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Abstract—Big Data concern large-volume, complex,
growing data sets  with multiple, autonomous
sources. With the fast development of networking,
data storage, and the data collection capacity,
Big Data are now rapidly expanding in all

Along with the above example, the era of Big Data
has arrived [37], [34], [29]. Every day, 2.5 quintillion
bytes of data are created and 90 percent of the data
in the world today were produced within the past two
years [26]. Our capability for data generation has never

science and ~ engineering domains, including been so powerful and enormous ever since the
physical,  biological and biomedical sciences. This invention of the information technology in the early
paper presents a  HACE theorem  that 19th century. As another example, on 4 October
characterizes the features of the Big Data 2012, the first presidential debate between President
revolution, and proposes a Big Data processing Barack Obama and Governor Mitt  Romney
model, from the data  mining perspective. This triggered more than 10 million tweets within 2 hours
data-driven model involves demand-driven [46]. Among  all these tweets, the specific
aggregation of information sources, mining and moments that generated the most discussions actually
analysis, user interest modeling, and security revealed the public interests, such as the discussions
and privacy considerations. We analyze the about medicare and vouchers. Such online discussions
challenging issues in the data-driven model and provide a new means

also in the Big Data revolution. to sense the public interests and generate feedback in

real- time, and are mostly appealing compared to
Keywords—big data; HACE theorem; security: generic media, such as _radlo or TV proadca_stmg.
privacy Another  example is Flickr, a public  picture

sharing site, which received

1.8 million photos per day, on average, from

D 1 INTRODUCTION February to

R.Yan Mo won the 2012 Nobel Prize in Literature. March 2012 [35]. Assuming the size of each
This is probably the most controversial Nobel prize of photo is

this category. Searching on Google with “Yan Mo 2 megabytes (MB), this requires 3.6 terabytes (TB)
Nobel Prize,” resulted in 1,050,000 web pointers on storage every single day. Indeed, as an old saying
the Internet (as of _ o states: “a picture is worth a thousand words,” the
3 January 2013). “For all praises as well as criticisms,” billions of pictures on Flicker are a treasure tank for
said Mo recently, “l am grateful.” What types of us to explore the human society, social events, public
praises and criticisms has Mo actually received over his affairs, disasters, and so on, only if we have the power
31-year writing career? As comments keep coming on to harness the enormous amount of data. The above
the Internet and invarious news media, can we examples demonstrate  the rise of Big Data
summarize all types of opinions in different media in applications where data  collection has  grown
a real-time fashion, including updated, cross-referenced tremen- dously  and is beyond the ability
discussions by critics? This type of summarization of commonly used software tools to capture,

program is an excellent example for Big
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manage, and process within a “tolerable elapsed time.”
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Fig. 1. The blind men and the giant elephant: the localized (limited)
view of each blind man leads to a biased conclusion.

Big Data mining. Some key research initiatives and
the authors’ national research projects in this field are
outlined in Section 4. Related work is discussed in Section
5, and we conclude the paper in Section 6.

2 Bic DATA CHARACTERISTICS: HACE

THEOREM

HACE Theorem. Big Data starts  with large-volume,
heterogeneous, autonomous sources with distributed and
decentralized control, and seeks to explore complex
and evolving relationships among data.

These characteristics make it an extreme challenge

for
discovering useful knowledge from the Big Data. In
anaive sense, we can imagine that a number of blind
men are trying to size up a giant elephant (see Fig.
1), which will be the Big Data in this context. The goal
of each blind man is to draw a picture (or conclusion)
of the elephant according to the part of information he
collects during the process. Because each person’s view
is limited to his local region, it is not surprising that
the blind men will each conclude independently that
the elephant “feels” like arope, a hose, or a wall,
depending on the region each of them is limited to.
To make the problem even more complicated, let us
assume that 1) the elephant is growing rapidly and its
pose changes constantly, and 2) each blind man may
have his own (possible unreliable and inaccu- rate)
information sources that tell him about biased
knowledge about the elephant (e.g., one blind man
may exchange his feeling about the elephant with
another blind man, where the exchanged knowledge
is inherently biased). Exploring the Big Data in
this scenario is equivalent to  aggregating
heterogeneous information from different sources (blind
men) to help draw a best possible picture to reveal the
genuine gesture of the elephant in a real-time fashion.
Indeed, this task is not as simple asasking each
blind man to describe his feelings about the elephant
and then getting an expert to draw one single
picture with a combined view, concerning that
each individual may  speak a different language
(heterogeneous and diverse information sources) and they

may even have privacy concerns about the messages they
deliberate in the information exchange process.

