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Abstract - This paper proposes a hybrid writer-dependent
offline signature verification framework that integrates deep
visual features with structural graph-based representations. A
convolutional neural network inspired by SigNet is employed to
extract global visual descriptors, while a graph neural network
captures stroke-level structural characteristics from skeletonized
signatures. The two feature sets are fused and refined using
ReliefF-based feature selection. Writer-specific models are then
constructed using centroid-based distance measures and adaptive
thresholds estimated through Equal Error Rate (EER)
optimization. Extensive experiments conducted on the CEDAR
offline signature dataset using multiple train and test splits
demonstrate that the proposed approach consistently achieves low
error rates and high verification accuracy of 93.40%. The results
confirm that combining visual and structural information
significantly improves robustness against skilled forgeries.
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I.  INTRODUCTION

Offline handwritten signature verification remains a
challenging biometric problem due to significant intra-writer
variability and the presence of skilled forgeries. Despite the
increasing adoption of biometric technologies, handwritten
signatures continue to be widely used in financial,
administrative, and legal applications because of their social
acceptance and ease of acquisition. Unlike physiological
biometrics, signatures are behavioral in nature and are therefore
subject to variations in writing style, mood, and writing
conditions, making reliable verification particularly difficult.
This challenge is further amplified in offline scenarios, where
dynamic information such as stroke order, writing speed, and
pen pressure is unavailable.

Early approaches to offline signature verification primarily
relied on handcrafted features, including geometric descriptors,
directional histograms, and texture-based representations. While
these methods demonstrated reasonable performance, their
effectiveness often deteriorated in the presence of skilled
forgeries. The advent of deep learning has significantly
advanced the field by enabling automatic and hierarchical
feature learning directly from raw signature images. In
particular, convolutional neural networks (CNNs), such as
SigNet, have shown strong capability in learning discriminative
global representations for signature verification tasks [1].
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However, CNN-based approaches predominantly focus on
visual appearance and may not fully capture the structural
relationships among strokes that characterize individual writing
styles. To address this limitation, graph-based representations
have been explored as a complementary modelling strategy, as
they explicitly encode spatial and topological relationships
between stroke components. Recent studies demonstrate that
graph neural networks (GNNs) are effective in capturing such
structural dependencies and can substantially enhance
verification performance when combined with visual features

[2].

Motivated by these observations, this work proposes a
hybrid writer-dependent verification framework that integrates
deep visual features with structural graph-based representations.
The proposed approach leverages the complementary strengths
of convolutional and graph-based learning to improve
robustness against skilled forgeries. The remainder of this paper
is organized as follows: Section 2 reviews related work; Section
3 describes the proposed methodology; Section 4 presents the
experimental setup and results; Section 5 provides a comparative
analysis with existing methods; and Section 6 concludes the

paper.
II. RELATED WORKS

Offline handwritten signature verification has been
extensively investigated due to its importance in biometric
authentication systems. Early studies primarily relied on
handcrafted features combined with traditional classifiers.
Kalera et al. [3] proposed a distance-based verification
framework using geometric and statistical descriptors, while
Chen and Srihari [4] explored graph-based matching techniques
to model structural relationships between signature strokes.
Although these methods achieved moderate success, their
performance was often limited by sensitivity to intra-writer
variability and the inability to generalize well to skilled
forgeries.

With the advent of deep learning, convolutional neural
networks (CNNs) significantly advanced the field by enabling
automatic feature learning directly from raw signature images.
Hafemann et al. [5] demonstrated that CNNs can learn highly
discriminative representations for offline signature verification,
outperforming traditional handcrafted approaches. Subsequent
works adopted Siamese and triplet network architectures to learn
similarity metrics between signature pairs, further improving
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verification performance under writer-dependent and writer-
independent scenarios [6].

Despite these advances, most CNN-based approaches
primarily focus on global appearance features and often neglect
the underlying structural information present in handwriting. To
address this limitation, several studies have explored graph-
based representations that explicitly model stroke connectivity
and spatial relationships. Graph-based techniques have been
shown to capture discriminative structural cues such as stroke
intersections and continuity, which are difficult to model using
convolutional filters alone. In this context, graph neural
networks (GNNs) have emerged as a powerful tool for learning
relational patterns in handwritten data [7].

Recent works have investigated hybrid approaches that
combine deep visual features with structural or topological
representations. Maergner et al. [8] demonstrated that
integrating structural descriptors with deep features improves
robustness against skilled forgeries. Similarly, hybrid deep—
graph frameworks have been shown to outperform single-
modality approaches by leveraging complementary information
from both appearance and structure [9]. However, many of these
methods employ complex architectures or lack a unified
verification strategy, limiting their practical applicability.

