
A Mediating Layer for Heterogeneous I/O Devices

in Virtual Environments

Jinseok Seo

Division of Digital Contents Technology

Dong-eui University

Busan, Korea

Abstract—In this paper, we propose Hyper I / O, a

middleware that helps users to use a wide range of interactive

devices freely in virtual reality applications. First, we derive an

ontology structure that can accommodate various I / O devices

and interaction techniques, and establish a 2-layer model

between interaction and logical device. In this structure, N:N

mapping between logical devices and physical devices is possible,

and highly flexible I / O programming becomes possible. In

addition, the specification of Hyper I / O devices as well as a

protocol is defined. To do this, we derive the taxonomy of

Hyper devices and developed the protocol using an XML based

markup language.

Keywords— Virtual Reality; Interaction; Multi-Modal;

Middleware

I. INTRODUCTION

With the development of IT technologies, there are now
many computing resources permeated throughout our daily
lives. For example, low power processors and memory
technologies have led to the deployment of high-performance
processors and high-capacity memories in consumer and
office appliances, which had previously been purely
functional. In addition, recently, mobile devices such as
smartphones and table PCs that cross the border between
mobile devices and desktop PCs have higher performance and
storage space than desktop PCs just a few years ago.

The permeating of computing resources is not limited to
physical hardware devices alone. Device developers and
telecommunication companies are working to provide new
content and services suitable for each device or terminal in
order to generate more demand for devices and additional
revenue. In the case of a mobile device, this phenomenon can
be confirmed in cases of services such as browsing the web,
controlling a remote PC, and mobile banking in very small
devices including smartphones and smart watches. Even in
the case of home appliances, following the trend of
convergence, a refrigerator equipped with the internet
connection or an IPTV that provides functions such as
interactive multimedia service, home banking, and home
shopping.

In addition to rapid evolutions and changes in hardware
devices, services, and contents, many changes have been made
to user interfaces by utilizing various sensor technologies in
recent years. In the case of TV, instead of the conventional
remote control buttons, it is possible to adjust the desired
channel and volume with only human gestures or voices. In
the entertainment field, various multimodal interaction based
interfaces are being introduced.

While the various devices, sensors, services, and contents
are permeated around us, not all of them work together
organically. Most device manufacturers and services/content
providers use their own interfaces and I/O devices for their
own benefit. So, although the amount of computing resources
is very large, utilization is not high. In addition, since the
conventional I/O method has a fundamental problem that it
relies on the service provided by an operating system and the
device driver provided by the device manufacturer, there is a
limit to the operating system and application programs that
have to use various external devices.

To use a device with the conventional I/O, application
developers must use the device driver directly or use the
system functions provided by an operating system (See Fig.
1). System functions actually the device driver provided by a
manufacturer, so the application must rely on the device driver
in whatever way. However, since the device driver operates
only on the operating system supported by the manufacturer, it
is difficult to use it in a mobile device or a home appliance
operating on various operating systems.

Fig. 1. Conventional method for I / O with devices

Even if there is no limitation of the operating system in the
conventional I / O method, there is a problem that the device
must be physically connected to the host hardware in which
the device driver is installed. In recent years, USB is widely
used as a physical connection method, but there are many
other devices that use different methods such as serial
RS232C, IEEE 1394, Bluetooth, wireless LAN, and infrared
rays. Desktop PCs basically support a variety of physical
connection methods. However, since mobile devices and
home appliances often support only specific connection
methods, we can not use a device without hardware support to
convert the physical interface scheme

Many researchers have made great efforts to solve the
above problems. In particular, we proposed an idea to
integrate various devices with different platforms or
characteristics, focusing on HCI (Human-Computer Interface)

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020189
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 6 Issue 02, February-2017

272

[1]. However, most studies did not cover a wide range of
devices and operating platforms, and tried to solve problems
from a high-level perspective, such as users or applications.
In this study, we defined a Hyper I/O technology at
middleware level, which is a more fundamental approach to
overcome the limitations of existing solutions, considering the
speed of technology development that changes day by day.