21 Huge Data with Heterogeneous and
Diverse

Dimensionality
One of the fundamental characteristics of the Big Data is
the huge volume of data represented by heterogeneous
and diverse dimensionalities. This is because different
informa- tion collectors prefer their own schemata or
protocols for data recording, and the nature of different
applications also results in diverse data representations.
For example, each single human being in a
biomedical world can be represented by using simple
demographic information such as gender, age, family
disease history, and so on. For X-ray examination and
CT scan of each individual, images or videos are
used to represent the results because they provide
visual information for doctors to carry detailed
examinations. For a DNA or genomic-related test,
micro- array expression images and sequences are
used to represent the genetic code information because
this is the way that our current techniques acquire the
data. Under such circumstances, the heterogeneous
features refer to the different types of representations for
the same individuals, and the diverse features refer to
the variety of the features involved to represent each
single observation. Imagine that different organizations (or
health  practitioners) may have their own schemata to
represent each patient, the data heterogeneity and diverse
dimensionality issues become major challenges if we are
trying to enable data aggregation by combining data
from all sources.

2.2 Autonomous Sources with Distributed and
Decentralized Control

Autonomous data sources with  distributed and
decentra- lized controls are a main characteristic of Big
Data applications. Being autonomous, each data source
is able to generate and collect information without
involving (or relying on) any centralized control. This
is similar to the World Wide Web (WWW) setting where
each web server provides a certain amount of information
and each server is able to fully function without
necessarily relying on other servers. On the other hand,
the enormous volumes of the data also make an
application vulnerable to attacks or malfunctions, if the
whole system has to rely on any centralized control
unit. For major Big Data-related applica- tions, such as
Google, Flicker, Facebook, and Walmart, a large
number of server farms are deployed all over the
world to ensure nonstop services and quick responses for
local markets. Such autonomous sources are not only
the solutions of the technical designs, but also the results
of the legislation and the regulation rules in different
countries/ regions. For example, Asian markets of
Walmart are inherently different from its North
American markets in terms of seasonal promotions, top
sell items, and customer behaviors. More specifically,
the local government regula- tions also impact on the
wholesale management process and result in restructured
data representations and data warehouses for local
markets.
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2.3 Complex and Evolving Relationships

While the volume of the Big Data increases, so do
the complexity and the relationships underneath the data.
In an early stage of data centralized information
systems, the focus is on finding best feature values to
represent each observation. This is similar to using a
number of data fields, such as age, gender, income,
education background, and so on, to characterize each
individual. This type of sample- feature representation
inherently treats each individual as an independent entity
without considering their social connections, which is
one of the most important factors of

.

Information Sharing

Mining Complex and and Data Privacy

Dynamic Data Model Fusion

Big Data
Mining
Platform

Big Data Applications
and Knowledge

Mining from Sparse,
Uncertain, and
Incomplete Data

Fig. 2. ABig Data processing framework: The research challenges

form a three tier structure and center around the “Big Data mining

platform” (Tier I), which focuses on low-level data accessing and

computing. Challenges on information sharing and privacy, and Big
Data application domains and knowledge form Tier Il, which

concentrates on high-level semantics, application domain knowledge,
and user privacy issues. The outmost circle shows Tier 11l

challenges on actual mining algorithms.

the human society. Our friend circles may be formed
based on the common hobbies or people are
connected by biological relationships. Such social
connections commonly exist not only in our daily
activities, but also are very popular in cyberworlds. For
example, major social network sites, such as Facebook or
Twitter, are mainly characterized by social functions such
as friend-connections and followers (in Twitter). The
correlations between individuals inherently complicate the
whole data representation and any reasoning process on
the  data. In the  sample-feature representation,
individuals are regarded similar if they share similar
feature values, whereas in the sample-feature-
relationship repre- sentation, two individuals can be
linked together (through their social connections) even
though they might share nothing in common in the
feature domains at all. In a dynamic world, the
features used to represent the indivi- duals and the
social ties used to represent our connections may also
evolve with respect to temporal, spatial, and other
factors. Such a complication is becoming part of the
reality for Big Data applications, where the key is to
take the complex (nonlinear, many-to-many) data
relationships, along with  the evolving changes, into
consideration, to discover useful patterns from Big Data
collections.

Local Learning and

3 DATA MINING CHALLENGES WITH BIG

DATA

For an intelligent learning database system [52] to
handle Big Data, the essential key is to scale up to the
exceptionally large volume of data and provide
treatments for the characteristics featured by the
aforementioned HACE theorem. Fig. 2 shows a
conceptual view of the Big Data processing framework,
which includes three tiers from inside out with
considerations on data accessing and computing (Tier
), data privacy and domain knowledge (Tier II), and
Big Data mining algorithms (Tier III).

The challenges at Tier | focus on data accessing

and
arithmetic computing procedures. Because Big Data
are often stored at different locations and data

volumes may continuously  grow, an  effective
computing platform will have  to take distributed
large-scale data storage into consideration  for

computing. For  example, typical data mining
algorithms require all data to be loaded into the main
memory, this, however, is becoming a clear technical
barrier for Big Data because moving data across
different locations is expensive (e.g., subject to
intensive network communication and other 10 costs),
even if we do have asuper large main memory to hold
all data for computing.