With these observations, the present work proposes a unified
writer-dependent verification framework that integrates CNN-
based visual representations with graph-based structural
features. Unlike existing methods, the proposed approach
employs an adaptive writer-specific thresholding mechanism
based on Equal Error Rate (EER) analysis and evaluates
performance across multiple training—testing splits. This design
enables robust verification while maintaining computational
efficiency and practical applicability.

III. PROPOSED METHODOLOGY

The proposed framework consists of six major stages:

Preprocessing
Feature Extraction
Feature Fusion
Feature Selection
Writer-dependent Threshold estimation
F. Writer-dependent verification

A schematic overview of the proposed system is illustrated

in Fig. 1.

moONwy

A. Preprocessing

Each signature image is first converted to grayscale and
denoised using median filtering to suppress impulsive noise
while preserving edge information [10]. Subsequently, Otsu’s
thresholding method is applied to obtain a binary representation
by automatically determining an optimal threshold that
maximizes inter-class variance between foreground and
background pixels [11]. Morphological operations are then
employed to remove small artifacts and enhance stroke
continuity. All images are resized to a fixed resolution of
224%224 pixels to ensure uniformity across samples. Finally,
skeletonization is performed to reduce the binary signature to a
one-pixel-wide representation while preserving its essential
structural and topological characteristics, which are crucial for
subsequent graph construction and analysis.
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Fig. 1. Block diagram of the proposed methodology

B. Feature Extraction

After preprocessing, the cleaned and normalized signature
images are used for feature extraction, which aims to transform
the visual information into meaningful numerical
representations suitable for verification.

In the proposed work, feature extraction is performed in two
complementary stages:

1) Deep visual feature extraction
2) Structural feature extraction

1) Deep visual feature extraction :

To effectively capture the global visual characteristics of
handwritten signatures, a deep convolutional neural network
(CNN) inspired by the SigNet architecture is employed in this
work. SigNet, originally proposed for offline signature
verification, has demonstrated strong capability in learning
discriminative representations directly from raw signature
images by exploiting hierarchical feature learning mechanisms
[5]- The motivation for adopting a CNN-based approach lies in
its ability to automatically extract meaningful patterns without
relying on handcrafted descriptors, which often fail to generalize
across diverse writing styles.

The network architecture consists of multiple convolutional
and pooling layers arranged in a hierarchical manner. In the
initial layers, convolutional filters learn low-level features such
as edges, stroke boundaries, and local orientation patterns. As
the depth of the network increases, higher-level layers capture
more abstract and semantically meaningful information,
including stroke arrangements, global shape characteristics, and
writing style variations that are distinctive to individual writers.

Max-pooling layers are interleaved between convolutional
layers to progressively reduce spatial resolution while retaining
salient features. This design not only improves computational
efficiency but also introduces a degree of translation invariance,
making the learned representations more robust to minor
variations in writing position and scale. The extracted feature
maps are subsequently flattened and passed through fully
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connected layers, which integrate spatial and contextual
information into a compact representation.

The output of the final fully connected layer is a fixed-length
feature vector of 2048 dimensions, serving as a high-level
descriptor of the signature’s visual appearance. This
representation effectively encodes global attributes such as
stroke distribution, shape consistency, and texture patterns,
which are crucial for distinguishing genuine signatures from
skilled forgeries. Compared to handcrafted features, the deep
representations learned by the CNN exhibit stronger
discriminative power and improved generalization across
different writers.

By leveraging the representational strength of deep
convolutional networks, the proposed framework captures the
global visual structure of signatures and provides a robust
foundation for subsequent feature fusion with structural graph-
based representations.

2) Structural feature extraction:

To capture the structural characteristics of handwritten
signatures, skeletonized images are transformed into graph-
based representations. In this formulation, each skeleton pixel is
modelled as a node, while edges are established between
spatially adjacent pixels using an 8-neighborhood connectivity
rule. This representation preserves essential structural properties
such as stroke continuity, curvature, branching patterns, and
junction points, which play a critical role in distinguishing
genuine signatures from skilled forgeries.

Each node is initially represented by a low-dimensional
feature vector corresponding to its normalized spatial
coordinates (x, y). These coordinates encode the relative
position of stroke elements within the signature and provide a
spatial reference for subsequent learning. To model the
relationships among neighboring nodes, a Graph Convolutional
Network (GCN) is employed. GCNs enable effective learning
from non-Euclidean data by propagating and aggregating
information across connected nodes, thereby capturing both
local and global structural dependencies [7].