II. RELATED WORKS

It is VRPN [2] that provided the most motive to this study.
VRPN is a library for originally developed for virtual
environment applications. It is composed of classes for using
various VR input devices (tracker, 3D mouse, glove, etc.)
distributed on a network. Complex virtual environment
applications often operate in a distributed environment
consisting of various operating systems. VRPN provides the
same interface regardless of the physical location (the same
process, another process on the local host, a device on a
remote host, a device on a different OS, etc.) of the device.

Our preliminary study, TUI SDK [1], defined a logical
device in the middle layer and applied it to games. In this
study, we developed SDK and authoring tool for a TUI
(Tangible User Interface) computer composed of various input
devices (camera, multi-touch panel, RFID, accelerometer,
gyroscope sensor, button). We also implemented a software
module and included it in our authoring tool so that contents
using the conventional keyboard and mouse can be run on this
computer (See Fig. 2).

Fig. 2. TUI computer including various tangible user interfaces

An example of an XML-based can also be found in 3DML
[3]. 3DML helps you implement the interaction in 3D content
using an XML-based markup language without using a
programming language such as C ++. Basically, it uses data
flow architecture to connect input devices, interaction
methods, and feedback objects.

GlovePIE (Glove Programmable Input Emulator) [4] is a
program that originally started as a utility for games on the PC
platform. Input values from various devices such as joysticks,
game pads, mice, keyboards, MIDI input devices, trackers,
and VR Gloves can be used in various applications including
not only computer games but also general applications such as
MP3 players.

UbicompBrowser [5] interacts with various devices in a
way that extends the WWW (World Wide Web). This project
has two characteristics as follows. The first suggests a way to
send input data from the web to various output devices around
us, including mobile devices. The second is to use Uniform
Resource Identifiers (URIs) to provide consistent access and
control to resources, such as TVs and light switches, as well as
resources on the web.

In this study, they propose “Extended URL” (See Table I)
to access various resources and devices. It can be divided into
“Protocol / Media-type” and “Media Content.” For example,
“tv://local/ARD” means to set the channel to “ARD” on the
TV in the same location as the mobile device you are using,
and “x10://local/light?low” means that it weakens the intensity
of the light. This consistent approach and control scheme not
only has the advantage of being able to manage various
devices and resources very efficiently, but also has the
advantage of utilizing existing HTTP protocol-based resources
and systems as it is when constructing future IoT
environments.

TABLE I. EXTENDED URLS OF UBICOMPBROWSER

URL Protocol / Media Type Media Content

tv://local/ARD television German TV

channel ARD

radio://local/SWR3 radio German radio

station SWR3

x10://local/light?low house automation

control sequence

dim the light low

BEACH (Basic Environment for Active Collaboration
with Hypermedia) [6] project proposes a software architecture
for using various devices with different characteristics in
ubiquitous computing environment. This is similar to the
“UbicompBrowser” above, but it offers a more general and
fundamental solution. More importantly, the implications of
this study are very well summarized in terms of what to
consider to design a middleware similar to the purpose of this
study.

Plan B [7] is an operating system for IoT environments to
be introduced in the near future. Most researchers are
approaching from the perspective of middleware for pervasive
environments such as IoT or ubiquitous computing, but this
study is approaching from the point of view of file system
which is a part of operating system.

Smart Baton [8] system is a remote-control system for
home appliances and office appliances. The basic
configuration of this system uses a PDA combined with a
laser pointer for remote control, and each home appliance and
office machine includes a laser receiver and a network
function.

TABLE II. REQUIREMENTS OF UBIQUITOUS COMPUTING

ENVIRONMENTS

Req. Description

Autonomy It must be processed and operated by itself without human

intervention or manipulation.

Flexibility It should be flexible enough to be applied to various needs.

Organic

Cooperation

Multiple computers must be able to organically combine to

perform complex tasks.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020189
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 6 Issue 02, February-2017

273

Ubiquitous chip [9] is an I/O controller designed
considering future ubiquitous. In this study, ubiquitous
computing environment has three requirements as autonomy,
flexibility, and organic cooperation. Ubiquitous chip is
designed to meet these requirements (See Table II).

