

load and energy prices for microgrid operations. Shorter 

sampling time is used to compute more and effective 

solutions to reach optimum. 

In summary, microgrid modelling requires both 

continuous and discrete decision variables which results 

operation optimization problem is very difficult to solve. 

Providing a microgrid model adopting a formalized 

modelling approach i.e. mixed integer linear programming 

technique and it can be solved efficiently by cplex solver and 

the problem formulation is suitable for online control scheme 

e.g., Model Predictive Control approach. 

Problem formulation has to be pointed out that, at the 

lower control level; voltage stability, power quality and 

frequency are assumed to be controlled automatically.  Thus, 

the microgrid optimal operation planning problem minimizes 

overall operating costs subject to storage dynamics 

(charging/discharging mode), power balance, energy 

import/export from/to the utility grid and operational and 

capacity constraints. 

This paper is further organized as follows: 1) Microgrid 

System Description, Modeling and Constraints in Section II; 

2) Optimization Problem in Section III; 3) Simulation setup is 

discussed in Sections IV; 4) Simulation results are discussed 

in Section V; 5) finally conclusions are drawn. 

D. Terminology 

Formulation of the problem includes parameters, forecasts 

and the decision variables which are described in Tables I-III, 

respectively and for simplicity subscript  is omitted which is 

used to refer the  th unit. Moreover, vectors and matrices are 

denoted in bold. In this fuel consumption cost for a DG unit 

is assumed as quadratic function form. 

 

 

 

 

 

 

 

 

 

 

 

Table I: Parameters 

 

Table II: Forecasts 
Forecasts Description 

 

 

 

Sum of power production from non-conventional energy 

sources(RES) [KW] 
Power level required from a critical load [KW] 

 

Purchasing and selling energy prices [€/KWh] 

 

 

 

Parameters Description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of DG units, critical and controllable loads 

Fuel consumption cost of  a DG unit depends on generated 
power 

Cost coefficients of  and its units [€/(kwh)2,€/kwh, 

€] 

Operating and maintenance cost of a DG unit [€/h] 

Operating and maintenance cost of a storage unit [€/KWh] 

Ramp up limit of a DG unit [KW/h] 

Minimum up and down time of a DG unit [time-units] 

constant stored energy loss in the sampling interval [KWh] 

minimum and maximum energy level of the storage unit 

[KWh] 

power limit of storage output [KW] 

maximum interconnection power flow limit at the PCC [KW] 

minimum and maximum power level of a DG unit [KW] 

charging and discharging efficiencies of storage unit 

minimum and maximum allowed curtailment of a controlled 

load 

start-up and shut-down costs of a DG unit [€] 

preferred power level of a controllable load [KW] 

curtailment’s penalty weight 
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Table III: Logical and Decision Variables 
Variables Description 

 

 

 

 

 

 

 

 

 

Off(0)/on(1) state of a DG unit 

 
Discharge(0)/charge(1) of the storage unit 

 

Export(0)/import(1) to/from the utility grid 
 

Power level of a DG unit [KW] 

 
Power exchanged (+ve for charging) with the storage unit 

[KW]  

 
power level of the utility grid, for Importing(+ve)/exporting(-

ve)   [KW] 

 
Stored energy level [KWh] 

 

Percentage of curtailed power 

 

II.MICROGRID SYSTEM DESCRIPTION MODELLING 

AND CONSTRAINTS 

To minimize operating costs with feasible and suitable 

real-time computation of the microgrid system, a brief 

description of key features and modeling setup of this 

subsystem is described. 

Here, we consider a discrete time model of a storage unit 

constitutes xb the stored energy level at time k (divided by ∆T) 

and Pb(k) the power exchanged with the storage unit as 

follows: 

                                    (1)                                                                    

where 

 

            (2) 

 

with   

 

 
 

    Losses are represented by charging and discharging 

efficiencies and xsb represents constant stored energy loss in 

the sampling time. Pb(k), the power level of the storage unit at 

time k, is greater than zero then this will be charging mode of 

the storage unit and vice versa. 

   In [36], the standard approach is described. To model the 

logical condition and the storage dynamics a binary variable 

δb(k)and zb(k) = δb(k)Pb(k), an auxiliary variable are 

introduced. 

