
A Methodology for the Abstraction of Software

Component from Software Requirement

Specification (SRS)

Muzammil H Mohammed

Assistant Professor, Department of Information
Technology,

College of Computers and Informathion Technology,
Taif University,

Taif, Saudi Arabia

Syed Naimatullah Hussain
 Lecturer,Department of Computer Science,

 College of Computers and Informathion Technology
 Taif University

 Taif,Saudi Arabia

Abstract:This paper attempts to abstract software

components i.e. (object class name and its attributes, Actors and

its interface) from the software requirement specification (SRS).

These abstractions are further refined using the blend of good

database design principles. A sequence of semi methodology is

developed to carry out these abstractions. This is a fool proof

semi-automated methodology which abstracts the required

paradigm from the SRS.

Keywords: SRS software requirement specificaion, ctu: clients

team of users, dfd dataflow diagram

1. INTRODUCTION

The software development project normally starts with
customers‟ requirements. The customers are in general,
strategic management people of the organization who work in
classical ambience, so the requirements of the expected
system reflect their processing mindset. These requirements
are influenced by either the data oriented approach or the
procedure oriented approach as with the available information
of the organization. Presently, since these are not natural ways
of processing the information system, these will not serve the
development process effectively. Now a day, people feel the
object-oriented paradigm is more towards naturalness and will
survive for long time. So it is required to transform the
requirements into object-oriented paradigm and then proceed
for the development. We are intending in our ensued
methodology, to develop a system of software tools, which
takes the requirements (originally was either procedure
oriented or data oriented paradigms) and then transform it into
object-oriented paradigm. We are intending to develop an
automated sequence of software tools that takes requirements
definition as input and produces the developed specifications
in object-oriented paradigm. There may also need to limit our
ambition, as some of the sub processes may not be automated.
In such case, there is a need to provide guidelines for each of
these sub processes to minimize the human dependency. We
are aiming to develop a sequence of automated software tools
with embedded guidelines for inevitable subtasks at some
stages, and then the set of guidelines may give the scope to
develop software agents to take up the role of semi automated
processes.

 Few researchers [4, 5] have suggested some

techniques for certain stages of the design of object classes.

Although, these give good guidelines to the design, the

authors could not derive any concrete procedure and/or

guidelines to the design in its totality. We have made an

attempt develop a methodology that identifies the object-

oriented specifications in the form of object structures,

object methods and the interrelationships, from the

requirements of an information system. This semi automatic

methodology comprises of a sequence of steps like

feasibility analysis, for object structure identification,

resolution of synonyms & homonyms issues, regrouping of

attributes of entities & functionalities through the design of

data flow diagrams and elimination of imbalance between

data & procedure oriented paradigm along with

authentication of correctness & completeness of the

abstractions at each stage. Manual intervention at few stages

is necessitated because of the need for human intelligence in

these steps. Even for these manual intervention steps,

attempt is made to provide clear-cut guidelines to streamline

the design process. This methodology is in perfect tune with

the very basic definition of object-oriented paradigm. The

paradigm brings the perfect balance between the procedure-

oriented and the data-oriented paradigms.

II. THE METHODOLOGY

The algorithm presumes that, based on the customer‟s
requirements, the software requirements specification (SRS) is
already available with the developer. He/She can seek needy
information from client‟s team of users (CTU). This paper
addresses a sequence of semiautomatic methodology. Each
step is discussed with details of either procedure, if it can be
automated, or guidelines, if it requires human intervention

A. Requirement gathering.

As per the SRS, the detailed requirement is gathered from

CTU. This depends on the managerial skill of developer. The

developer may interview each member of CTU for his or her

work process details. The input, output and how the input is

transformed into the expected output, the actor who consumes

the result or who supplies input information, the purpose of

the work process/es etc. are collected.

Each individual work process forms one or more
functionalities.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

130

 The response to „how‟ frames the business rules, which
identifies the functional dependencies amongst attributes
and interrelationships between the entities/actors.

 The designed entities/actors, their characterizing attribute
the functional dependencies amongst the attributes of each
entity /actor and the interrelationships between the entities
are captured in the form of data dictionary.