Through successive graph convolution layers, each node
aggregates information from its local neighborhood, allowing
the network to learn higher-level structural patterns such as
stroke continuity, curvature flow, and junction complexity. This
hierarchical message-passing mechanism enables the network to
model the topological organization of handwriting more
effectively than conventional grid-based approaches.

In the proposed framework, the GCN produces a fixed-
length structural embedding of 128 dimensions. This embedding
is obtained through a global pooling operation that aggregates
node-level features into a single vector, effectively summarizing
the overall structural characteristics of the signature. The
resulting representation encodes several discriminative
attributes, including stroke connectivity patterns, junction
behavior, global stroke distribution, and structural complexity.

These graph-based structural features complement the
appearance-based representations extracted by the convolutional
neural network. While CNNs focus on texture, shape, and visual
composition, the GNN emphasizes relational and topological
information that is less sensitive to writing style variations. The
integration of these complementary feature modalities enhances

IJERTV 1415120711

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 14 Issue 12 , December - 2025

robustness against skilled forgeries and improves overall
verification performance.

IV. FEATURE FUSION

To combine complementary visual and structural
information, deep visual and graph-based features are fused at
the feature level. The deep visual representation consists of a
2048-dimensional vector extracted from a convolutional neural
network, capturing global appearance attributes such as stroke
shape and texture. In parallel, a 128-dimensional structural
feature vector is obtained from a graph neural network, encoding
stroke connectivity, spatial arrangement, and junction patterns.

The two feature sets are concatenated to form a unified 2176-
dimensional representation that jointly models appearance and
structural characteristics. This fusion enables the system to
leverage both global visual cues and fine-grained topological
information, resulting in a more discriminative representation
for distinguishing genuine signatures from skilled forgeries. The
fused feature vector serves as the input to the subsequent feature
selection and verification stages.

V. FEATURE SELECTION

After feature fusion, the resulting high-dimensional
representation is further refined using the ReliefF feature
selection algorithm. The input to the ReliefF module is the fused
feature vector obtained by concatenating the deep visual features
(2048 dimensions) and the structural graph-based features (128
dimensions), resulting in a combined feature space of 2176
dimensions for each signature sample.

ReliefF is a supervised, instance-based feature selection
method designed to estimate the relevance of individual features
based on their ability to discriminate between classes while
preserving intra-class consistency [12]. For each training
sample, the algorithm identifies a set of nearest neighbors
belonging to the same class (near-hits) and to different classes
(near-misses). Feature weights are then updated by analyzing
how feature values vary between these neighboring samples.
Features that exhibit large inter-class differences and small intra-
class variations are assigned higher importance scores, whereas
features that contribute little to class discrimination are
penalized.

By ranking features according to their discriminative
strength, ReliefF enables the selection of the most informative
subset while suppressing redundant or noisy dimensions. This
process significantly reduces the dimensionality of the fused
feature space and enhances generalization performance. In this
work, the top-ranked features are retained to form a compact and
discriminative representation, which serves as the input for the
subsequent writer-dependent verification stage.

VI. WRITER-DEPENDENT THRESHOLD
ESTIMATION

In the proposed framework, verification is performed in a
writer-dependent manner, where an independent decision model
is constructed for each enrolled writer. During the training
phase, only genuine signature samples belonging to a specific
writer are used. This strategy allows the system to learn writer-
specific characteristics while avoiding interference from other
writers’ writing styles.
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Let f; € R%,i =1,2,...,N denote the selected feature
vectors obtained after feature fusion and ReliefF-based feature
selection, where d represents the dimensionality of the selected
feature space and N is the number of genuine training samples
for a given writer.

A representative model for each writer is constructed by
computing the centroid of the corresponding feature vectors:

N
_1 f 1
=gl @
=1

This centroid serves as a compact prototype that
characterizes the typical writing behavior of the writer in the
learned feature space.

To establish an appropriate decision boundary, an adaptive
threshold is estimated for each writer using the Equal Error Rate
(EER) criterion. Distances between the centroid and both
genuine and forgery samples are computed, and the threshold is
selected at the point where the False Acceptance Rate (FAR)
equals the False Rejection Rate (FRR). This approach ensures a
balanced trade-off between security and usability while
accommodating individual variations in handwriting style.

The resulting writer-specific threshold enables robust and
personalized verification, allowing the system to effectively
distinguish genuine signatures from skilled forgeries.

VII. WRITER-DEPENDENT VERIFICATION

In this work, verification is performed using a writer-
dependent distance-based strategy, where each enrolled writer is
associated with an individual decision model. Unlike global
classifiers that attempt to learn a universal boundary across all
writers, the proposed approach constructs writer-specific
reference models and thresholds. This allows the system to
better capture individual writing characteristics and effectively
handle intra-writer variability. The verification decision is made
by measuring the similarity between a query signature and the
corresponding writer’s learned representation.

