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Abstract

The research  work  considers  four
compartmentalized mathematical model of HIV/AIDS
disease dynamics of the susceptible, removed, latent
and infected classes which are age structure free. The
susceptibles are virus free but are prone to infection
through interaction with the latent and infected
classes. Members of the removed class are not prone
to infection due to their adherence to warnings or
change in behavior through public enlightenment.
The latent class refers to members of the population
that contracted the HIV virus but have no symptom of
AIDS. Members of the infected class are already
manifested with AIDS. The partitioning of the
population resulted into a set of four ordinary
differential equations. Parameter values were used to
represent the consequential interactive
characteristics of the population. The equilibrium
states and the corresponding characteristics equation
were obtained to help in the analysis of the model.
The Bellman and Cooke’s theorvem is applied to
analysed the non zero equilibrium state for stability
or otherwise and bounds obtained for sustenance of

the population.

1. Introduction

The research work proposes a deterministic
mathematical model which is a system of Ordinary
Differential Equations(ODE).ODE  form  very
important mathematical tools used in producing
models of physical and biological processes. Burghes
and Wood [3] opines that “...it could even be
claimed that the spread of modern industrial
civilization, for better or for worse, is partly a result
of man’s ability to solve the differential equations
which govern so many of our industrial processes, be
them chemical or engineering.” According to Benyah
[2], mathematical modeling is an evolving process, as
new insight is gained the process begins again as
additional factors are considered.

The population s

partitioned into  four

compartments of the susceptibles S(t), this is the class
in which members are virus free but are prone to
infection by interaction with the latent and the
infected classes; the second class is the removed R(t),
which is the class of those not susceptible to
infection, possibly due to their yielding to warnings
or changed behavior as a result of public awareness
campaign or enlightenment; the third class is the
latent L(t), this is the class of those that have

contracted

the virus, but have no symptom of the

AIDS disease, the members of this class are still

active in

the population both sexually and

economically. The last class is the infected I(t), in
this class, members already have the manifestation of
the symptoms of AIDS; this class is generally weak
and inactive.

It is assumed that while the new birth of S(t) and
R(t) are born into S(t), the off-springs of L(t) are
divided between S(t) and L(t) in the proportion 6 and
1 - 0 respectively, that is, a proportion 1 - 6 of the
off-springs of L(t) are born with the virus.The four
classes have a natural death rate of p, while the
infected class L(t) has additional death modulus &
arising from the weight of infection.Members of the
class S(t) move into the class R(t) due to change in
behavior or/and as a result of effective public
campaign at a rate y and members of the class L(t)
move in to the class I(t) at the rate . Members of the
class S(t) moved in to the class L(t) at the rate a by
interacting with L(t) or/and I(t)

2. The model equations

S = Susceptible class
R = Removed class
L = Latent class

I = Infected class

P = population

P=S+R+L+I

ds

+ - B

= u-¥y)S() + BR(E) + OBL(H)— x

s@OL® +10] (1)
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i—[: = [¥¥ys(t) — uR(t)] (2)

L =[1-0)8 —p—TIL®)+x SE[L() +

1] 3)
S=(B-p— OO+ TLE) 4
With the parameters given by

B = Natural birth rate for the population

1 = Natural death rate for the infection

& = Death modulus due to infection

o = Rate of contracting the HIV virus

¥¥y = Rate of removal of the susceptibles into the
removed class due to public campaign

T = Rate of flow from the latent class into the
infected class

6 = The proportion of the off-springs of the latent
which are virus free at birth 0 <6 <1

t=Time

3. Equilibrum state of the model

At equilibrium state let

SO RO, LM IM))=(Wxy2) (4
Then, we have that
(B—p—wy¥)W+px+6Py-<wly+z] =0 (5)
¥¥yw —ux =0 (6)

(A=) p-pu—t]ytcw[y+2z]=0 (7)
B-u—-6)Z+1y=0 (8)
From (8)

