
Proceedings of International Conference “ICSEM’13”

331

A membership service for dynamically
changing large scale storage system

ABSTRACT

Dynamically changing system membership in a large
scale reliable storage system is maintained and
carried out by a membership service to overcome
the current system limitations in handling
reconfigurations for a replica set and it is also
difficult for life time membership.This service is
done with an automatic reconfiguration. Byzantine
Fault tolerant replication enhances the availability
and reliability of internet service that store critical
state and preserve it despite attacks and software
errors which provides consistency level. This
reconfiguration is carried out by a membership
service and dBQS[database Query Service]. dBQS is
interesting in its own right because its storage
algorithms extend existing Byzantine Quorum
protocols to handle changes in the replica set, and it
differ from previous DHTs by providing Byzantine
Fault tolerance and offering strong semantics. We
develop two heuristic algorithms for the problems.
Experimental studies show that the heuristic
algorithms achieve good performance in reducing
communication cost and are close to optimal
solutions.
Index terms- Byzantine fault tolerant, PBFT, DHT,
Reconfiguration

1. INTRODUCTION

Byzantine fault tolerant replication enhances the
availability and reliability of Internet services that store
critical state and preserve it despite attacks or software
errors.
However, existing Byzantine-fault-tolerant storage

systems either assume a static set of replicas, or have
limitations in how they handle reconfigurations (e.g., in
terms of the scalability of the solutions or the consistency
levels they provide). This can be problematic in long-lived,

lar ge-scale systems where system membership is likely to
ch ange during the system lifetime. In this paper, we
present a complete solution for dynamically changing
system membership in a large-scale.

Byzantine fault tolerant system. It presents a
service that tracks system membership and periodically
notifies other system nodes of membership changes. The
membership service runs mostly automatically, to avoid
human configuration errors itself Byzantine fault-tolerant
and reconfigurable and provides applications with a
sequence of consistent views of the system membership.

It demonstrate the utility of this membership service
by using it in a novel distributed hash table called dBQS
that provides atomic semantics even across changes in
replica sets. dBQS is interesting in its own right because
its storage algorithms extend existing Byzantine quorum
protocols to handle changes in the replica set, and because
it differs from previous DHTs by providing Byzantine
fault tolerance and offering strong semantics.

A Byzantine fault tolerance is one which
tolerates the byzantine fault. A Byzantine Fault[2] is an
incorrect operation (algorithm) that occurs in a distributed
system that can be classified as: Omission Failure – a
failure of not being present such as failing to respond to a
request or not receiving a request. dBQS is a storage
system, that provides Byzantine-fault-tolerant replicated
storage with strong consistency. dBQS serves as an
example application that uses the membership service and
takes advantage of its strong consistency guarantees.

Additionally, dBQS is important on its own for
two reasons. First, to develop dBQS we had to extend
existing Byzantine quorum protocols[2], originally
designed for a static replica set, to enable them to be
reconfigurable while continuing to provide atomic
semantics across changes in the replica set. Second,
dBQS implements the popular DHT interface but
differs from previous DHTs by handling Byzantine

K.VINOTHINI
M.E. (CSE),
SRINIVASAN ENGG COLLEGE,
PERAMBALUR

B. AMUTHA
AP/ CSE,
SRINIVASAN ENGG COLLEGE,
PERAMBALUR

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

332

faults and focusing on strong semantics, which can
facilitate design of applications that build on a DHT
interface.

Distributed Hash Table (DHT) is a
distributed[1] and often decentralized mechanism for
associating hash values (keys) with some kind of
content. Participants in the DHT each store a small
section of the contents of the hash table.

The main advantage of DHTs is their
scalability. Membership Service describes membership
changes by producing a configuration, which identifies
the set of servers currently in the system, and sending it
to all servers. To allow the configuration to be
exchanged among nodes without possibility of forgery,
the MS authenticates it using a signature that can be
verified with a well-known public key.

2. RELATED WORK
A group membership protocol enables

processes in a distributed system to agree on a group of
processes that are currently operational. Membership
protocols are a core component of many distributed
system and have proved to be fundamental for
maintaining availability and consistency in distributed
applications. We present am membership protocol for
asynchronous distributed system that tolerates the
malicious corruption of group members. Our protocols
ensure that correct members control and consistency
observe changes to the group membership, provided
that in each instance of the group membership, fewer
than one-third of the members are corrupted or fail
benignly.

