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Abstract - Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting motor control, with early symptoms including
subtle gait abnormalities and resting tremors. Early detection is crucial for timely intervention and disease management. This paper
presents a low-cost, wearable gait analysis system from an electrical engineering perspective, utilizing an Inertial Measurement Unit
(IMU) sensor with comprehensive signal conditioning and power management circuits, integrated with classical machine learning
algorithms for early tremor prediction. The system employs adaptive power management techniques to ensure extended battery life while
maintaining signal fidelity for accurate feature extraction. Designed with cost-effective commercial-off-the-shelf (COTS) components, the
device incorporates proper signal conditioning, noise filtering, and wireless communication modules. Experimental validation shows
classification accuracy exceeding 90% while achieving 48 hours of continuous operation on a single charge, demonstrating the system's
efficacy as a non-invasive, power-efficient solution for early PD screening and long-term monitoring.
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1. INTRODUCTION

Parkinson's disease remains a significant neurological challenge, with early diagnosis complicated by subtle motor symptom onset.
From an electrical engineering standpoint, developing wearable biomedical devices for PD monitoring requires addressing critical
challenges in signal acquisition integrity, power management, and embedded system design. Traditional clinical assessments
lack continuous monitoring capability and are subject to inter-rater variability. This paper presents an integrated approach
combining analog signal conditioning, digital signal processing, and machine learning classification to create a wearable
system that bridges the gap between clinical accuracy and everyday usability. The system emphasizes electrical design principles
to ensure reliable operation while maintaining low cost and extended battery life.

2. PROBLEM STATEMENT

Existing wearable PD monitoring systems often compromise either signal quality or power efficiency, leading to either short
operational lifespans or inaccurate measurements. Many commercially available systems use unoptimized sensor interfaces that
introduce noise artifacts, while power management is frequently an afterthought rather than a design constraint. There is a critical
need for an electrically optimized system that addresses:

1. Signal integrity through proper sensor interfacing and conditioning
2. Power efficiency through intelligent sleep modes and power gating
3. Cost-effectiveness through careful component selection
4. Reliability through robust circuit design and error handling

3. Objectives

1. To design and prototype an electrically optimized wearable system with:
o Proper IMU sensor interfacing circuits
o Adaptive power management with multiple sleep states
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o Efficient wireless data transmission
o Signal conditioning for noise reduction
2. To develop a hybrid analog-digital signal processing pipeline that maximizes feature extraction accuracy while
minimizing computational load.
To implement energy-aware machine learning algorithms suitable for microcontroller deployment.
4. To validate the system's electrical performance through power measurements, signal-to-noise ratio (SNR) analysis, and
battery life testing.

(08

4. Literature Review: Electrical Design Perspectives

Previous research in wearable PD monitoring has often focused on algorithm development while overlooking electrical design
considerations. Studies have shown that improper sensor mounting and inadequate signal conditioning can introduce motion artifacts
that significantly degrade classification accuracy. Power management strategies in existing systems typically employ simple sleep-
wake cycles without considering the specific power profiles of PD monitoring tasks. Recent advances in ultra-low-power
microcontrollers, energy harvesting techniques, and adaptive sampling algorithms provide opportunities for system
optimization. This work distinguishes itself by integrating electrical design principles with machine learning, creating a system
where hardware and software are co-optimized for PD monitoring.

5. PROPOSED SYSTEM: ELECTRICAL ARCHITECTURE
5.1 Hardware Subsystem Design

5.1.1 Sensor Interface Circuit

IMU (MPU6050) — Analog Front-End — Anti-aliasing Filter — ADC (16-bit)

I2C Interface — Microcontroller

e Analog Front-End: Instrumentation amplifier with gain=10 for weak tremor signals
e  Anti-aliasing Filter: 4th-order Butterworth low-pass filter (fc = 25 Hz)
e ADC Selection: Integrated 16-bit SAR ADC (AX for better noise performance)

5.1.2 Power Management Unit (PMU)

Li-ion Battery (3.7V, 1000mAh) — Buck-Boost Converter (TPS63020)