B-n—-98)z=
-1y

_
z= u+s—p ©)

Substituting (9) in to (7), we obtained

[(1-0)8 — u—lyrcw [y+-2—]=0

p+é—p
{Q-¥0)B - =1l +oxw [1+——]1y=0
y=0 (10)
Or

w+ 6= PIL—¥0)— u—tl+xw(p+ 6 —
p+1)=0

_ (w+8=-p)A—x¥8)p—u-1]
W= «(B—p— 6—¥y¥) an
Adding equations (5)and (7), we obtain
B—pu—wyx)W+px+6 py—owly+z]+ By -6
By —uy —ty+oxwly +z] =0
(B—u—wy)w+Bx+pBy—uy-zy=0

B-u—y=—[f-—u-wy)w+ Bx] (12)
— (B—#;irrv_)ﬂW+ﬁx (13)
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Substituting y = 0 into (12)
[B-pu-sy)w+Bx=0 (14)

From equation (6)

syw-ux=0

w= %x (15)

Substituting (15) into (14), we obtain
{B=n=-) " /sylx+px}=0

x=0

Substituting y = 0 into (8) gives

z=0

and substituting x =y = z = 0 into (5), we obtain w
=0

Hence, the zero equilibrium state is given by

(w, x,y,2) = (0,0,0,0) (16)
From (6)

px =¥y w

_Ysw

X—T (17)

Substituting (11) into (17), we obtain

Loy (uHs—p)[(1-0)B— 1 —]
- BB ~6—y¥) (18)

Putting (11) and (18) into (13) gives

_ B —p—yw)+Bxy](u+6-p)(A-0)p—p —]
y= o< (B ~5-y¥¥) (u+1-B) (19)

Substituting (19) into (9) we obtain

7= {[u B—pu=yo)+py¥1(u+6-pIA-6)p—p —T]} 1
o (B~ p =6-y¥) (p+1-4) pu+6-p

4. The characteristics equation

The Jacobian determinant for the system with the
eigen value  is given by

B—u—yr—xXy—-xZ-x f 0Of-x —xw

Yy U= X 0 ow
xy + «Z 0 [(1-8)p—pu—-T+oc w—x
0 0 T pf-u-t—

=0
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B = n—yr—oxy=
< Z= 2] (=p= 2){[A-O) - p -1+
o w=X][f- p —6= x]-[ex Tw]}

= B y¥{[(1-0) = pu—t+oc w=x][B— pt =6— ][
wl]}

+(0 p— x w)(u +x) (¢ y+o< Z)(B—w— 6— X))+
wu +3)(x y+x Z)T =0

Hence, the characteristics equation is given by

{{B-—u—yr—xy-«
Z= 2] (=p=X)= By H[(1-0) f— p —T+x w— X
18— 1 —6-x]

—[x tw]}t+oc (y + Z)(p +3){(05~
w)(f—u—-6—->)+xtw}=0 (21)

5. Stability analysis of the zero
equilibrium state

At the zero equilibrium state
(w, x,y,2) = (0,0,0,0)
The characteristics equation takes the form

{
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x=pB-u—6 (26)
We note that %, <0, we have that the system will be

stable at the origin if 8 < ¥ p, that is, when the death
modulus is higher than the birth modulus.

6.  Stability analysis of the non-zero
equilibrium state

For the non zero equilibrium state,

_ (u+5-B)[(1-0)p- ]
o«(B-p—-6-y¥) ’

— y3(ut8-pII(A-6)5—p 1]
xp(B—p —6-y¥)

X

[u(B—p—y¥)+By I(n+5-B)(1-0)B—p ]
o (- p =6-y¥)(u+t-p)

y:

)

— @B = p—y)+By3l[(1-6)B—p —1]
ocu (B p —6-y¥)(u+t-p)