                                                  (3) 

and 

 
 

 
 

   In this, logical conditions are expressed as mixed integer 

linear inequalities. The storage dynamics and its constraints 

are rewritten with the help of above mixed integer linear 

inequalities as follows: 

 

 
 

Subject to the constraint 

 

                             (4) 

 

where the column vectors E1
b, E2

b, E3
b and E4

b are derived by 

considering the if..then conditions described in (3), the six 

mixed integer linear inequalities modeling and the auxiliary 

variable which hides a nonlinearity is as follows: 

 

                                                          (5) 
 

On considering 

,   and .  

the logical condition is rewritten as follows  (the interested 

reader is referred to [36] for the statement): 

 

                               (6) 

 

Here, the first two elements of the column vectors in (4) as 

follows: 

 

 
 

 
 

 
 

 
 

 

The other elements are obtained by imposing the inequalities 

to the variable zb(k), consider f(k) = Pb(k) and δ = δb(k). 

 

 
 

   At each time interval k, energy production and utilization 

should be balanced. Accordingly the power balance equation 

i.e. equality constraint is as follows: 
 

 
 

                                                   (7) 
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   Collection of all decision variables as vector u(k) and all 

known disturbances which will obtain from forecasts as 

vector w(k), Then, the Pb(k) can be rewrite as follows: 

 

                                            (8) 

 

where 

 

    

 

 

     
 

where  

 

  all power levels, 

generators ON/OFF states, the critical demand, controllable 

loads power level and the curtailments  are denoted by P(k), 

δ(k), D(k), Dc(k)and β(k), respectively. The vectors  and 

 in (8) as follows: 

 

 
 

 
 

Thus, on substituting (8) in (4), the storage level can be 

expressed as follows: 

 

 
 

                                                                                    (9) 

 

B. Interaction with the Utility Grid 

When microgrid is connected to grid, it can purchase and sell 

energy from/to the utility grid. On considering the same 

procedure outlined above, we introduce an auxiliary variable 

Cg(k)  and a binary variable δg(k)   to model the possibility i.e. 

either to sell energy to or purchase energy from the utility 

grid. The logical condition is rewritten as follows: 

 

 
and 

 
 

 

   We again express the mixed integer linear inequalities with 

the help of the if..then conditions. Then mixed integer linear 

inequalities are expressed to represent purchasing and selling 

behavior of the microgrid as follows: 

                      (10) 

where the column vectors E1
g, E2

g, E3
g(k) and E4

g  are 

derived by considering logical condition ,the six modeling 

linear inequalities. The matrix E3
g(k) is time-varying because 

of the time-varying energy prices. This all will be done only 

when microgrid is in grid-connected mode not in island 

mode. 

 Here, the first two elements of the column vectors in (10) as 

follows: 

 

 

 

 

 

C.Loads 

In this paper, we consider two types of loads: 

1) Critical loads, the loads which are always requires non-

stop power supply i.e. it to met its corresponding power level 

demand. 

2) Controllable loads, the loads which can be shed or reduced 

during emergency situations i.e. day-time lighting and 

standby devices and supply constraints for which demand 

side policies can be applicable. 

In demand side programs, level of curtailment of controllable 

loads are specified by customers only. It is so helpful during 

island mode of microgrid operation since microgrid is 

necessary to work completely by its own. Hence, to reduce 

controllable loads demand level, its magnitude should be 

flexible with a preferred level. For load curtailment/shedding, 

certain cost is associated i.e. penalty for the users who will 

face discomfort for this.  In this a continuous-valued variable 

 is defined to associate at each controllable 

load c and sampling time To make the microgrid 

operations feasible a preferred power level percentage to be 

curtailed at the time interval k is represents by above variable. 

If curtailment is not allowed at a certain time interval an 

equality constraint can be set,  

D. Generator Operating Conditions 

To keep controllable generation unit ON/OFF (minimum 

up/down times) on the minimum amount of time at each 

sampling time k, without resorting to any additional variable 

the operating constraints can be expressed by the mixed 

integer linear inequalities as follows: 

 

 
 

 
(11) 

 

where  if we consider the constraints on the 

minimum up time  

otherwise   

 

   For instance consider the i th unit at time step , with 

 i.e. the unit was OFF during the previous 

sampling period. The first  constraints in (11) will 
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force all the binary optimization variables corresponding to 

the unit ON-/OFF-state to be equal to 1 when the value is 

assigned to the optimization variable  for the next 

 sampling times.  
 

 
 

                                       (12) 
 

   To satisfy the constraints   forces the right-hand 

side of the inequalities (12) to be equal to 1. 