The challenges at Tier Il center around semanticsand
domain knowledge for different Big Data applications.
Such information can provide additional benefits to the
mining process, as well as add technical barriers to the
Big Data access (Tier I) and mining algorithms (Tier 1I).
For example, depending  on different  domain
applications, the data privacy and information sharing
mechanisms between data producers and data consumers
can be significantly differ- ent. Sharing sensor network
data for applications like water quality monitoring may
not be discouraged, whereas releasing and sharing mobile
users’ location information is clearly not acceptable for
majority, if not all, applications. In addition to the
above privacy issues, the application domains can
also provide additional information to benefit or guide
Big Data mining algorithm designs. For example, in
market basket transactions data, each transaction is
considered independent and the discovered knowledge
is typically represented by finding highly correlated
items, possibly with respect to different temporal and/or
spatial restrictions. In a social network, on the other hand,
users are linked and share dependency structures. The
knowledge is then represented by user communities,
leaders in each group, and social influence modeling, and
so on. Therefore, understanding semantics and application
knowledge is important for both low-level data access
and for high-level mining algorithm designs.

At Tier lll, the data mining challenges concentrate

on
algorithm designs in tackling the difficulties raised by
the Big Data volumes, distributed data distributions,
and by complex and dynamic data characteristics.
The circle at Tier Ill contains three stages. First,
sparse,  heterogeneous, uncertain, incomplete, and
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multisource data are prepro- cessed by data fusion
techniques. Second, complex and dynamic data are
mined after preprocessing.  Third, the global
knowledge obtained by local learning and model
fusion istested and relevant information is fedback to the
preprocessing stage. Then, the model and parameters
are adjusted according to the feedback. In the whole
process, information sharing is not only a promise of
smooth development of each stage, but also a purpose of
Big Data processing.

In the following, we elaborate challenges with respect

to the three tier framework in Fig. 2.

3.1 Tier 1: Big Data Mining

Platform

In typical data mining  systems, the  mining
procedures require  computational intensive computing
units for data analysis and comparisons. A computing
platform is, therefore, needed to have efficient access
to, at least, two types of resources: data and
computing  processors. For small scale data mining
tasks, a single desktop computer, which contains hard
disk and CPU processors, is sufficient to fulfill the data
mining goals. Indeed, many data mining algorithm are
designed for this type of problem settings. For medium
scale data mining tasks, data are typically large (and
possibly distributed) and cannot be fit into the main
memory. Common solutions are to rely on parallel
computing [43], [33] or collective mining [12] to
sample and aggregate data from different sources and
then use parallel computing programming (such  as
the Message Passing Interface) to carry out the mining
process.

For Big Data mining, because data scale is far

beyond
the capacity that a single personal computer (PC) can
handle, a typical Big Data processing framework will rely
on cluster computers  with a  high-performance
computing platform, with a data mining task being
deployed by running  some paralle | programming
tools, such as MapR educe or Enterprise Control
Language (ECL), on a large number of computing nodes
(i.e., clusters). The role of the software component is to
make sure that a single data mining task, such as
finding the best match of a query from a database with
billions of records, is split into many small tasks each of
which is running on one or multiple computing nodes.
For example, as of this writing, the world most
powerful super computer Titan, which is deployed at Oak
Ridge National Laboratory in Tennessee, contains 18,688
nodes each with a
16-core
CPU.

Such a Big Data system, which blends both
hardware and software components, is hardly available
without  key industrial stockholders’ support. In fact,
for decades, companies have been making business
decisions based on transactional data stored in relational
databases. Big Data mining offers opportunities to go
beyond traditional relational databases to rely on less
structured data: weblogs, social media, e-mail, sensors,
and photographs that can be mined for  useful
information. Major business intelligence companies, such
IBM, Oracle, Teradata, and so on, have all featured their

own products to help customers acquire and organize
these diverse data sources and coordinate with
customers’ existing data to find new insights and
capitalize on hidden relationships.

3.2 Tier 1lI: Big Data Semantics and
Application
Knowledge

Semantics and application knowledge in Big Data refer to
numerous aspects related to the regulations, policies,
user knowledge, and domain information. The two most
important issues at this tier include 1) data sharing
and privacy; and 2) domain and application
knowledge.  The former provides answers to resolve
concerns on how data are maintained, accessed, and
shared; whereas the latter focuses on answering
questions like “what are the under- lying applications
?” and “what are the knowledge or patterns users
intend to discover from the data ?”