In [10], they propose an efficient user interface in the
environment with various heterogeneous devices. There are
two typical features in this study. The first is that the user
interface is transparently distributed to the various display
devices connected through a network. This means that the
components of GUI can be freely distributed regardless of the
type of the platform or the operating system of the display
device. The second feature is that a user interface for a
specific application can be collaborated by sharing with a
large number of users. Each user can freely collaborate with
other users using the user interface of the his/her own display
device.

An example of a “distributed user interface” technique
similar to the one in the previous used for actual medical use
can be found in NOTOS [11]. NOTOS suggests a structure
that allows the user interface to be distributed to dynamically
available devices.

SUPPLE [12] introduces a technique for automatically
generating user interfaces. In this study, they looked at the
problem of creating the most suitable user interface as a
“Decision-theoretic optimization problem,” and aimed at
minimizing the efforts of the user to manipulate the user
interface components to be rendered on the actual device. In
addition to the effort to use each component, they defined the
following three variables as characteristics of each component
(See Table III).

TABLE III. VARIABLES FOR CALCULATING THE PROPERTIES

OF EACH UI COMPONENT

Variable Description

Functional

specification of user

interface

The type of data that will actually be exchanged

between the user and the application

Device model User interface components available on each

device

User model Activity performed by the user on each device

TransCom [13] is a pilot system using a different approach
from the above studies. This system uses a kind of “thin
client” technique, which is designed so that client devices can
use various remote operating systems, applications, and data
regardless of operating system or network protocol type.
Once the operating system on the remote server is received
over the network and booted, you can use the desired
application and data on the remote server as well. Of course,
compared to client devices using proprietary operating
systems, the overhead of network transmission is large.
However, in a near future, network technology that supports
transmission speeds of several tens to hundreds of times will
be realized, so it is not expected to be a big problem. In
addition, as noted in [13], testing using the pilot system took
about 48 seconds to boot the operating system, and the
Microsoft Word 2003 took only 1.26 seconds to start.

III. DEFINITION OF HYPER I/O

The main purpose of this study is to define a Hyper I / O
technology, a middleware for various heterogeneous devices,
to solve the problems mentioned in Chapter 1 above. Hyper I
/ O is a middleware designed to freely use various
heterogeneous devices regardless of operating systems and
application types, as well as interface methods supported by
host devices. In order to process I/O with a device in an
application program, it is necessary to rely solely on the
operating system and the device driver as shown in Fig. 1.
However, when using Hyper I / O middleware (see Fig. 3), we
can freely use the device regardless of the host operating
system and the device driver.

Fig. 3. Role of Hyper I / O middleware

In the past, the middleware approach described above has
been widely used as an intermediary medium between servers
and clients, but recently, a high-speed wireless LAN has been
generalized in addition to a mobile platform having a small
and powerful processor and memory, operating Hyper I/O
middleware on each host platform does not incur large
overhead. In addition, recently, not only mobile platforms
such as smartphones and table PCs, but also home appliances
such as TVs, set-top boxes for IPTV, and refrigerators are
equipped with network functions such as LANs and wireless
LANs.

IV. IMPLEMENTING HYPER I/O

In Fig. 2, Hyper I / O middleware is physically divided
into two parts. One is the system on which an application is
running and the other is the host on which a physical device is
connected. From the point of view of implementation, these
two separate layers can be named “Hyper IO Device Driver”
and “Hyper I / O Mapper”, respectively.

A. Hyper I/O Device Driver

Hyper I / O on the system where an application is running
acts like a generic device driver. Application developers can
use a variety of devices supported by Hyper I / O, which
represent abstractly defined devices.

Prior to implementing a Hyper I / O Device Driver, we
must first analyze and classify the interactions required by
applications. At this point, rather than considering the
limitations and characteristics of physical devices, the focus
should be on the nature of the interaction that will be provided
to users. Once the required interactions are classified, we can

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020189
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 6 Issue 02, February-2017

274

define an abstract device “Hyper Device” and implement a
Hyper I/O Device Driver.

B. Hyper I/O Mapper

The Hyper I / O Mapper on a host where a device is
connected through a physical interface is responsible for
converting the I/O data from the physical device into the I/O
data from the abstract device, Hyper Device. For application
developers and users, the presence of this Hyper I/O Mapper
is not critical, but it is a necessary part of running a physical
device on the Hyper I/O middleware.