The protocol has many potential applications
in secure systems and, in particular, is a central
component of a toolkit for constructing secure and
fault-tolerant distributed services that we have
implemented. The Membership protocol
implementation for an atomic broadcast facilitates a set
of techniques that make such a tool kit practical.

Membership protocol[11] is suitable for used in
distributed system in which some process may be
corrupted by a malicious intruder. This protocol achieves
is an asynchronous system, provided that in each instance
of the group membership, fewer than one-third of the
group members are corrupted or fail. Although the
protocol can be used to remove them from the group once
detected.

The main drawbacks of the protocols are their
relatively large round complexity for group merge
operations. This approach is that the resulting protocols
are not optimal in their performance, i.e., the compiler
adds a certain overhead of additional messages which do
not seem necessary. Therefore, there use in real system

can be facilitated by providing members with consistent
group membership information that cannot be
manipulated by corrupt members.

In order to achieve availability in the presence of
failures, the objects are replicated. In order to maintain
memory consistency in the presence of small and transient
changes, the algorithm uses configurations, each of which
consists of a set of members plus sets of read-quorums
and write-quorums.

In order to accommodate larger and more
permanent changes, the algorithm supports
reconfiguration, by which the set of members and the sets
of quorums are modified. Such changes do not cause
violations of atomicity.

Any quorum configuration may be installed at
any time we first provide a formal specification for
reconfigurable atomic shared memory as a global service.

The service Rambo[9], which stands for
“Reconfigurable Atomic Memory” for Basic Objects The
rest of the paper, presents our algorithm and its analysis.
The algorithm carries out three major activities, all
concurrently: reading and writing objects, introducing
new configurations, and removing (“garbage-collecting”)
obsolete configurations.

The algorithm is composed of a main algorithm,
which handles reading, writing, and garbage-collection,
and a global reconfiguration service, Recon, which
provides the main algorithm with a consistent sequence of
configurations. Reconfiguration is loosely coupled to the
main algorithm, in particular, several configurations may
be known to the algorithm at one time, and read and write
operations can use them all.

3.RECONFIGURATION TECHNIQUE

3.1 STORAGE

Byzantine Quorum Protocol, It’s used to
handle changes in replica set, and it provides strong
semantics. That is, to enable them to be reconfigurable
while continuing to provide atomic semantics across
changes in the replica set. It includes protocols for read
and writes operations and processing of messages
during replica changes. Each object is stored at n=3f+1
nodes and quorums consist of any subset containing
2f+1 nodes.

A description of the client-side read and
writes protocols for 2 functions are shown below,

Write (data)
Send messages to the replicas in the group that

stores and wait for valid responses, all for server. Then
send messages to all replicas and wait for valid
response.

The write operation for a public-key object is
normally has two phases. In the read phase, a quorum

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

333

of 2f+1replicas is contacted to obtain a set of version
numbers for the object.
Read (data)

Send messages to the replicas in the group that
stores and wait for valid responses, all for server, send
messages to all replicas and wait for valid response.
Then return data to the user.

To perform a read operation, the client
requests the object from all replicas in the read phase.
Normally, there will be 2f+1 valid reply that provide
the same version number; in this case the result is the
correct response and the operation completes. However,
if the read occurs concurrently with a write, the version
numbers may not agree. As shown in fig 1.1 the user
get back the data from server for that write-back
operation is used. In this case, there is a write-back
phase in which the client picks the response with the
highest version number, writes it to all replicas, and
waits for a reply from a quorum.

3.2 PBFT
Practical Byzantine Fault Tolerance (PBFT), it

describes a new replication algorithm that tolerates
Byzantine faults and practical (asynchronous
environment, better performance). The algorithm
provides safety if all non-faulty replicas agree on the
sequence numbers of requests that commit locally. It
provides replicas must change view if they are unable
to execute a request.