 These abstractions may partially be of data oriented and
partially be of procedure-oriented paradigms. This
depends on the nature of existing work processes (if exist)
or the response of each CTU member

 The requirement of the information system contains

the business rule of the information system along with the

branches and various applications. For example, the

requirements of the college information system may contain

some of the business rules as follows.

B. Authentication of correctness and completeness of the

process

Now we have two sets of entities, attributes,

interrelationships, business rules, work processes and

business process. The developer need to establish the one-to-

one and on-to correspondence separately between each pair

of items of two sets

C. Resolve synonyms/homonyms issue.

In a multi-user system [2], though each user assigns

meaningful names to attributes, the semantic flexibility in the

use of English words leads to presence of synonymous words

for the same attribute. The set of synonymous words of the

same meaning forms a synonymy and each such synonymy is

replaced by a generic name. Similarly, the use of context

specific word leads to the use of same attribute/entity for

different meaning in different entities. Each such word is a

homonym.. The presence of each such homonym in

attributes/entities/actors should be replaced by different

names. The establishment of one-one and on-to functionality

between the entities and attributes identifies some of the

synonymies and homonymous words. handigund et al. [4]

have developed semiautomatic techniques to resolve

synonyms and homonyms issues. These can be used to

resolve their presence. Appropriate modify the data

dictionary.

D. Eliminate redundancy in attributes/ entities presence

 Study each attributes of each entity/actor in isolation with

other entities/attributes for absolute necessity of their

presence in the information system. This can be identified by

the participation of the attribute in any of the functionalities.

Discard the attributes that are not participating in the

functionalities. If an attribute or group of attributes is present

in two or more entities, form a separate entity with each such

group. This participation can be tested through the

establishment of one-to-one and on-to correspondence

between attributes referenced in data flows of logical DFD

and data dictionary.

E. Identify keys and design extended ER-diagram

 Abstract the functional dependencies amongst attributes of

each entity from the business rules of the information system.

Identify the primary key and foreign keys for each

entity/actor. If an attribute or group of attributes of an entity

of data store is independent of the primary key, take it out

and form separate entity. Design the extended ER diagram

with the following component abstractions. The entities and

attributes are abstracted from the data dictionary and the

interrelationships are abstracted from the business rules of

the system.

F. Minimize the imbalance between the procedure and data

oriented paradigms.

Regroup the attributes of input data flows, based on their

characterization of Person [1], place, thing, event or concept.

This can be achieved through the grouping the attributes such

that each attribute of a group establishes a functional

dependence with one primary key. The input data flows may

contain subset of attributes of a group so that each group of

attributes may be in input data flows of one or more

processes. Each such group forms a first cut object structure

G. Refine the abstracts by brining the perfect balance

between the paradigms.

Apply good database design principles to each first cut object

structure. The good database designed principles are:

 Redundancy should be minimized

 Unrelated attributes should be separated

 The functional dependencies amongst attributes group

should be preserved

 Inconsistencies should be eliminated

 Data integrity should be ensured

 Attributes with null values should be minimized

 There should be easy scope for maintenance

 Each attribute should be in one or the other group

 Constraints should be incorporated in the design.

Since the normalization is a way of good database

design, the refined group should be normalized at least up to

Boyce coded normal form. Indicates the constructs whose

balance is to be maintained to bring perfect balance between

procedure oriented and data oriented paradigms.

H. Model the business process through data flow diagram

(DFD) to measure the paradigms imbalance.

 Design the logical DFD with the following

 Entities, which are modifiable within the system,

form data stores.

 Entities which are non-modifiable within the

systems form actors.

 The identified functionalities form processes

The intersection of input/output attributes of functionality

with each entity attributes forms input/output dataflow

from/to the concerned entity /actor to/from the process (of

functionality).

I.Design the context and logical DFD with object structure

 Refine the logical data flow diagram with each object

structure group as data store, maintaining attributes of total

input data flow to each process and redesigning input flows

such that each flow emanates from first cut object structure.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

131

Fig .1 Context Diagram

In the above context diagram, the attributes common

Entrance Test(CET), All India Council for Technical

Education(AICTE), vishveshraya Technological

university(VTU), PLACEMENT are depicted as the actors

and TRAIN STUDENT is depicted as the lone process. The

data stores, data flows and the sub processes are within this

process. Here, a student is admitted to college when he/she

qualifies for the CET exam.

