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Abstract - Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting motor control, with early symptoms including 

subtle gait abnormalities and resting tremors. Early detection is crucial for timely intervention and disease management. This paper 

presents a low-cost, wearable gait analysis system from an electrical engineering perspective, utilizing an Inertial Measurement Unit 

(IMU) sensor with comprehensive signal conditioning and power management circuits, integrated with classical machine learning 

algorithms for early tremor prediction. The system employs adaptive power management techniques to ensure extended battery life while 

maintaining signal fidelity for accurate feature extraction. Designed with cost-effective commercial-off-the-shelf (COTS) components, the 

device incorporates proper signal conditioning, noise filtering, and wireless communication modules. Experimental validation shows 

classification accuracy exceeding 90% while achieving 48 hours of continuous operation on a single charge, demonstrating the system's 

efficacy as a non-invasive, power-efficient solution for early PD screening and long-term monitoring. 
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1. INTRODUCTION 

Parkinson's disease remains a significant neurological challenge, with early diagnosis complicated by subtle motor symptom onset. 

From an electrical engineering standpoint, developing wearable biomedical devices for PD monitoring requires addressing critical 

challenges in signal acquisition integrity, power management, and embedded system design. Traditional clinical assessments 

lack continuous monitoring capability and are subject to inter-rater variability. This paper presents an integrated approach 

combining analog signal conditioning, digital signal processing, and machine learning classification to create a wearable 

system that bridges the gap between clinical accuracy and everyday usability. The system emphasizes electrical design principles 

to ensure reliable operation while maintaining low cost and extended battery life. 

2. PROBLEM STATEMENT 

Existing wearable PD monitoring systems often compromise either signal quality or power efficiency, leading to either short 

operational lifespans or inaccurate measurements. Many commercially available systems use unoptimized sensor interfaces that 

introduce noise artifacts, while power management is frequently an afterthought rather than a design constraint. There is a critical 

need for an electrically optimized system that addresses: 

1. Signal integrity through proper sensor interfacing and conditioning 

2. Power efficiency through intelligent sleep modes and power gating 

3. Cost-effectiveness through careful component selection 

4. Reliability through robust circuit design and error handling 

3. Objectives 

1. To design and prototype an electrically optimized wearable system with: 

o Proper IMU sensor interfacing circuits 

o Adaptive power management with multiple sleep states 
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o Efficient wireless data transmission 

o Signal conditioning for noise reduction 

2. To develop a hybrid analog-digital signal processing pipeline that maximizes feature extraction accuracy while 

minimizing computational load. 

3. To implement energy-aware machine learning algorithms suitable for microcontroller deployment. 

4. To validate the system's electrical performance through power measurements, signal-to-noise ratio (SNR) analysis, and 

battery life testing. 

4. Literature Review: Electrical Design Perspectives 

Previous research in wearable PD monitoring has often focused on algorithm development while overlooking electrical design 

considerations. Studies have shown that improper sensor mounting and inadequate signal conditioning can introduce motion artifacts 

that significantly degrade classification accuracy. Power management strategies in existing systems typically employ simple sleep-

wake cycles without considering the specific power profiles of PD monitoring tasks. Recent advances in ultra-low-power 

microcontrollers, energy harvesting techniques, and adaptive sampling algorithms provide opportunities for system 

optimization. This work distinguishes itself by integrating electrical design principles with machine learning, creating a system 

where hardware and software are co-optimized for PD monitoring. 

5. PROPOSED SYSTEM: ELECTRICAL ARCHITECTURE 

5.1 Hardware Subsystem Design 

5.1.1 Sensor Interface Circuit 

 

IMU (MPU6050) → Analog Front-End → Anti-aliasing Filter → ADC (16-bit) 

       ↓ 

  I²C Interface → Microcontroller 

• Analog Front-End: Instrumentation amplifier with gain=10 for weak tremor signals 

• Anti-aliasing Filter: 4th-order Butterworth low-pass filter (fc = 25 Hz) 

• ADC Selection: Integrated 16-bit SAR ADC (ΔΣ for better noise performance) 