To implement the Hyper I/O Mapper, the characteristics of
each physical device must be analyzed. The analyzed
characteristics indicate how each physical device can be used.
Most physical devices can be mapped to multiple Hyper
Devices. In case of a specific Hyper Device, a plurality of
physical devices can be combined to provide a desired I/O
function (See Fig. 4).

Fig. 4. Role of Hyper I / O Mapper

The Hyper I / O Mapper can be seen as a kind of server on
the host where a device is physically connected. As with the
Hyper Device Driver, we can use TCP/IP protocols, but if we
use HTTP / HTTPS, the Hyper I / O Mapper will be part of a
Web server.

V. STRUCTURAL DESIGN OF HYPER I/O

A. Ontology structure of Hyper I / O

The proposed Hyper I/O is designed to focus on two
purposes as follows. The first is independent of operating
systems and hardware platforms, and the second is a wide
range of heterogeneous devices support. In order to meet
these two purposes, we constructed two layers of “Interaction
layer” and “Hyper Device layer” as shown in Fig. 5.

Fig. 5. Two layers of Hyper I / O

In Fig. 5, “Interaction”, “Hyper Device,” and “Network”
do not specifically refer to the physical object, but to an
abstract concept. For example, two layers may reside

physically on the same host or may be on different physical
devices connected to the network. Actually, even a physically
identical device can act as an interaction layer or a Hyper
Device layer.

B. Hyper I/O Device

We use a mobile device or an IT device to communicate
with the application. The physical user interface provided to
the user in these devices is ultimately used to interact with the
application. Based on this, we have focused on the necessary
interactions from the application’s standpoint when devising
Hyper I/O Devices in this study.

In order to provide maximum freedom and flexibility to
application developers, a broad review of various interactions
must be preceded. As a similar case study, we could find a
systematic classification of the interaction techniques used in
the virtual reality system. In [14], they systematically
classified various interaction techniques and evaluated the
performance of each technique. Although this study has been
motivated to classify Hyper I / O devices, it is difficult to
apply it to this study because the category of application
program is limited to 3D virtual reality systems.

VI. EXAMPLES OF USING HYPER I / O

MIDDLEWARE

This Chapter shows how physical devices are used as
Hyper Devices using Hyper I / O middleware. Since it is
beyond the scope of this study to develop a working prototype
or middleware in advance, the contents of this Chapter are for
illustrative purposes only, assuming that real middleware is
implemented.

Fig. 6. An example of using middleware for Hyper Devices

Fig. 6 shows an example of 2 Hyper Devices
(“Position_2D_Abs” and “Position_2D_Rel”) interaction.
Position_2D_Abs and Position_2D_Rel are for moving the
pointer in a 2D-based GUI environment. The resolution of the
screen (range of pointer movement) is 0 to 1024 on the x axis
and 0 to 768 on the y axis. In this example, all three physical
devices are used, demonstrating that the same interaction
technique can be implemented with any device. The
following is a description of each physical device.

A. Mouse

It is a typical physical device used to move pointers in a
2D-based GUI environment. However, in this example, we
can see that the range of movement is different from each
other, because the resolution of the device on which the actual
GUI is displayed and the device using the mouse may be
different. For example, a display device is an HDTV, and a
device to which a mouse is connected is a PC.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020189
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 6 Issue 02, February-2017

275

B. Tracker

A tracker is a typical device used mainly in 3D virtual
reality systems. Depending on the type, it is possible to
measure the direction of 3 axes in the case of the low-cost
type, and a tracker in the high-end class can measure not only
in the direction of the 3 axes, but also in a 3D position. In this
example, we are using a tracker capable of measuring the
direction of 2 axes, one of which is the roll and the other is the
pitch. Tracker-like devices include optical-based trackers
using infrared cameras, camera-based computer vision
commonly used in augmented reality, and gyroscope sensors.

Fig. 7. The XML that defines the Hyper Device in Figure 6

C. Remote Controller

It is a case where a pointer is moved by using a remote
controller, as many cases are already used in HTPCs (Home
Theater PC), HDTVs, and IPTVs. Recently, there is a remote
controller including an analog stick, but in this example, the
pointer is moved using a button. This example shows moving
the pointer by pressing the arrow buttons on the remote
controller. Looking at the XML document in Fig. 7, we can
see that the moving unit is specified as “5” pixels.