!
Power Distribution Network

!
[1.8V] IMU Sensor [3.3V] MCU Core [3.3V] Wireless Module

e  Multiple Voltage Domains: Separate LDOs for analog and digital sections

e Dynamic Voltage Scaling: Adjusts MCU frequency based on processing load

o Power Gating: Individual enable/disable for sensor, wireless module, and processing core
5.1.3 Microcontroller Selection Criteria

e ESP32-S3: Dual-core, ultra-low-power modes (10pA in deep sleep)

e Integrated Features: Hardware accelerators for FFT and matrix operations

e Peripheral Optimization: Direct memory access (DMA) for sensor data collection without CPU intervention

5.2 System Architecture Block Diagram
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5.3 Electrical Specifications

| Parameter ” Specification || Design Consideration |
|Operating Voltage ||3.3V 5% ||Optimized for battery discharge curve |
|Current Consumption ||Active: 45mA, Sleep: 12pA ||Enables 48+ hours continuous operation |
|ADC Resolution ||16-bit ||Adequate for 0.01g tremor detection |
|Samp1ing Rate ||C0nﬁgurable: 25-100 Hz ||Adaptive based on activity detection |
|Wire1ess Protocol ||Bluet00th 5.0 Low Energy ||Balance between range and power |
|Battery Life ||>48 hours continuous monitoring ||Achieved through duty cycling (5% active) |
|Signa1 SNR ||>4O dB after conditioning ||Ensures reliable feature extraction |

5.4 Cost Analysis (Indian Market)

IComponent “ Model/Specification HQuantity”Unit Price (?)“Total Cost (?)I
|Microcontroller ||ESP32—S3 (Development Board)”l ||350 ||350 |
IMU Sensor [MPU6050 (6-axis) 1 120 [[120 |
|Li-ion Battery 11000mAR, 3.7V IE 150 1150 |
|Battery Management IC ||TP4056 ||1 ||25 ||25 |
[Buck-Boost Converter | TPS63020 IE 185 |85 |
|Operationa1 Amplifiers ||MCP6002 (Dual Op-Amp) ||2 ||40 ||80 |
|Passive Components R, C, L (SMD packages) Hl set ||100 HIOO |
[PCB Fabrication |[2-1ayer, FR4 IE |[200 200 |
|Enclosure ||3D Printed PLA “1 “50 ||50 |
|Strap & Fasteners ”Adjustable Velcro ||1 set ||60 ||6O |
|Subtotal (Prototype Cost) || H “ ||1,220 |
|Estimated Mass Production”(lOOO units, including assembly)” || ||?750-850 |

Total Prototype Cost: 31,220
Estimated Mass Production Cost: ¥750-850 per unit
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6. METHODOLOGY: ELECTRICAL IMPLEMENTATION

6.1 Signal Acquisition and Conditioning

6.1.1 Analog Signal Path Design

Raw IMU — Instrumentation Amp (G=10) — 1st Stage LPF (fc=50Hz) —

|

2nd Stage Active Filter — Programmable Gain Amp — ADC Input

e Noise Analysis: Calculated input-referred noise = 150uV RMS
e Common Mode Rejection: >80 dB at 60 Hz (power line rejection)
e Dynamic Range: 0-4g with 0.01g resolution (sufficient for tremor detection)

6.1.2 Digital Signal Processing Pipeline

ADC Output — Moving Average Filter — IIR Notch Filter (50/60 Hz) —

|

Bandpass Filter (0.5-12 Hz) — Feature Extraction — Classification

6.2 Power Management Strategy

6.2.1 Multi-level Sleep Architecture

1JERTV 1415120496

Power States Explained

ACTIVE MODE (45 mA)

» Used during walking or activity detection

LIGHT SLEEP (850 pA)

» MCU idle, RAM retained

*Used between gait cycles | "

DEEP SLEEP (12 pA)

» Used during nighttime or extended inactivity

Balancing Performance & Battery Life:

High power when needed, ultra-low power when idle.
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6.2.2 Adaptive Sampling Algorithm

text
if (activity _detected == True):
sampling rate = 100 Hz
enable all peripherals()
elif (suspected _tremor == True):
sampling_rate = 50 Hz
enable IMU_only()
else:
sampling_rate = 10 Hz
enter_light sleep_between_samples()

6.3 Machine Learning Implementation for Embedded Systems
6.3.1 Feature Selection for Power Efficiency
Features selected based on computational complexity and discriminative power:

¢ Low-compute features: Mean, variance, zero-crossing rate
e  Medium-compute features: FFT-based spectral features (hardware accelerated)
e Avoided features: Wavelet transforms (computationally expensive)

6.3.2 Model Optimization for Microcontrollers

e Quantization: 8-bit integer arithmetic for inference
e  Pruning: Removed 40% of least important Random Forest features
e  Memory optimization: Feature calculation in-place to minimize RAM usage

6.4 PCB Design Considerations

Layer Stackup: 4-layer board with dedicated ground plane

Component Placement: Separated analog and digital sections

Routing: Minimized high-speed trace lengths, proper impedance matching
Shielding: EMI shielding for sensor and wireless sections

Test Points: Included for debugging and performance measurement

Nk =

6.5 Dataset Description and Validation Methodology

The machine learning model was trained and evaluated using a publicly available Parkinson’s disease gait and tremor dataset. The
dataset consists of inertial sensor recordings collected from Parkinson’s disease patients and healthy control subjects during
controlled walking and resting tasks. Each sample includes tri-axial accelerometer and gyroscope measurements, recorded at
sampling rates comparable to those used in the proposed wearable system.The recorded signals were segmented into fixed-length
windows and labeled according to subject condition. A 70:30 train—test split was employed along with 5-fold cross-validation to
ensure robustness and to reduce overfitting. Model performance was evaluated using classification accuracy, power consumption
per inference, and memory usage on the target embedded platform.The proposed system is intended for screening and long-term
monitoring and is not designed to replace clinical diagnosis.

7. EXPERIMENTAL RESULTS: ELECTRICAL PERFORMANCE

7.1 Power Consumption Analysis
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| Operation Mode ||Current|| Duration || Energy per Cycle
lActive Processing ||45 mA HZOO ms ||9 mJ

|
|
|Data Transmissi0n||28 mA ||50 ms ||1.4 m] |
ILight Sleep 1850 pA 1.8 11.53 mJ |
[Deep Sleep 12 pA |[Variable  |Minimal |
|Average ||~2.1 mA||Continu0us||Pr0jected: 54 hours|

7.2 Signal Quality Metrics

Signal-to-Noise Ratio: 42.3 dB (after conditioning, 18.7 dB raw)
Effective Number of Bits (ENOB): 13.2 bits (from 16-bit ADC)
Harmonic Distortion: <1% THD at 5 Hz (tremor frequency range)
Crosstalk Between Axes: <-60 dB

7.3 Classification Performance vs. Power Consumption

| Feature Set ||Accuracy||P0wer per Inference”Memory Usage|
|Time-domain only ||86.2% ||2.1 m] ||2.1 KB |
|Frequency—d0main only ||88.7% ||3.8 mJ ||3.5 KB |
|Combined (proposed) ||92.3% ||4.2 mJ ||4.8 KB |
|Deep Learning (baseline)||94. 1% ||82.5 mJ || 156 KB |

7.4 Thermal Performance

e  Maximum temperature rise: 3.2°C above ambient during continuous operation.
e No thermal throttling required.

7.5 Cost-Performance Comparison

| System ||Accuracy||Battery Life” Cost ) ||Cost per 1% Accuracy (?)|
[Proposed System 923%  |[s4hours  |[1,220  [[13.22 |
|Commercial Research Device [1]]/94.1% |24 hours  [[15,000  |[159.40 |
Smartphone-only Solution [2]  ||84.5%  |N/A 0% 0 |
|Clinical Motion Capture 96.8%  |IN/A 8,00,000+]/8,264.46 |

* Assumes user already owns smartphone

8. DISCUSSION: ELECTRICAL ENGINEERING CONTRIBUTIONS
8.1 Innovations in Power Management

The proposed adaptive power management system extends battery life by 300% compared to conventional always-on designs. By
implementing a state machine that transitions between power modes based on detected activity, the system maintains
responsiveness while minimizing energy consumption. The total power budget of 2.1 mA average current is significantly lower
than comparable systems reported in literature (typically 5-10 mA).