 

   Two auxiliary variables  are introduced 

for modeling the DG unit startup and shutdown costs, for the 

i th DG generation unit at time k, respectively. These 

auxiliary variables must satisfy the mixed integer linear 

constraints as follows: 

 

 
 

 
 

 
 

                                                                       (13) 

 

where   (see [38]). 

III.OPTIMIZATION PROBLEM 

To cover the microgrid demand, minimize the generators 

running costs and  imported electricity costs from the utility 

grid in the sampling interval or day, the microgris optimal 

operational planning takes decisions on generators internal 

production optimal scheduling, storage and controllable 

loads. The microgrid controller must take high level decisions 

at every time step as follows: 

 Unit commitment (UC) i.e. when should a 

generation unit be start and stop; 

 Economic Dispatch (ED) i.e. at minimum cost, how 

much each generation unit should meet this load; 

 Storage operations i.e. charging and discharging 

optimal scheduling; 

 Demand side policies i.e curtailment options, to 

when the controllable loads have shed/curtailed; 

 In grid-connected mode, when and how much 

energy should be sold and purchased to/from the 

utility grid; 

  how much energy has to be stored. 
 

To generate an optimal plan, the objective function can be 

formulated as a MILP optimization problem by using 

modeling of section II. The model will be imperfect when the 

plan is subject to uncertainty and the system state will not 

evolve as predicted. Moreover, the single MILP is an open 

loop solution which does not account for these uncertainties. 

Embedding MILP optimizations within an MPC framework 

is a possible remedy so that the uncertainty can be potentially 

compensated by implementing a feedback control law. Two 

solutions coincide when the uncertainty is not present. To 

formulate the MPC problem, cost function formulated by 

MILP has to define. 

 

A. Mixed Integer Linear Programming 

It is a mathematical feasible or optimal program in which few 

or whole variables are restricted to be integers. In this, the 

objective function and the constraints (other than the integer 

constraints) are linear. In a microgrid system, continuous and 

discrete-valued dynamics are interacting. One side the 

physical quantities such as energy and power flows are 

represented by continuous variables and the other side DG 

units ON/OFF status, the storage charging/discharging state 

and the minimum up and down time constraints are 

represented by discrete variables by using binary values. In 

addition, the behavior of a microgrid system and its 

components can be described by both difference and 

differential equations e.g., logical statements, i.e. statements 

of the form if..then.. else and storage dynamics. As we are 

interested in model predictive control, a prediction model of 

the system has to construct. In [36], casting a logical 

statement of a given form into linear mixed integer 

constraints has shown i.e. constraints involving continuous 

and discrete- valued variables which were already described 

in section II. 
 

 
 
 

 
 

similarly 
 

 
 

where f is a function  upper and lower bounded by M and m, 

δ is a binary variable, y is a real variable, ε is a small 

tolerance i.e. typically the machine precision respectively. As 

MILP solving algorithms only handle nonstrict inequalities, 

the tolerance ε is needed to transform a constraint of the form 

y < 0 into y ≤ 0. 

 

B. Fuel Consumption Cost Function 

There is a requirement to linear approximate the cost 

function’s fuel consumption. Compare to quadratic programs, 

mixed integer linear programs are computationally more 

efficient [39]. Without introducing binary variables, the DG 

generator fuel cost function  is 

approximated as maximum of affine functions [40]. 

 

                   (14) 
 

     Where P represents generated power;  and   

respectively; are obtained by linearizing the function at n 

points and j extracts the j th row of S and s. 
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C. Cost Function 

The microgrid optimal operational planning can be 

achieved by minimization overall operating costs.  The 

following function includes production, startup & shutdown 

costs decisions, along with possible curtailment penalties and 

earnings: 
 

 
 

                 
 

                                                         (15) 
 

where  represents instantaneous time and length of 

the prediction horizon 24 hour.  models the 

storage unit power exchange using (5) and (8). The term 

 represents operative and maintenance costs of the i 

th DG unit that depend on the generated power. Moreover, 

the term  reduces the charging and 

discharging frequency and  can be negative when 

energy is sold to the utility grid. 

    We introduced the auxiliary variable  to write the cost 

function in compact form, at each time k to approximate the i 

th DG unit generating costs and the vector  collects all 

the auxiliary variables as follows: 

 

   

 

where  the generators start-up and shutdown costs are 

denoted by,  respectively. The input 

sequence is denoted by  where  is introduced in (8), 

at each time k, we designed it as 

 then the cost function is 

rewritten as follows: 

 

 
 

where the column vectors  are given below and the 

term  in (15), where is given in (8) is used 

to derive the term . 