To analyse the non zero state for stability, we shall
apply the Bellman and Cooke’s theorem [1] to the
characteristics equation (21) in the formH (X) =0

[6— 1 =3ys—X](—u—>)— By vH[(A-0)p—p—t = X[ f-p =6+K])=) = {[ B-u—-»yv—xy—xz—x] (-u-—

0 (22)
If (6— 1 —syw—X)(—p—X)-Bxy =0
We have

—Bu+ 2y v X u=f N +u N ¥y X + N2
—pBxy =0

N2A2N =X L+ ¥y X +ui-Pu+yrvu-PByx =0
N+ (2 p=B +v¥) X—Pu-Bys + p2+yru =0
Nt 2u=pB+¥y) »=Bu-y¥) +uur+y) =0
N+ Qu=B+yo)x +lu+y)-p1=0
Which is a quadratic equation in X
Hencex1 = —u (23)

Ne=—pu—yy  (24)
Similarly, from equation (22),

X3 = (1-0)B—p—1 (25)

2) = Byy}{[(A-0)B—p—t+oc w —X][B—pu—6— %]

—[oc tw]} +oc (v + 2) (u +3){(65—
X w)(B—pu—6— ) +«< tw}

H (&) = {~p@B-p-y-xy-xz-—x)-x
(B-u-ys¥—x y—x z —X)—fy¥}

{{(1-0)p- u— 4o
W =x]( B~ —8) = \[(1-0)B—p— T+ w —x] -
[ Tw}

+{x(y +2) (u+x) (0 - xw) (f~—p—6->)+
oZTw (y +2) (1 +x)}

H (&) = {~u@B-p-ryy—xy—x<z)+x p—x
(B—p—¥y¥—x y— z) n2—By¥}

{[(1=6)p—p =T+ w]( B— . =6) = »(B—p—6) —
[(1-0)B—pu — T+ w]+x2Z— TW }
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+ {x(y +2) (p+x) (p-xw) (B—pu-6)—
©k(y+  z)(u +x)(0 f— x w) +2 Tw(y+2)
(u+x)}

H (%) = {-u@B-p-wyys—xy—xz) +x p—x
(B—u—y¥y— y— z) +X2—B¥y}

{{(A1-0)p—p— T+
W](B=p=6) = N(B~ 1 —6) = X [(1-0)f— pu— T+
w] +x2—x W }

+{o< u(y+2) (8 B~ o w)( - ~6) +
Not(y+2) (8 B— x w) (B p—8)— > i

(y +2)(6 B~ x w) = N2 (y + 2)(0 f— x w) +
oz utsw (y + z) +xoc2tyw (v + z)}

H) ={2 X [pu—B-p-yrs—xy—xz)] — [
U(B—pu—yr s—x y—x z)] +By¥]} {>?— X

[(B=u—=6) + ((1-0)f-p—t+x w)] +
[((A1-6)~p—t+x w)(B—p—=6) = o Tw} + {~

N2x(y + 2)(0f— xw) + X[x(y + 2) (6f- x w)
(B~u-6)—px(y + 2)(0f-x w)+ozw (y +
2)] + oxcu(y+2)(0 - xw) (f—p—86)+ < p2rw (y
+2)}

H (3) = X2 [(B-p=6) +([(1-0)p—p— 1+
w)] + [(1-0)f—p— T+ w) (f—p—0)

—Tw]} + N[ 4 — (B p—yyy—o y—o z)] {X2
X(B-p1=6) + ((1-0) f—pu -1+

w)] +[((1-0)f— -1+
W) (B~ p=8)~xTW}-[p(B— p—y¥ ¥—X y—
z)+pyx]

{»? N(B-p=86)+((1-0)f—pn -7+
W)+ [((1-0)f—p— T+

w)(B—u—6)—xTw]+{- X2x (y + Z) (6 f-
w)+ X[« (y+ Z)