Replicas probe independently, and a replica
proposes an eviction for a server node that has missed
propose probe responses. It does this by sending eviction
messages to their MS replicas, and then, waiting for

USER

 SERVER1 SERVER2

Fig 1.1:System Architecture

signed statements from at least fMS+1 MS replicas
(including it) that agree to evict that node. Other MS
replicas accept the eviction (and sign a statement saying
so) if their last nevictpings for that node have failed,
where evict<npropose.Because the initiation of the eviction
waited a bit longer than necessary, most eviction
proposals will succeed if the node is really down.

4. EXPERIMENTAL RESULT

We implemented the membership service and dBQS.
Our experiments show that our approach is practical
and could be used in a real deployment: the MS can
manage a very large number of servers and
reconfigurations have little impact on the performance
of the replicated service.

Throughout our experiments, we tried to
determine how system components interfere with each
other. For this experiment, the replica doing the pings
was associated with an instance of dBQS (since we
intend to run committees on system nodes).

We repeated the experiment under three
different degrees of activity of the dBQS server: when
it is not serving any data (which will be the case when
the MS does the pings and runs on special nodes that
don’t also handle the application), when it is handling
30 queries/second, and when clients saturate the server
with constant requests,which leads to the maximal
number of about 300 queries/second. Each query
requested a download of a 512 byte block.little impact
on the performance of the replicated service.

5. CONCLUSION AND FUTURE WORK

A dynamically changing system membership
in a large scale reliable storage system is maintained
and carried by a special service.For that we provide a
membership service that track the system periodically
and notifiy the changes by using storage and PBFT
algorithm.By which the system will reconfigured
automatically.In future research, the more committees
are needed for the data will be needed in the system
size increases.

The Membership service can accept the
committee dynamically is based on system size and to
add extension of our system. The design of a
mechanism to determine which machines to place file
replicas on the other file to use membership service.

REFERENCES

INTERNET

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

334

[1] Birman. K and T. Joseph, “Exploiting Virtual
Synchrony in Distributed Systems,” Proc. 11th
ACM Symp. Operating Systems Principles,
pp. 123-138, Nov. 2007.

[2] Clement. A, M. Marchetti, E. Wong, L. Alvisi,
and M. Dahlin,“Making Byzantine Fault
Tolerant Systems Tolerate ByzantineFaults,”
Proc. Sixth USENIX Symp. Networked
Systems Design and Implementation (NSDI
’09), Apr. 2009.

[3] Cowling. J, D.R.K. Ports, B. Liskov, R.A.
Popa, and A. Gaikwad, “Census: Location-
Aware Membership Management for Large-
Scale Distributed Systems,” Proc. Ann.
Technical Conf. (USENIX ’09), June 2009

[4] Chen.K., “Authentication in a Reconfigurable
Byzantine Fault Tolerant System,” master’s
thesis, Massachusetts Inst. of Technology, July
2004.

[5] Castro.M and B. Liskov, “Practical Byzantine
Fault Tolerance,” Proc. Third Symp.Operating
Systems Design and Implementation (OSDI
’99), Feb. 1999.

[6] Dabek.F., M.F. Kaashoek, D. Karger, R.
Morris, and I. Stoica,“Wide-Area Cooperative
Storage with CFS,” Proc. 18th ACM Symp.
Operating Systems Principles (SOSP ’01),
Oct. 2001.

[7] Douceur.J., “The Sybil Attack,” Proc. First
Int’l Workshop Peer-to-Peer Systems (IPTPS
’02), 2002.

[8] DeCandia.G, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-
Value Store,” Proc. 21st ACM Symp.
Operating Systems Principles, pp. 205-220,
2007.

[9] Lynch. N. and A.A. Shvartsman, “Rambo: A
Reconfigurable Atomic Memory Service,”
Proc. 16th Int’l Symp. Distributed Computing
(DISC ’02), 2002.

[10] Rodrigo Rodrigues, Barbara Liskov, Member,
IEEE, Kathryn Chen, Moses Liskov, and David
Schultz “Automatic Reconfiguration for Large-
Scale Reliable Storage Systems”-IEEE transaction
on dependable and secure computing.

[11] Reiter.M., “A Secure Group Membership
Protocol,” IEEE Trans. Software Eng., vol. 22,
no. 1, pp. 31-42, Jan. 1996.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