8.2 Signal Integrity Enhancements

The custom analog front-end improved SNR by 23.6 dB compared to direct IMU-to-MCU connections. This enhancement proved
critical for detecting early-stage tremors with amplitudes as low as 0.02g. The effective resolution of 13.2 bits from a 16-bit ADC
indicates minimal noise contamination in the signal chain.
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8.3 Cost-Performance Optimization

At %1,220 per prototype unit (3750-850 in mass production), the system achieves a cost-to-performance ratio superior to existing
solutions. The cost per 1% accuracy metric demonstrates that the proposed system provides excellent value, being 12 times more
cost-effective than commercial research devices and 625 times more affordable than clinical motion capture systems.

8.4 Limitations and Mitigations

Battery aging: Implemented coulomb counting for state-of-charge estimation
Wireless interference: Frequency hopping and retry mechanisms in BLE stack
Motion artifacts: Adaptive filtering based on activity classification
Environmental variations: Temperature compensation in sensor calibration

9. FUTURE WORK: ELECTRICAL ENHANCEMENTS

1. Energy Harvesting Integration: Incorporate piezoelectric (3150 additional cost) or thermoelectric harvesting for self-
sustaining operation

2. Advanced Power Management IC: Custom ASIC design integrating PMU, sensor interface, and preprocessing

(estimated cost reduction: *200/unit in volume)

Multi-sensor Fusion: Add EMG sensors (3300 additional) with isolated front-ends for comprehensive motor assessment

Wireless Power Transfer: Qi-standard charging (2250 additional) for improved user convenience

5. FPGA Acceleration: Low-power FPGA for real-time feature extraction (increases cost by *500 but reduces power by
30%)

6. Biocompatible Encapsulation: Medical-grade silicone coating (3100 additional) for long-term wearability

B w

Estimated advanced version cost: ¥1,500-1,800 per unit
10. CONCLUSION

This paper presents an electrically optimized wearable system for early Parkinson's disease detection that balances signal fidelity,
power efficiency, and cost-effectiveness. By applying electrical engineering principles to system design—from analog signal
conditioning to power management and embedded ML implementation—we have developed a practical solution suitable for long-

term home monitoring. The system achieves 92.3% classification accuracy while operating for over 48 hours on a single charge at
a prototype cost of 31,220 (X750-850 in mass production), demonstrating the feasibility of low-cost, high-performance wearable
medical devices. The electrical design optimizations result in a system that is 12 times more cost-effective than commercial
alternatives while maintaining comparable performance. Future work will focus on miniaturization, additional sensor modalities,
and clinical validation with larger patient cohorts.
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12. APPENDIX: CIRCUIT SCHEMATICS AND LAYOUT

A. Bill of Materials (Indian Pricing)

| Part

| |Value/ Type

|Package||Qty||Price ®)||  Supplier

|ESP32-S3 HDeV Board

| it sso

||R0bu.in

IMPU6050  ||6-axis IMU

lQFN24]1 120

[Li-ion Battery|[1000mAh

402030 |1 150

|
|
||E1ementl4 |
|LG India |

|Enclosure ||3D Printed

“Custom Hl “50

HLocal print

[TP4056  ||Charger IC |sop-8 |1 s || Texas Instruments|
ITPS63020  |[Buck-Boost |QFN-101 |85 || Texas Instruments|
IMCP6002  |[Dual Op-Amp  |[SOIC-8 |2 |80 | Microchip |
Resistors  |[0603 SMD lo603 |30 |30 |local |
Capacitors  ][0603 SMD o603 |25 |40 [[1ocal |
Inductors _|[4.7uH logos |3 |30 |TDK |
IPCB |50x50mm, 2-layer]FR4 |1 [200  |[PCBWay India |

I

|T0tal ||

| |20

B. PCB Design Guidelines Followed

Dbk w =

C. Assembly Cost Breakdown (for Mass Production)

| Process

||Cost per Unit (?)|

|PCB Assembly

1150

|Component Procurement||450

|Packaging

50

|T0tal

|
|
ITesting and Calibration “100 |
|
|

1750
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Component Placement: Analog section isolated from digital
Power Traces: 20 mil width for main power lines

Ground Plane: Continuous on bottom layer

Decoupling: 100nF capacitors within 2mm of each IC

Test Points: Included for all critical signals
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