(0 f-xw)(f-u—6)-pux(y + Z)(0 f—
w)+oZw (y + Z)]+« p(y+2Z) (6 f— o
w)(f—u—6)+e2 pw (y + 2)}

H(:) =XNAN3[( B =8)]+((1-6) B — T+
W)+X2[((1-0)f—p—T+x w)(f—u—6)— < T™W]
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33— (B-u—yry—x y—x z)] - X2
(1= (B-u—wyv—ox y—x z)]

[(B—p=8)+[(1-0)f—p—T+x w)[+x[p —
(B-p—yvv—x y—x 2)][(1-0)f— p — T+

w) (f—p=6)— o< Tw]— 22 [u(Bf- p - yrr—«
y— z + By¥]+x[u(f—u —yr v—x y—x z) +

Bxy] [(f—u=6) + [(1-0)f—pu—T+x W)] —
[u(B—p-y¥ ¥—x y—x z) + By¥]

[((1-6)B- = T4+ox w) (B— p=8)— o TW]— X’
(y+ 2)(8 B o w)+ X [ox(y+ Z)(6 B— o w)

(B-u=8)=poc (y+ Z)(6 f— o w)+ o Tw(y+
)]+ ply+ 2) (6 - o< w)

(B-u=08) + o ut w(y+ 2)

HO)=x 423 [u = (B—p = wyr—x y—x 2) -
(B—u—=6)+((1-0)f—pn -1+

WIHXH[(1-0) - pu—t+x w)(f—p =6)—
W] —[u-(B-p—yys—xy—c |[(f~p-6)] +

((1-0)p—p—t+x w)] —[u(B—p—y¥y—X y—
z + Byx]- «<(y+Z)(6 f— < w)i+x{[u —

(B—pu—wyy—x y—x 2)][(1-0) f— p— T+
w) (f—u—6)— < tw] +[u(f—u—yr v—x y—«

z) + By¥][(f—u—6)+((1-0)f—u-t+x
w)]+[ «(y+2)(0 f-aw) (f— u—6)—p <(y+2)

(6 B— o w)+ o Tw (y+Z)}+ o< u(y+2Z)(6 f- o
w) (= =8)+ou Tw(y+2Z)-

(u(B—pu—wyr—x y—ox z) +
Byx1[((1-60) - p—t+oc w) (f—p—6)— < Tw]

We now set x = 4p,

H(ip)= (ip)* +(p)*{[ p ~( B — p — y¥— x y— xz)] -
[(B-u-6)+((1-0)p-p—1+ W)+
(P)[(1-6) B —p -+ axw) (B —p — 8) —< T W] —
[u(B-u—vyr—xy

—xz)] [(B —p —6) + (1-0) B —p -T+xw)]
—[u (B —p—yr—xy —xz) + Bryy]
—x(y+2) (0 p-ocw)} +ip{[u-(B-pn-v
yy— xy — xz)] [(1-0)p —u — 7 + xw)
(B-p—=0)—xtwl+[uB-p-yr—xy-
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«z)+Bys¥] [(B-pn—-6) + (1-0)B —u—7+
ocw)] [ex(y +2) (6 f—oxw) (f—p—8)—px(y
+2) (0 B — oxw)+oTw (y+ 2)[Hoc u(y + 2) (6
B —ow) (B —p—8)+ oCutw (y+2) - (u (B—p
—y—xy —xz) + B¥y¥) [(1-0) f —p— 7T + xw)
(B-p—06)—xTw]