5.1.2 Power Management Unit (PMU) 

  

Li-ion Battery (3.7V, 1000mAh) → Buck-Boost Converter (TPS63020) 

       ↓ 

  Power Distribution Network 

       ↓ 

[1.8V] IMU Sensor  [3.3V] MCU Core  [3.3V] Wireless Module 

• Multiple Voltage Domains: Separate LDOs for analog and digital sections 

• Dynamic Voltage Scaling: Adjusts MCU frequency based on processing load 

• Power Gating: Individual enable/disable for sensor, wireless module, and processing core 

5.1.3 Microcontroller Selection Criteria 

• ESP32-S3: Dual-core, ultra-low-power modes (10μA in deep sleep) 

• Integrated Features: Hardware accelerators for FFT and matrix operations 

• Peripheral Optimization: Direct memory access (DMA) for sensor data collection without CPU intervention 

5.2 System Architecture Block Diagram 
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5.3 Electrical Specifications 

Parameter Specification Design Consideration 

Operating Voltage 3.3V ±5% Optimized for battery discharge curve 

Current Consumption Active: 45mA, Sleep: 12μA Enables 48+ hours continuous operation 

ADC Resolution 16-bit Adequate for 0.01g tremor detection 

Sampling Rate Configurable: 25-100 Hz Adaptive based on activity detection 

Wireless Protocol Bluetooth 5.0 Low Energy Balance between range and power 

Battery Life >48 hours continuous monitoring Achieved through duty cycling (5% active) 

Signal SNR >40 dB after conditioning Ensures reliable feature extraction 

5.4 Cost Analysis (Indian Market) 

Component Model/Specification Quantity Unit Price (₹) Total Cost (₹) 

Microcontroller ESP32-S3 (Development Board) 1 350 350 

IMU Sensor MPU6050 (6-axis) 1 120 120 

Li-ion Battery 1000mAh, 3.7V 1 150 150 

Battery Management IC TP4056 1 25 25 

Buck-Boost Converter TPS63020 1 85 85 

Operational Amplifiers MCP6002 (Dual Op-Amp) 2 40 80 

Passive Components R, C, L (SMD packages) 1 set 100 100 

PCB Fabrication 2-layer, FR4 1 200 200 

Enclosure 3D Printed PLA 1 50 50 

Strap & Fasteners Adjustable Velcro 1 set 60 60 

Subtotal (Prototype Cost) 1,220 

Estimated Mass Production (1000 units, including assembly) ₹750-850 

Total Prototype Cost: ₹1,220 

Estimated Mass Production Cost: ₹750-850 per unit 
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6. METHODOLOGY: ELECTRICAL IMPLEMENTATION

6.1 Signal Acquisition and Conditioning 

6.1.1 Analog Signal Path Design 

Raw IMU → Instrumentation Amp (G=10) → 1st Stage LPF (fc=50Hz) → 

    ↓ 

2nd Stage Active Filter → Programmable Gain Amp → ADC Input 

• Noise Analysis: Calculated input-referred noise = 150μV RMS

• Common Mode Rejection: >80 dB at 60 Hz (power line rejection)

• Dynamic Range: 0-4g with 0.01g resolution (sufficient for tremor detection)

6.1.2 Digital Signal Processing Pipeline 

ADC Output → Moving Average Filter → IIR Notch Filter (50/60 Hz) → 

    ↓ 

Bandpass Filter (0.5-12 Hz) → Feature Extraction → Classification 

6.2 Power Management Strategy 

6.2.1 Multi-level Sleep Architecture 
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6.2.2 Adaptive Sampling Algorithm 

text 

if (activity_detected == True): 

    sampling_rate = 100 Hz 

    enable_all_peripherals() 

elif (suspected_tremor == True): 

    sampling_rate = 50 Hz 

    enable_IMU_only() 

else: 

    sampling_rate = 10 Hz 

    enter_light_sleep_between_samples() 

6.3 Machine Learning Implementation for Embedded Systems 

6.3.1 Feature Selection for Power Efficiency 

Features selected based on computational complexity and discriminative power: 