 

 
 

 
 

D. Capacity and Terminal Constraints 

Additional constraints such as capacity and terminal 

constraints have to be met to pose the final MILP 

optimization problem. 

 

                                                (16a) 

 

                          (16b) 

 

                             (16c) 

 

                                       (16d) 
 

Where  the above constraints 

are physical bounds on the storage device in (16a); DG units 

power flow limits in (16b) and their ramp up and ramp down 

rates in (16c); and curtailment bounds of the controllable 

loads in (16d). Note that if the power generated  from 

the i th DG unit at time k is positive, then the binary variable 

 will be 1 otherwise 0. The binary variable  can be 

avoid in the inequality (16b) when  is very small 

positive value. 
 

E. Model Predictive Control Problem 

In this section, we incorporate feedback and predictions 

into control action on the basis of optimization problem. For 

this we consider model predictive control approach, a model 

of the controller is used to predict the future evolution of the 

controller to optimize the control signal. Based on this we 

formulate the optimization problem in some given criteria 

and the solution yields a trajectory of inputs and states into 

the future which satisfy the dynamics and constraints of the 

microgrid operations. At each time k, optimal control 

problem can solve over a finite future horizon usually for the 

24 h based on predictions of the non-conventional energy 

production, upcoming demand and energy prices. We 

implement only first optimal move or the input sequence and 

subsequently the horizon is shifted i.e. at time k +1, repeat the 

optimization and so on. By this the new state of the system 

will get new measurements and by using this new 

information a new optimization problem is solved. The new 

optimal plan can potentially compensate with this receding 

horizon approach, for any disturbance acted on the system. 

We denote  to present the MPC 

policy, at time step k + j predicted at time k the storage model 

in (9). 
 

The MPC scheme computes the optimal control sequence 

 at each time step k, given an initial storage  and time 

duration T is used to solve the following finite-horizon 

optimal control problem: 
 

 
 

                                            
 subject to 

 

storage model (9), variable  

 

constraints (10), (11), (13); 

 

constraints (16); 
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                                                                (17) 
 

where  are already defined in (14). Here, we recall 

the disturbances profile’s vector,  represents the 

vector known over the prediction horizon, for 

 thus the term  does not 

affect the optimal solution of the objective function. 

 

   As per the receding horizon strategy, the optimal sequence 

 is applied to the first element only. The new 

measured/estimated state  is repeated at 

time  of the optimization problem (17). The advantage 

of repeated online optimization is its feedback. 
 

   Note that the applied control scheme in this paper is 

assuming that the control decisions makes by controller are 

correct predictions. 
 

F. Prodedure to solve Optimization Problem 

ON/OFF states and the power levels generated by the non-

conventional generation units and the storage energy levels 

current state are initialized by the microgrid system model at 

each time . In this MPC problem is a MILP problem. 

Branch & Bound technique is applied to the MILP problem, 

because its solution is globally optimal [41], [42]. 

Optimization problem formulation was implemented using 

MATLAB. ILOG’s CPLEX 12.0 was used to solve MILP 

optimizations since, it is an efficient solver based on branch 

& bound algorithm. All computations are done on an AMD 

E-350 processor, 1.60 GHz and 2.00 GB RAM. 

IV.SIMULATION STEP 

Here, we consider a microgrid in grid-connected mode in the 

simulations which is shown in figure. 1; it comprises of PV 

plant with maximum power 16KW, four DG units, one 

energy storage, critical and controllable loads. Energy 

storage, bounded between 25 and 250 KWh is included with 

maximal charge and discharge rates 150 and -150KW; charge 

and discharge efficiencies are equal to 0.9, respectively. As 

the microgrid is in grid-connected mode power can be 

purchased or sold from/to the utility grid. As per European 

Energy Exchange (EEX on a certain day, the daily energy 

prices are shown in Figure. 3. with 1 hour sampling time and 

24 hours planning horizon. 
 

 
Figure.1. Scheme of microgrid considered in Case A and C simulations 

 

Figure.2. Scheme of microgrid considered in Case B simulations.  

 
Figure.3. Spot energy prices 

 

     Here, we are considering three cases to compare the 

microgrid operation optimization based on different 

strategies. 

Case A: 

Based on the data provided in [38] and [44], the four DG 

unit parameters are described in Table IV. On considering 

above data we compare the following strategies for the 

microgrid optimization problem. 

 

Table IV: Generator Parameters in Case A. 

 

1) MPC-MILP with storage and RES: 

MPC-MILP is a technique which also considers uncertainties 

through feedback loop. In this strategy we are considering all 

four DG units, storage and RES to meet the demand. 
 