H (ip) = p*—ip® {[(k ~ (B — p~ y¥ ~xy ~x2)] - [(B

—u=-8)+((1-6) B —p—7+xw)]}
—p2{[(1-0) B —p—T+ W) (B-p—-6)—xT
wl-[pB - - yvr —xy —«z)][(B —u
=8)+((1-0) f—pu— 7 + W)l = [u (B—p —y¥
—xXy—xz)+ By¥] —x(y + 2) (6 B —ow)} + ip
{lp-B-pu—ryr-oy-ocz)] [(1-0) B —u
—THrow) (f-pu-6)—xTw]+[u(B-u-
y¥-xy-o«z)+px] [(B-u-6)  +
((A-6)p —pu=  vrow)][x (y + 2z) (6
B-ow) (B —pu =206 —px (y +2) (6
B—ow)+ o Tw (y + 2)]} F xu(y + 2) (6
B—ocw) (B —p = &)+ uTw (Y +2) = (u (B
—u—yr-y —«z) + Bx] [(1-6) B —p=7 +
ocw) (f—u—98)—x 7w

Resolving into real and imaginary parts,
H (ip) = F(p)+iG(p).
F(p) and G(p) are given respectively by

F(p) = p*- p*{[((1-0) f—u—7 + xw) (B —p—6)
—XTwW]=[u (B -p—yr-xy

—xz)][(B— u=6)+((1-6) - u-t+xw)]
— [u (B— p—y¥—xy—xz)+ Bys]-oc(y+

2)(6 — xw)}+ o (y +2) (6 f—oxw) (B -
=8 +oCutw (y+2z) [ u (B-p- Y-y
—xz) + pys] [(1-6) B —pu—71+ow) (B —p—

&) —x T W]

G = - pH{-B -u - y¢r -y
—z)] =[(B— u=6)+((1-6) - u—t+aw)]}
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+p{[u —(B— u-y¥-xy—z)|[((1-6) p— p—t+ocw) (B
—p=b6)—<Twl+ [ (B— pyv—xy—xz)+ Byv][

(B= p=6)+((1-6) p— p—r+ocw)][ x(y +
2)(0f —oxw) (B—p—8)—pox(y+2z)(6p—oxw)+
o’ TW(y +2)]}

Differentiating with respect to p, we have that

F'(p)+4p°-2p{[((1-0) B— p—t+oxw) (B— pu—6)- Tw
= [n (B= p=yw—oxy—xz)][

(B— pu=6)+((1-6) f— p—t+oxw)] [u (B— p—v¥
—xy-xz)+ Byx] —«(y +z)(6B — xw)}

G'(p) = - 3pHu—-(B -n -yvr —xy -xz)]-
[(B—p—8)+((1-0) p— u—t+xw)]}

+pu =(B— p—yy—xy—xz)][((1-6) B— p—t+txw)(B—p
—6)—X TW]

+ [u (B— u-yy—xy-oz)+ By][
(B— u=6)+((1-6) p— u—t+axw)][ (y +
2(Op-cw) (B - p—0) —px(y + z)( 0
B — ocw)+ o TW( y +2)]

Setting P = 0, we have

F(0) = oxu(y +2)( 6 B — ocw) (B—pu=5) + o ur w( y
+2)

—[u (B— p—y¥—x(y + z))+ By]

[((1-6) p— p—r+ecw) (B p=6)— Tw]
G(0)=0
Fi(0)=0

G'(0) = [-B-pvrx@y +  2)]
[((1-6) B— p—Tt+xw) (B— p—6)—x TW]

+[u (B— u-yy—(y+2))+ Byl[(B— u=86)+((1-0) B
—p-rrow)] [ (y + Z)[(6 B —x
w)(B—pu—6)+x Twl}
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The condition for stability accounting to Bellman and

Cooke is given by

F(0) GY0) - F1(0) G(0) > 0
(27)

Since G(0) = 0, from equation (27)

F(O)G'(0) > 0 (28)

The condition for (28) to hold is
Sign F(0) = sign G*(0) (29).
Conclusion

The system will be stable at the origin if p <y, that is,
the death modulus is higher than the birth modulus,
signifying the state of population extinction. The
stability of the non zero state which is a state of
population sustenance can be attained in meeting the
requirement of inequality (28) and equation (29).
This will help in policy formulation.
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