• Low-compute features: Mean, variance, zero-crossing rate

• Medium-compute features: FFT-based spectral features (hardware accelerated)

• Avoided features: Wavelet transforms (computationally expensive)

6.3.2 Model Optimization for Microcontrollers 

• Quantization: 8-bit integer arithmetic for inference

• Pruning: Removed 40% of least important Random Forest features

• Memory optimization: Feature calculation in-place to minimize RAM usage

6.4 PCB Design Considerations 

1. Layer Stackup: 4-layer board with dedicated ground plane

2. Component Placement: Separated analog and digital sections

3. Routing: Minimized high-speed trace lengths, proper impedance matching

4. Shielding: EMI shielding for sensor and wireless sections

5. Test Points: Included for debugging and performance measurement

6.5 Dataset Description and Validation Methodology 

The machine learning model was trained and evaluated using a publicly available Parkinson’s disease gait and tremor dataset. The 

dataset consists of inertial sensor recordings collected from Parkinson’s disease patients and healthy control subjects during 

controlled walking and resting tasks. Each sample includes tri-axial accelerometer and gyroscope measurements, recorded at 

sampling rates comparable to those used in the proposed wearable system.The recorded signals were segmented into fixed-length 

windows and labeled according to subject condition. A 70:30 train–test split was employed along with 5-fold cross-validation to 

ensure robustness and to reduce overfitting. Model performance was evaluated using classification accuracy, power consumption 

per inference, and memory usage on the target embedded platform.The proposed system is intended for screening and long-term 

monitoring and  is not designed to replace clinical diagnosis. 

7. EXPERIMENTAL RESULTS: ELECTRICAL PERFORMANCE

7.1 Power Consumption Analysis 
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Operation Mode Current Duration Energy per Cycle 

Active Processing 45 mA 200 ms 9 mJ 

Data Transmission 28 mA 50 ms 1.4 mJ 

Light Sleep 850 μA 1.8 s 1.53 mJ 

Deep Sleep 12 μA Variable Minimal 

Average ~2.1 mA Continuous Projected: 54 hours 

7.2 Signal Quality Metrics 

• Signal-to-Noise Ratio: 42.3 dB (after conditioning, 18.7 dB raw)

• Effective Number of Bits (ENOB): 13.2 bits (from 16-bit ADC)

• Harmonic Distortion: <1% THD at 5 Hz (tremor frequency range)

• Crosstalk Between Axes: <-60 dB

7.3 Classification Performance vs. Power Consumption 

Feature Set Accuracy Power per Inference Memory Usage 

Time-domain only 86.2% 2.1 mJ 2.1 KB 

Frequency-domain only 88.7% 3.8 mJ 3.5 KB 

Combined (proposed) 92.3% 4.2 mJ 4.8 KB 

Deep Learning (baseline) 94.1% 82.5 mJ 156 KB 

7.4 Thermal Performance 

• Maximum temperature rise: 3.2°C above ambient during continuous operation.

• No thermal throttling required.

7.5 Cost-Performance Comparison 

System Accuracy Battery Life Cost (₹) Cost per 1% Accuracy (₹) 

Proposed System 92.3% 54 hours 1,220 13.22 

Commercial Research Device [1] 94.1% 24 hours 15,000 159.40 

Smartphone-only Solution [2] 84.5% N/A 0* 0 

Clinical Motion Capture 96.8% N/A 8,00,000+ 8,264.46 

*Assumes user already owns smartphone

8. DISCUSSION: ELECTRICAL ENGINEERING CONTRIBUTIONS

8.1 Innovations in Power Management 

The proposed adaptive power management system extends battery life by 300% compared to conventional always-on designs. By 

implementing a state machine that transitions between power modes based on detected activity, the system maintains 

responsiveness while minimizing energy consumption. The total power budget of 2.1 mA average current is significantly lower 

than comparable systems reported in literature (typically 5-10 mA). 