3.2.1 Information Sharing and Data

Privacy

Information sharing is an ultimate goal for all
systems involving multiple  parties [24]. While the
motivation for sharing is clear, a real-world concern is
that Big Data applications are related to sensitive
information, such as banking transactions and medical
records. Simple data exchanges or transmissions do not
resolve privacy con- cerns [19], [25], [42]. For
example, knowing people’s locations and their
preferences, one can enable a variety of useful
location-based services, but public disclosure of an
individual’s locations/movements over time can have
serious consequences for privacy. To protect privacy,
two common approaches are to 1) restrict access to the
data, such as adding certification or access control to
the data entries, so sensitive information is accessible
by a limited group of users only, and 2) anonymize data
fields such that sensitive information cannot be
pinpointed to an indivi- dual record [15]. For the first
approach, common chal- lenges are to design secured
certification or access control mechanisms, such that no
sensitive information can be misconducted by unauthorized
individuals. For data anonymization, the main objective
is to inject randomness into the data to ensure a
number of privacy goals. For example, the most
common k-anonymity privacy measure is to ensure that
each individual in the database  must be
indistinguishable from  k 1 others. Common
anonymiza- tion approaches are to use suppression,
generalization, perturbation, and permutation  to
generate an altered version of the data, which is, in
fact, some uncertain data.

One of the major benefits of the data annomization-
based
information  sharing
anonymized,
data can be freely shared across different parties
without involving restrictive access controls. This naturally
leads to another  research  area namely  privacy
preserving data mining [30], where multiple parties,
each holding some sensitive data, are trying to achieve a
common data mining goal without sharing any sensitive
information inside the data. This privacy preserving

approaches is that, once
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mining goal, in practice, can be solved through two
types of approaches including

1) using special communication protocols, such as
Yao’s

protocol [54], to request the distributions of the whole
data

set, rather than requesting the actual values of each
record, or 2) designing special data mining methods to
derive knowledge from anonymized data  (this is
inherently similar to the uncertain data mining methods).

3.2.2 Domain and  Application

Knowledge

Domain  and  application knowledge [28] provides
essential information for designing Big Data mining
algorithms and systems. In a simple case, domain
knowledge can help identify  right features  for
modeling the underlying data (e.g., blood glucose level is
clearly a better feature than body mass in diagnosing
Type Il diabetes). The domain and application
knowledge can also help  design achievable business
objectives by using Big Data analytical techniques. For
example, stock market data are a typical domain that
constantly generates a large quantity of information, such as
bids, buys, and puts, in every single second. The market
continuously evolves and is impacted by different
factors, such as domestic and international news,
government reports, and natural disasters, and so on.
An appealing Big Data mining task is to design a Big
Data mining system to predict the movement of the
market in the next one or two minutes. Such systems,
even if the prediction accuracy is just slightly better
than random guess, will bring significant business
values to the developers [9]. Without correct domain
knowledge, it is a clear challenge to find effective
matrices/measures to characterize the market movement,
and such knowledge is often beyond the mind of the
data miners, although some recent research has
shown that using social networks, such as Twitter, it
is possible to predict the stock market
upward/downward trends [7] with good accuracies.

3.3 Tier IllI: Big Data Mining
Algorithms

3.3.1 Local Learning and Model Fusion for
Multiple

Information Sources
As Big Data applications are featured with
autonomous  sources and decentralized  controls,
aggregating distributed data sources to a centralized site
for mining is system- atically prohibitive due to the
potential transmission costand privacy concerns. On the
other hand, although we can always carry out mining
activities at each distributed site, the biased view of the
data collected at each site often leads to biased
decisions or models, just like the elephant and blind
men case. Under such a circumstance, a Big Data
mining system has to enable an information exchange
and fusion mechanism to ensure that all distributed
sites  (or information sources) can work together to
achieve a global optimization goal. Model mining and
correlations are the key steps to ensure that models or
patterns  discovered from multiple information sources

can be consolidated to meet the global mining
objective. More specifically, the global mining can
be featured with a two-step (local mining and global
correlation) process, at data, model, and at knowledge
levels. At the data level, each local site can calculate
the data statistics based on the local data sources and
exchange the statistics between sites to achieve a
global data distribution view. At the model or
pattern level, each site can carry out local mining
activities, with respect to the localized data, to discover
local patterns. By exchanging patterns between multiple
sources, new global patterns can be synthetized by
aggregating patterns  across all sites [50]. At the
knowledge level, model correlation analysis investigates
the relevance between models  gener- ated from
different data sources to determine how relevant the data
sources are correlated with each other, and how to form
accurate decisions based on models built from
autonomous sources.

3.3.2 Mining from Sparse, Uncertain, and
Incomplete

Data
Spare, uncertain, and incomplete data are defining
features for Big Data applications. Being sparse, the
number of data points is too few for drawing reliable
conclusions. This is normally a complication of the data
dimensionality issues, where data in a high-dimensional
space (such as more than
1,000 dimensions) do not show clear trends or
distribu- tions. For most machine learning and data
mining algorithms,  high-dimensional  spare data
significantly de- teriorate the reliability of the models
derived from the data. Common approaches are to
employ dimension reduction or feature selection [48] to
reduce the data dimensions or to carefully include
additional samples to alleviate the data scarcity, such
as generic unsupervised learning methods in
data
mining.