2) MPC-MILP with storage and without RES: 

During Cloudy hours PV plant fails to generate energy. At 

this instant subsystem like microgrid will face power balance 

problems this leads to customer’s discomfort. To study the 

behavior of the system at that moment, we temporarily 

detached the PV panel and observed optimization results. 

3) MPC-MILP without storage and with RES:  

In this section, we considered the without storage device and 

we observed microgrid optimization results.  

4) MPC-MILP without storage and RES:  

In this section, we detatched both non-coventional energy 

unit and storagedevice to observe the system behavior and 

optimization results. 

DG Unit      

Unit 1 6 50 0.0013 0.062 1.34 

Unit 2 16.4 92 0.001 0.057 1.14 

Unit 3 16 90 0.0004 0.06 1.14 

Unit 4 12.3 72 0.0006 0.058 1.9 
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CASE B: 

    In this case we completely replaced PV unit with two DG 

units as shown in Figure. 2. On considering the additional DG 

units data and the above data as shown in Table V, we 

compared the microgrid optimization problem as follows: 

 

Table V: Generator Parameters in Case B 

 

1) MPC-MILP Replacing RES with DGs (with 

storage): 

In this strategy only PV unit was replaced with DG units and 

observed the behavior of the microgrid system and 

optimization problem results. 

2) MPC-MILP Replacing RES with DGs (without 

storage): 

In this strategy along with PV unit storage device also 

dethatched to observe the system behavior and optimization 

results on considering DG units in the place of PV unit. 

 

CASE C: 

    In this case we changed the four DG unit parameters as 

shown in Table VI, to study the behavior of the system and 

optimization problem. The strategies considered here same as 

Case A. 
 

Table VI: Generator Parameters in Case C 

 

1) MPC-MILP with storage and RES: 

 MPC-MILP is a technique which also considers uncertainties 

through feedback loop. In this strategy we considered all four 

DG units with new parameters, storage device and RES to 

meet the demand. 
 

2) MPC-MILP with storage and without RES: 

 During Cloudy hours PV plant fails to generate energy. At 

this instant subsystem like microgrid will face power balance 

problems this leads to customer’s discomfort. To study the 

behavior of the system at that moment, we temporarily 

detached the PV panel and observed optimization results. 

3) MPC-MILP without storage and with RES:  

In this section, we considered the without storage device and 

we observed microgrid optimization results.  

4) MPC-MILP without storage and RES:  

In this section, we detatched both non-coventional energy 

unit and storagedevice to observe the system behavior and 

optimization results. 
 

 
Figure.4. Forecasted and Actual demand over 24h. 

 
Figure.5. Forecasted and actual PV power generation over 24h. 

 

To apply the Model predictive control strategy, 

computation of non-conventional power and demand 

forecasts have to be described. Support vector machines 

(SVMs) and neural networks (NNs) [45] are proposed 

methodologies for nonlinear forecasting. In [46],[47] SVMs 

is a powerful statistical method to capture the underlying 

structure in a data set on considering input training data. It is 

successfully applied for non-conventional energy prediction 

and demand forecast [48], [49].   

In this paper, all the forecasts are obtained by MATLABs 

SVM toolbox, LS-SVM training and simulation environment 

written in C-code [51]. Examples of daily demand and non-

conventional energy production profiles are employed in the 

optimization problem are shown in figures 4 and 5. 
 

V.SIMULATION RESULTS 

Here, three cases experimental validation of MPC-MILP 

control algorithm are performed. We consider 1 h sampling 

period and the experiments are run over 24 h. 

 

Case A  

Figures 6, 7 and 8 show, respectively, the DG unit power 

generation, power exchanged with the utility grid and energy 

stored obtained by applying the different strategies. 

DG Unit      

Unit 1 6 50 0.0013 0.062 1.34 

Unit 2 16.4 92 0.001 0.057 1.14 

Unit 3 16 90 0.0004 0.06 1.14 

Unit 4 12.3 72 0.0006 0.058 1.9 

Unit 5 15 80 0.0002 0.023 1.5 

Unit 6 15 80 0.0002 0.023 1.5 

DG Unit      

Unit 1 150 600 0.001562 7.92 561 

Unit 2 100 400 0.00194 7.85 310 

Unit 3 50 200 0.00482 7.97 78 

Unit 4 20 100 0.024 8 80 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure.6. DG units power generation over 24h (MPC-MILP). (a) with storage 

with RES. (b) with storage without RES. (c) without storage with RES. (d) 
without storage without RES 

 

 
(a) 

 
(b) 

 
(c) 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080419

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 519



 
(d) 

Figure.7. MPC-MILP based Purchased/sold energy over 24 hour. (a) with 

storage with RES. (b) with storage without RES. (c) without storage with 
RES. (d) without storage without RES 

 
(a) 

 
(b) 

Figure.8. Energy stored over 24h (MPC-MILP). (a) with storage with RES. 
(b) with storage without RES. 