The Hyper Device for the Position_2D_Abs and
Position_2D_Rel interactions discussed so far can be defined
as an XML-based markup language as shown in Fig. 7. This
type of markup language has advantages not only in various
operating systems and platforms but also in high-level
network protocols and services such as HTTP.

VII. CONCLUSION

In this study, we defined the Hyper Device and created the
application cases. As a result, it can be confirmed that there is
no need to match the operating system platform for running an
application program and the platform for driving a device.
Application developers and users can use a variety of devices
with an emphasis on the interaction itself, regardless of the
operating system or platform type on which the device is
running. In addition, defining well-defined abstract devices,
such as Hyper Device and Hyper I / O Mapper, can overcome
the physical limitations of devices and reduce the cost of
developing application programs capable of various types of
multimodal interactions.

In the future, it is necessary to examine the results of this
study more closely and to confirm the clarity of the Hyper I /
O technology and the possibility of implementation through
prototyping. Then, if the standardized HCI framework,
middleware ontologies, and protocols are expanded and
developed, it is expected that it will create many economic
added value in the upcoming IoT environment.

REFERENCES

[1] J. Seo, et al., “Implementation of an Authoring Tool for Tangible User
Interface,” Journal of Digital Contents, 8(7), pp. 9-16, 2008.

[2] Taylor II, Russell M., et al. “VRPN: a device-independent, network-
transparent VR peripheral system,” Proceedings of the ACM
symposium on Virtual reality software and technology. ACM, 2001.

[3] P. Figueroa, M. Green, and H. J. Hoover, “3DML: A Language for 3D
Interaction Techniques Specification,” Eurographics, 2001.

[4] C. Kenner, “GlovePIE,” URL: http://glovepie. org/glovepie. php [last
accessed 2013-02-04] (2007).

[5] M. Beigl, A. Schmidt, M. Lauff, and H. W. Gellersen, “the
UbicompBrowser,” Proceedings of the 4th ERCIM Workshop on User
Interface for All, 1998.

[6] P. Tandler, “Software Infrastructure for Ubiquitous Computing
Environments: Supporting Synchronous Collaboration with
Heterogeneous Devices,” Proceedings of UbiComp 201: Ubiquitous
Computing, LNCS 2001, pp. 96-115, 2001.

[7] F. J. Ballesteros, G. Guardiola, K. Leal, E. Soriano, “Plan B: An
Operating System for Ubiquitous Computing Environments,” IEEE
Pervasive Computing, 2006.

[8] A. Saito, M. Minami, Y. Kawahara, H. Morikawa, and T. Aoyama,
“SmartBaton Systems: a universal remote control system in ubiquitous
computing environment,” International Conference on Consumer
Electronics, pp. 308-309, 2003.

[9] T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshihisa, Y. Kishino, A.
Kashitani, and S. Nishio, “Ubiquitous Chip: A Rule-Based I/O Control
Device for Ubiquitous Computing,” LNCS 3001, pp. 238-253, 2004.

[10] K. Luyten and K. Coninx, “Distributed User Interface Elements to
support Smart Interaction Space,” Proceedings of the Seventh IEEE
International Symposium on Multimedia, 2005.

[11] M. Bang, A. Larsson, E. Berglund, and H. Eriksson, “Distributed user
interfaces for clinical ubiquitous computing applications,” International
Journal of Medical Informatics, 545-551, 2005.

[12] K. Gajos, and D. S. Weld, “SUPPLE: Automatically Generating User
Interface,”In Proceedings of IUI’04, 2004.

[13] Y. Zhang, and Y. Zhou, “Transparent Computing: A New Paradigm for
Pervasive Computing,” LNCS 4159, pp. 1-11, 2006.

[14] D. A. Bowman, D. B. Johnson, and L. F. Hodges, “Testbed Evaluation
of Virtual Environment Interaction Techniques,” Presence, Vol. 10, No.
1, pp. 75-95, 2001.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020189
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 6 Issue 02, February-2017

276