Uncertain data are a special type of data reality
where each data field is no longer deterministic but is
subject to some random/error distributions. This is
mainly linked to domain specific applications with
inaccurate data readings and collections. For example,
data  produced from GPS equipment are inherently
uncertain, mainly because the technology barrier of the
device limits the precision of the data to certain levels
(such as 1 meter). As a result, each recording location
is represented by a mean value plus a variance to
indicate  expected errors. For data privacy- related
applications [36], users may intentionally inject
randomness/errors  into the  data to  remain
anonymous. This is similar to the situation that an
individual may not feel comfortable to let you know
his/her exact income, but will be fine to provide a rough
range like [120k, 160k]. For uncertain data, the major
challenge is that each data item is represented as sample
distributions but not as a single value, so most
existing data mining algorithms cannot be directly
applied. = Common solutions are to take the data
distributions into consideration to estimate model
parameters. For example, error aware data mining
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[49] utilizes the mean and the variance values with
respect to each single data item to build a Naive Bayes
model for classification. Similar approaches have also been
applied  for decision  trees or database queries.
Incomplete data refer to the missing of data field
values for some samples. The missing values can be

caused by different realities, such asthe malfunction of

a sensor node, or some systematic policies to
intentionally skip some values (e.g., dropping some
sensor node readings to save power for transmission).

While most modern data mining algorithms have in-built

solutions to handle missing values (such as ignoring
data fields with missing values), data imputation is an
estab- lished research field that seeks to impute missing
values to produce improved models (compared to the
ones built from the original data). Many imputation

methods [20] exist for this purpose, and the major
approaches are to fill most frequently observed values or
to build learning models to predict possible values for
each data field, based on the observed values of a

given instance.

3.3.3 Mining Complex and Dynamic

Data

The rise of Big Data is driven by the rapid increasing
of complex data and their changes in volumes and in
nature [6]. Documents posted on WWW servers,
Internet  back- bones, social networks, communication
networks, and transportation networks, and so on are all
featured with complex data. While complex dependency
structures underneath the data raise the difficulty for
our learning systems, they also offer exciting
opportunities that simple data representations are
incapable of achieving. Forexample, researchers have
successfully used Twitter, a well-known social
networking site, to detect events such as earthquakes and
major social activities, with nearly real- time speed
and very high accuracy. In addition, by summarizing the
queries users submitted to the search engines, which
are all over the world, it is now possible to build an
early warning system for detecting fast spreading flu
outbreaks [23]. Making use of complex data is a major
challenge for Big Data applications, because any
two parties in a complex network are potentially
interested to each other with a social connection. Such
a connection is quadratic with respect to the number
of nodes in the network, so a million node network
may be subject to one trillion connections. For a large
social network site, like Facebook, the number of active
users has already reached 1 billion, and analyzing such
an enormous network is a big challenge for Big Data
mining. If we take daily user actions/interactions into
consideration, the scale of diffi- culty will be
even more astonishing.

Inspired by the above challenges, many data
mining methods have  been  developed to find
interesting knowl- edge from Big Data with complex
relationships and dynamically changing volumes. For
example, finding communities and tracing  their
dynamically  evolving rela- tionships are essential for

understanding and managing complex systems [3], [10].

Discovering outliers in a social network [8] is the

first  step to identify spammers and provide safe
networking environments to our society.

If only facing with huge amounts of structured

data,
users can solve the problem simply by purchasing
more
storage or improving storage efficiency. However, Big
Data complexity is represented in many aspects,
including complex heterogeneous data types, complex
intrinsic semantic associations in data, and complex
relationship networks among data. That is to say, the
value of Big Data is in its complexity.

Complex heterogeneous data types. In Big Data, data

types
include structured data, unstructured data, and
semistruc-
tured data, and so on. Specifically, there are tabular
data (relational databases), text, hyper-text, image,
audio and video data, and so on. The existing data
models  include key-value stores, bigtable clones,
document databases, and graph databases, which are
listed in an ascending order of the complexity of
these  data models. Traditional data models are
incapable of handling complex data in the context of
Big Data. Currently, there is no acknowledged effective
and efficient data model to handle Big Data.

Complex intrinsic semantic associations in data. News
on the web, comments on Twitter, pictures on Flicker,
and clips of
video on YouTube may discuss about an academic
award- winning event at the same time. There is no doubt
that there are strong semantic associations in these
data. Mining complex semantic associations from
“text-image-video” data will significantly help improve
application system performance such as search engines or
recommendation systems. However, in the context of Big
Data, it is a great challenge to efficiently describe
semantic features and to build semantic association
models to bridge the semantic gap of various
heterogeneous data sources.