8.2 Signal Integrity Enhancements 

The custom analog front-end improved SNR by 23.6 dB compared to direct IMU-to-MCU connections. This enhancement proved 

critical for detecting early-stage tremors with amplitudes as low as 0.02g. The effective resolution of 13.2 bits from a 16-bit ADC 

indicates minimal noise contamination in the signal chain. 
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• Battery aging: Implemented coulomb counting for state-of-charge estimation

• Wireless interference: Frequency hopping and retry mechanisms in BLE stack

• Motion artifacts: Adaptive filtering based on activity classification

• Environmental variations: Temperature compensation in sensor calibration

9. FUTURE WORK: ELECTRICAL ENHANCEMENTS

1. Energy Harvesting Integration: Incorporate piezoelectric (₹150 additional cost) or thermoelectric harvesting for self-

sustaining operation

2. Advanced Power Management IC: Custom ASIC design integrating PMU, sensor interface, and preprocessing

(estimated cost reduction: ₹200/unit in volume)

3. Multi-sensor Fusion: Add EMG sensors (₹300 additional) with isolated front-ends for comprehensive motor assessment

4. Wireless Power Transfer: Qi-standard charging (₹250 additional) for improved user convenience

5. FPGA Acceleration: Low-power FPGA for real-time feature extraction (increases cost by ₹500 but reduces power by

30%)

6. Biocompatible Encapsulation: Medical-grade silicone coating (₹100 additional) for long-term wearability

Estimated advanced version cost: ₹1,500-1,800 per unit 

10. CONCLUSION

This paper presents an electrically optimized wearable system for early Parkinson's disease detection that balances signal fidelity, 

power efficiency, and cost-effectiveness. By applying electrical engineering principles to system design—from analog signal 

conditioning to power management and embedded ML implementation—we have developed a practical solution suitable for long-

8.3 Cost-Performance Optimization 

At ₹1,220 per prototype unit (₹750-850 in mass production), the system achieves a cost-to-performance ratio superior to existing 

solutions. The cost per 1% accuracy metric demonstrates that the proposed system provides excellent value, being 12 times more 

cost-effective than commercial research devices and 625 times more affordable than clinical motion capture systems. 

8.4 Limitations and Mitigations 

term home monitoring. The system achieves 92.3% classification accuracy while operating for over 48 hours on a single charge at 

a prototype cost of ₹1,220 (₹750-850 in mass production), demonstrating the feasibility of low-cost, high-performance wearable 

medical devices. The electrical design optimizations result in a system that is 12 times more cost-effective than commercial 

alternatives while maintaining comparable performance. Future work will focus on miniaturization, additional sensor modalities, 

and clinical validation with larger patient cohorts. 
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12. APPENDIX: CIRCUIT SCHEMATICS AND LAYOUT

A. Bill of Materials (Indian Pricing)

Part Value/Type Package Qty Price (₹) Supplier 

ESP32-S3 Dev Board - 1 350 Robu.in 

MPU6050 6-axis IMU QFN-24 1 120 Element14 

Li-ion Battery 1000mAh 402030 1 150 LG India 

TP4056 Charger IC SOP-8 1 25 Texas Instruments 

TPS63020 Buck-Boost QFN-10 1 85 Texas Instruments 

MCP6002 Dual Op-Amp SOIC-8 2 80 Microchip 

Resistors 0603 SMD 0603 30 30 local 

Capacitors 0603 SMD 0603 25 40 local 

Inductors 4.7μH 0805 3 30 TDK 

PCB 50x50mm, 2-layer FR4 1 200 PCBWay India 

Enclosure 3D Printed Custom 1 50 Local print 

Total 1,220 

B. PCB Design Guidelines Followed

1. Component Placement: Analog section isolated from digital

2. Power Traces: 20 mil width for main power lines

3. Ground Plane: Continuous on bottom layer

4. Decoupling: 100nF capacitors within 2mm of each IC

5. Test Points: Included for all critical signals

C. Assembly Cost Breakdown (for Mass Production)

Process Cost per Unit (₹) 

PCB Assembly 150 

Component Procurement 450 

Testing and Calibration 100 

Packaging 50 

Total 750 
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