 

Case B 

As per this case, by replacing PV plant with two DG units 

coding was simulated. Figures 9, 10 and 11 show, 

respectively, the DG unit power generation, power exchanged 

with the utility grid and energy stored obtained by applying 

the different strategies. 

 
(a) 

 
(b) 

Figure.9. DG units power generation over 24h (MPC-MILP). (a) Replacing 

RES with DGS with storage units. (b) Replacing RES with DGS without 

storage units. 

 
(a) 
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(b) 

Figure.10. MPC-MILP based Purchased/sold energy over 24hour. (a) 

Replacing RES with DGs with storage units. (b) Replacing RES with DGs 

without storage units. 

 
Figure.11. Energy stored over 24h (MPC-MILP) replacing RES with DGS 

with storage units. 
 

 

Case C 

By changing generator parameters of case A with standard 

data, program was simulated. Figures 12, 13 and 14 show, 

respectively, the DG unit power generation, power exchanged 

with the utility grid and energy stored obtained by applying 

the different strategies. 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure.12. DG units power generation over 24h (MPC-MILP). (a) New DGs 
with storage with RES. (b) New DGs with storage without RES. (c) New 

DGs without storage with RES. (d) New DGs without storage without RES 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure.13. MPC-MILP based Purchased/sold energy over 24 hour. (a) New 
DGs with storage with RES. (b) New DGs with storage without RES. (c) 

New DGs without storage with RES. (d) New DGs without storage without 

RES 

 
(a) 

 
(b) 

Figure.14. Energy stored over 24h (MPC-MILP) (a) New DGs with storage 

with RES. (b) New DGs with storage without RES. 
       

Table VII: Comparison of Microgrid Operation with different 

strategies considered in Case A 
 

S.No Strategy Total Costs (€) 

1 MPC-MILP with storage with RES 403.3 

2 MPC-MILP with storage without RES 439.7 

3 MPC-MILP without storage with RES 418.9 

4 MPC-MILP without storage without 

RES 

452.1 

 

Table VIII: Comparison of Microgrid Operation with 

different strategies considered in Case B 
 

S.No Strategy Total Costs (€) 

1 MPC-MILP replacing RES with DGS 
with storage units  

496.3 

2 MPC-MILP replacing RES with DGS 

without storage units 

515.4 

 

 

Table IX: Comparison of Microgrid Operation with different 

strategies considered in Case B 
 

S.No Strategy Total Costs (€) 

1 MPC-MILP New DGs with storage 

with RES 

628.2 

2 MPC-MILP New DGs with storage 

without RES  

665.9 

3 MPC-MILP New DGs without storage 
with RES  

643.5 

4 MPC-MILP New DGs without storage 

without RES 

679.9 

 

From the simulation results, Table VII, VIII & IX reports the 

performance of the described cases for microgrid operation 

optimization. It shows that the cost increment with respect to 

the cases considered in this paper. Moreover, it also reports 

that a storage and PV plant unit makes the microgrid more 

economically more efficient.  
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CONCLUSION 

In this paper, a Model Predictive control is considered for 

MILP optimization problem to the study behaviour of the 

microgrid system during uncertainties while satisfying 

operational constraints and a time varying requests The 

overall problem includes modelling of storage devices, 

demand side policies and so on. It also accounts the unit 

commitment, economic load dispatch, selling and purchasing 

of energy to/from the utility grid. The optimization problem 

further copes with uncertainties of non-conventional energy 

sources, energy prices and demand. The MPC approach is 

proposed to cope with the above uncertainties. MPC-MILP 

framework is used to formulate the Overall optimization 

problem and commercial solvers are used for substantial 

improvements in solution quality and computational burden. 

A microgrid case study is employed to know its working 

strategy during online optimization and the simulation results 

are discussed. A modification for above case study was done 

by considering three cases by assigning uncertainties of non-

conventional energy resources and storage device. The results 

show that a storage and PV plant unit makes the microgrid 

more economically more efficient.  
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