Complex relationship networks in data. In the

context of
Big Data, there exist relationships between individuals.
On
the Internet, individuals are webpages and the
pages linking to each other via hyperlinks form a
complex network. There also exist social relationships
between individuals forming complex social networks,
such as big relationship data from Facebook, Twitter,
LinkedIn, and other social media [5], [13], [56],
including call detail records (CDR), devices and
sensors information [1], [44], GPS and geocoded map
data, massive image files transferred by the Manage
File Transfer protocol, web textand click-stream data
[2], scientific information, e-mail [31], and so on.
To deal with  complex relationship networks,
emerging research efforts have begun to address the
issues  of structure-and-evolution, crowds-and-interac-
tion, and information-and-communication.

The emergence of Big Data has also spawned

new
computer architectures for real-time  data-intensive
proces-
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sing, such as the open source Apache Hadoop project
that runs on high-performance clusters. The size or
complexity of the Big Data, including transaction and
interaction data sets, exceeds a regular  technical
capability in capturing, mana- ging, and processing these
data within reasonable cost and time limits. In the
context of Big Data, real-time processing for complex
data is a very challenging task.

4 RESEARCH INITIATIVESAND PROJECTS

To tackle the Big Data challenges and  “seize
the opportunities afforded by the new, data driven
resolu- tion,” the US National Science Foundation (NSF),
under President Obama Administration’s Big Data
initiative, announced the BIGDATA solicitation in
2012. Such a federal initiative has resulted in a
number of winning projects to investigate the
foundations for Big Data management (led by the
University of Washington), analytical approaches for
genomics-based massive data computation (led by
Brown  University), large scale machine learning
techniques for high-dimensional data sets that may be
as large as 500,000 dimensions (led by Carnegie Mellon
University), social analytics for large- scale scientific
literatures (led by Rutgers University), and several
others. These projects seek to develop methods, algorithms,
frameworks, and research infrastructures that allow us to
bring the massive amounts of data down to a human
manageable and interpretable scale. Other coun- tries
such as the National Natural Science Foundation of
China (NSFC) are also catching up with national
grants on Big Data research.

Meanwhile, since 2009, the authors have taken the
lead in the following national projects that all involve
Big Data components:

Integrating and mining biodata from
multiple sources in  biological networks,
sponsored by the US National Science Foundation,
Medium Grant No. CCF-0905337, 1 October 2009
- 30 September 2013.

Issues and significance. We have integrated
and mined biodata from multiple sources to
decipher and utilize the structure of biological
networks to shed new insights on the
functions of biological systems. We address the
theoretical underpinnings and current and future
enabling technologies for integrating and mining
biological ~ networks. ~ We have expanded and
integrated the  techniques and methods in
information acquisition, transmission, and
processing for information networks. We have
developed methods for semantic-based data integra-
tion, automated hypothesis generation from
mined data, and automated scalable analytical
tools to evaluate simulation results and refine
models.

Big Data Fast Response. Real-time classification of
Big Data Stream, sponsored by the Australian Research

Council (ARC), Grant No. DP130102748, 1

January

2013 - 31 Dec. 2015.

Issues and significance. We propose to build
a stream-based Big Data analytic framework for
fast response and real-time decision making. The
key challenges and research issues include:

- designing Big Data sampling mechanisms
to reduce Big Data volumes to a
manageable size for processing;

- building  prediction models from Big

Data
streams. Such models can adaptively adjust
to the dynamic changing of the data, as well as
accurately predict the trend of the data in
the future; and

- a knowledge indexing framework to
ensure real-time  data monitoring and
classification for Big Data applications.

Pattern matchin ¢ and  minin g  with

wildcards and length constraints, sponsored by

the National Natural Science Foundation of

China, Grant Nos.

60828005 (Phase 1, 1 January 2009 - 31 December

2010)

and 61229301 (Phase 2, 1 January 2013 - 31

December 2016).

Issues and significance. We  perform a
systematic

investigation on pattern matching, pattern mining

with  wildcards, and application problems as

follows:

- exploration of the NP-hard complexity of
the matching and mining problems,
- multiple pattern  matching with
wildcards,
- approximate pattern matching and mining,
and
- application of  our research onto
ubiquitous personalized information processing
and bioin- formatics.
Key technologies for integration and mining
of multiple, heterogeneous data sources, sponsored
by the National High Technology Research and
Devel- opment Program (863 Program) of China,
Grant No.
2012AA011005, 1 January 2012 - 31 December
2014.
Issues and significance. We have performed
an
investigation on  the  availability and
statistical regularities of multisource, massive
and dynamic
information, including cross-media search based
on information extraction, sampling, uncertain
informa-
tion querying, and cross-domain and  cross-
platform information polymerization. To break
through the
limitations of traditional data mining methods,
we have studied  heterogeneous information
discovery and mining in complex inline data,
mining in data
streams, multigranularity knowledge
discovery from  massive  multisource data,
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distribution regula-
rities of massive knowledge, quality fusion
of massive knowledge.
Group influence and interactions in social
networks, sponsored by the National Basic
Research 973
Program of China, Grant No. 2013CB329604, 1
January
2013 - 31 December
2017.