J. Decompose functionality

If two or more data flows directed towards single

Process; study the possibility of decomposing the process, so

that each decomposed process either receives data flow from

single entity or additionally through parameter passing from

other entities. Refine the logical data flow diagram into

physical data flow diagram.

K.Design the class diagram

The actors, data stores form object classes, with the set union

of attributes flowing from each of these, for their attributes,

the processes that receives data flow from each of these data

stores /actors form the object methods and the source of

parameter passed to any of these functionalities form the

association. The interrelationships identified in the extended

ER diagram are to be modified

L. Identification of functional and multivalued dependencies

These entities are now refined with elimination of redundant

attributes and entities [3]. These can serve as first cut object

structures. Now the functional dependencies and the multi-

valued dependencies that may exist amongst the attributes of

each entity are to be identified. The undesirable functional

dependencies are to be eliminated using normalization

process in sequence from the first normal form to the Boyce-

Codd normal form (BCNF). The undesirable multi-valued

dependencies are identified through the one-to-many

relationships between different attributes of each entity.

These are eliminated by decomposing each such entity using

fourth normal form and project join normal form (PJNF).

 Now, we have identified first cut object structures using

good database design principles on one hand. On the other

hand, we have identified attributes for each dataflow through

the design of higher-level data flow diagram. The object-

oriented paradigm is the perfect balance [6] of these two

paradigms. Thus, the design of object-oriented specifications

need to blend the data oriented (object structures) paradigm

with procedure oriented (Attributes group each representing a

dataflow) paradigm. There needs to be a one-one and onto

correspondences [3, 8] between the two sets of structures

identified. This also implicitly verifies and validates the

selection of object structures.

 Now, we study the mapping between two groups, one group

comprising attributes groups of data flows, each group

representing a dataflow and on the other side, the refined

object structures. We identify one-one onto correspondences

between these two sets of elements. If an object structure

contains one or more dataflow groups then, the

corresponding functionalities are assigned to the contained

object structure as objects methods. This process continues

for all the matching object structures. Now, we take the set

union of unmatched object structures and study the possible

consideration of one-to-one mapping with left out dataflow

groups. Each such matching data flow group forms an object

structure with its destined process as object method. The left

out data flow groups are manually studied for possible

participation. Similarly, the left out object structures are

studied for possible formation of abstract classes.

 CONCLUSION

The authors have identified the lacunae that present in

various methodologies which uses manual process to design

object classes. An attempt has been made here to automate

the developed process. The Authors have succeeded in

making the process semiautomatic, with least human

intervention. The intervention is necessitated at critical points

where intelligence is necessary

 REFERENCES
[1] Muhammed Usman, Stepahane Ducane and Marianne Huchard (IEEE-

2008) 15th working conference on reverse engineering “Reconsidering
classes in procedural object oriented code” page 257- 266.

[2] Jonathan & charles J Hannon (IEEE-2009) Eighth Mexican International
Conference on Current Trends in Computer Science. “An algorithm for
identifyingAuthors using synonyms” page 99 – 104.

[3] Alen Lovrencie and Tonirnir Kisasondi (IEEE-2007) 11th International
Conference on Intelligent Engineering System “Modelling Functional
Dependencies in Databases using mathematical logic” page 307 – 312.

[4] Shivanand M. Handigund, “Reverse Engineering of Legacy COBOL
Systems”, Ph. .D. Thesis, 2001, I. IIT. Bambay, Mumbai

[5] Ali Bahrami “Object Oriented System Developments” McGraw-Hill
International Editions 1999.

[6] Sinan Si Albir. “UML in nutshell” , Shroff publishers and distributors
private Ltd. 1998

[7] Jaco de Bakker and Erik de Vink. Control Flow Semantics. The MIT
Press, Cambridge, Masschusetts, 1996.

 [8] D B Phatak. Migrating Legacy systems. Pre-coneference tutorial
Presented at COMAD95, Pune (India), 1999

CET

 Train

Student

Student name,

Branch,

Programme,
Rank No.

Place

ment

US No.,

Degree,

Branch

USN No

Selected

VTU

US No.,

Course,Fee

USN No.,

Marks Card

AICTE

Branch,

Admitte

d Intake

College

name

Branch,

Intake

sanctioned

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

132