Issues and significance. We have studied
group influence and interactions in social
networks, including

- employing group influence and
information diffusion models, and
deliberating group interaction rules in

social networks using dynamic game theory,
- studying interactive individual selection
and effect evaluations under social networks
affected by group emotion, and analyzing
emotional interactions and influence among
individuals and groups, and
- establishing an interactive influence model
and its computing methods for  social
network groups, to reveal the interactive influence
effects and evolution of social networks.

5 RELATED WORK
5.1 Big Data Mining Platforms (Tier I)

Due to the multisource, massive, heterogeneous,
and dynamic characteristics of application data involved
in adistributed environment, one of the most important
characteristics of Big Data is to carry out computing
on the petabyte (PB), even the exabyte (EB)-level data
with a complex computing process. Therefore, utilizing
a parallel computing infrastructure, its corresponding
programming language support, and software models
to efficiently analyze and mine the distributed data are
the critical goals for Big Data processing to change
from “quantity” to “quality.”

Currently, Big Data processing mainly depends on
parallel programming models like MapReduce, as well
as providing a cloud computing platform of Big Data
services for the public.  MapReduce is a batch-oriented
parallel computing model. There is still a certain gap
in perfor- mance with relational databases. Improving
the perfor- mance of MapReduce and enhancing the real-
time nature of large-scale data  processing  have
received a significant amount of attention, with
MapReduce parallel program- ming being applied to
many machine learning and data mining algorithms.
Data mining algorithms usually need to scan through the
training data for obtaining the statistics to solve or
optimize model parameters. It calls for intensive
computing to access the large-scale data frequently.
To improve the efficiency of algorithms, Chu et al.
proposed a general-purpose parallel programming method,
which is applicable to a large number of machine
learning algo- rithms  based on the simple
MapReduce programming model on multicore processors.

Ten classical data mining algorithms are realized in the
framework, including locally weighted linear regression,
k-Means, logistic regression, naive Bayes, linear support
vector machines, the indepen- dent variable analysis,
Gaussian discriminant analysis, expectation
maximization, and back-propagation neural networks
[14]. with the analysis of these classical machine
learning algorithms, we argue  that the computational
operations in the algorithm learning process could be
transformed into a summation operation on a number
of training data sets. Summation operations could be
per- formed on different subsets independently and
achieve penalization executed easily on the MapReduce
program- ming platform. Therefore, a large-scale data
set could be divided into several subsets and
assigned to  multiple Mapper nodes. Then, various
summation operations could be performed on the Mapper
nodes to collect intermediate results. Finally, learning
algorithms are executed in parallel through merging
summation on Reduce nodes. Ranger et al. [39]
proposed a MapReduce-based application programming
interface Phoenix, which supports parallel programming
in the environment of multicore and multi- processor
systems, and realized three data mining algo- rithms
including k-Means, principal component analysis, and
linear regression. Gillick et al. [22] improved the
MapReduce’s implementation mechanism in Hadoop,
evaluated the algorithms’ performance of single-pass
learning, iterative learning, and query-based learning
in the MapReduce framework, studied data sharing
between computing nodes involved in parallel learning
algorithms, distributed data storage, and then showed
that the MapReduce mechanisms suitable  for
large-scale  data mining by testing series of standard
data mining tasks on medium-size clusters.
Papadimitriou and Sun [38] pro- posed a distributed
collaborative aggregation (DisCo) framework using
practical distributed data preprocessing and collaborative
aggregation techniques. The implementa- tion on Hadoop
in an open source MapReduce project showed that
DisCo has perfect scalability and can process and
analyze massive data sets (with hundreds of GB).
To improve the weak scalability of traditional
analysis
software and poor analysis capabilities of Hadoop
systems, Das et al. [16] conducted a study of the
integration of R (open source statistical analysis
software) and Hadoop. The in-depth integration pushes
data computation to parallel processing, which enables
powerful deep analysis capabil- ities for Hadoop.
Wegener et al. [47] achieved the integration of
Weka (an open-source machine learning and data
mining software tool) and MapReduce. Standard Weka
tools can only run on a single machine, with a
limitation of 1-GB memory.  After algorithm
parallelization, Weka breaks  through the limitations
and improves performance by taking the advantage of
parallel computing to handle more than 100-GB data on
MapReduce clusters. Ghoting et al. [21] proposed
Hadoop-ML, on which developers can easily build task-
parallel or data-parallel machine learning and data mining
algorithms on program blocks under the language runtime
environment.
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5.2 Big Data Semantics and Application Knowledge
(Tier 11)
In privacy protection of massive data, Ye et al
[55] proposed a multilayer rough  set  model,
which can accurately describe the granularity change
produced by different levels of generalization and provide
a theoretical foundation for measuring the data
effectiveness criteria in the anonymization process, and
designed a dynamic mechanism for balancing privacy
and data utility, to solve the optimal
generalization/refinement order for classifica- tion. A
recent paper on confidentiality protection in Big Data
[4] summarizes a number of methods for protecting
public release data, including aggregation (such as k-
anonymity, I-diversity, etc.), suppression (i.e., deleting
sensitive values), data swapping (i.e., switching values
of sensitive data records to prevent users from
matching), adding random noise, or simply replacing
the  whole original data values at a high risk of
disclosure with  values synthetically generated from
simulated distributions.
For  applications involving Big Data and
tremendous
data volumes, it is often the case that data are
physically distributed at different locations, which means
that users no longer physically possess the storage of
their data. To carry out Big Data mining, having an
efficient and effective data access mechanism is vital,
especially for users who intend to hire a third party
(such as data miners or data auditors) to process their
data. Under such a circumstance, users’ privacy
restrictions may include 1) no local data copies or
downloading, 2) all analysis must be deployed based on
the existing data storage systems without violating
existing privacy settings, and many others. In Wang
et al. [48], a privacy-preserving public auditing
mechanism for large scale data storage (such as cloud
computing systems) has been proposed. The public key-
based mechanism is used to enable third-party auditing
(TPA), so users can safely allow a third party to
analyze their data without breaching the security
settings or compromising the data privacy.
For most Big Data applications, privacy concerns
focus
on excluding the third party (such as data miners)
from
directly accessing the original data. Common solutions
are to rely on some privacy-preserving approaches or
encryp- tion mechanisms to protect the data. A recent
effort by Lorch et al. [32] indicates that users’ “data
access patterns” can also have severe data privacy
issues and lead to disclosures of geographically co-
located users or users with common interests (e.g., two
users searching for the same map locations are likely to
be geographically colocated). In their system, namely
Shround, users’ data access patterns from the servers
are hidden by using virtual disks. As a result, it can
support a variety of Big Data applications, such as
microblog search and social network queries, without
compromising the user privacy.

5.3 Big Data Mining Algorithms (Tier IlI)

To adapt to the multisource, massive, dynamic Big
Data, researchers have expanded existing data mining
methods in many ways, including the efficiency
improvement of single-source knowledge discovery
methods [11], designing a data mining mechanism from
a multisource perspective [50], [51], as well as the
study of dynamic data mining methods and the
analysis  of stream data  [18], [12]. The main
motivation for discovering knowledge from massive data
is improving the efficiency of single-source mining
methods. On the basis of gradual improvement of computer
hardware functions, researchers continue to explore
ways to improve  the efficiency of knowledge
discovery algo- rithms to make them better for
massive data. Because massive data are typically
collected from different data sources, the knowledge
discovery of the massive data must be performed using
a multisource mining mechanism. As real-world data
often come as a data stream or a characteristic
flow, a well-established mechanism is needed to discover
knowledge and master the evolution of knowl- edge in
the dynamic data source. Therefore, the massive,
heterogeneous and real-time characteristics  of
multisource data provide essential differences between
single-source knowledge discovery and multisource data
mining.

Wu et al. [50], [51], [45] proposed and established

the
theory of local pattern analysis, which has laid a
foundation
for global knowledge discovery in multisource data
mining. This theory provides a solution not only for the
problem of full search, but also for finding global
models that traditional mining methods cannot find.
Local  pattern analysis of data processing can avoid
putting different data sources together to carry out
centralized computing.

Data streams are widely used in financial analysis,

online
trading, medical  testing, and so on. Static
knowledge
discovery methods cannot adapt to the characteristics
of dynamic data  streams, such as continuity,
variability, rapidity, and infinity, and can easily lead
to the loss of useful information. Therefore, effective
theoretical and technical frameworks are needed to
support data stream mining [18], [57].

Knowledge evolution is a common phenomenon in real-
world systems. For example, the clinician’s treatment
programs will constantly adjust with the conditions of
the patient, such as family economic status, health
insurance, the course of treatment, treatment effects, and
distribution

of cardiovascular and other chronic
epidemiological changes with the passage of time.
In the knowledge discovery process, concept drifting
aims to analyze the phenomenon of implicit target concept
changes or even fundamental changes triggered by
dynamics and context in data streams. According to
different types of concept drifts, knowledge evolution can
take forms of mutation drift, progressive drift, and data
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