During the verification stage, a query signature undergoes
the same preprocessing, feature extraction, and feature selection
steps as those applied during training.

Let f; € R? denote the resulting feature vector of the query
signature, where d represents the dimensionality of the selected
feature space.

The similarity between the query signature and the enrolled
writer model is measured using the Euclidean distance between
the query feature vector and the writer-specific centroid:

D(fy i) =l fy — i I, (2)

where u,, denotes the centroid computed from the genuine
training samples of the corresponding writer.

The verification decision is then made by comparing the
computed distance with a writer-specific threshold T,,,, estimated
during training using the Equal Error Rate (EER) criterion.

If the condition
D(f '.Uw) =Ty (3)
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is satisfied, the signature is accepted as genuine; otherwise,
it is classified as a forgery.

This writer-dependent verification strategy provides an
efficient and interpretable decision mechanism. By employing
individualized centroids and adaptive thresholds, the system
effectively captures intra-writer variability while maintaining
strong discrimination against skilled forgeries.

VIII. EXPERIMENTAL SETUP AND RESULTS

This section presents the experimental setup and
performance evaluation of the proposed offline signature
verification framework. All experiments are conducted on the
CEDAR offline signature dataset [3], which contains signatures
from 55 writers. Each writer contributes 24 genuine signatures
and 24 skilled forgeries, resulting in a total of 2,640 samples.

A. Experimental Setup

To evaluate the robustness and generalization capability of
the proposed approach, experiments are performed using five
different training—testing splits: 30-70, 40-60, 50-50, 60—40,
and 70-30. For each split, only genuine signatures are used
during training to construct writer-specific models, while both
genuine and skilled forgery samples are used during testing.

This experimental protocol ensures an independent
evaluation for each writer and reflects realistic deployment
scenarios where only a limited number of genuine samples are
available for user enrollment. The use of multiple training—
testing configurations further enables analysis of system
behavior under varying levels of training data availability.

B. Evaluation Metrics

System performance is assessed using four widely adopted
biometric evaluation metrics: False Acceptance Rate (FAR),
False Rejection Rate (FRR), Equal Error Rate (EER), and
Overall Accuracy. FAR measures the proportion of forged
signatures incorrectly accepted as genuine, while FRR indicates
the proportion of genuine signatures incorrectly rejected. EER
corresponds to the operating point where FAR and FRR are
equal and serves as a reliable indicator of verification
performance. Overall accuracy reflects the proportion of
correctly classified samples across all test cases.

The verification decision is made using a distance-based
strategy with writer-dependent thresholds determined using the
EER criterion. This ensures fair and consistent evaluation across
all writers.

C. Results and Discussion

The experimental results obtained under different training—
testing splits are summarized in Table I, while the corresponding
accuracy trends are illustrated in Fig. 2.

From the Table I it is clear that, increasing the proportion of
training samples  consistently = improves  verification
performance. In particular, lower EER values and higher
accuracy are achieved as the training ratio increases from 30%
to 70%, indicating improved modelling of writer-specific
characteristics.
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TABLE 1. RESULTS OBTAINED FOR DIFFERENT TRAINING AND TESTING
SPLITS ON THE CEDAR DATASET
Testing Testing FAR FRR EER Accuracy
Set (%) | Set (%) (%) (%) (%) (%)
30 70 8.56 8.77 8.66 91.34
40 60 7.52 8.85 8.18 91.82
50 50 6.67 7.27 6.97 93.03
60 40 6.55 7.82 7.18 92.82
70 30 591 7.27 6.59 93.41
Accuracy vs Training Ratio
93.5 1
93.0 1
9
5925
<
92.0
91.5 1
36 3|5 4‘0 4I5 5|0 5I5 GIU E:S 7'0

Training Data (%)

Fig. 2. Accuracy obtained for different Training and Testing splits on the
CEDAR dataset

The results demonstrate that the proposed framework
effectively benefits from additional training data, enabling more
reliable discrimination between genuine signatures and skilled
forgeries. The integration of deep visual features and structural
graph-based representations plays a crucial role in achieving this
performance improvement. By capturing both appearance-based
and topological characteristics, the system exhibits enhanced
robustness against skilled forgery attempts.

Furthermore, the application of ReliefF-based feature
selection contributes to improved stability and discrimination by
reducing redundancy and emphasizing informative features.
Overall, the proposed approach demonstrates strong verification
performance across all experimental settings, confirming its
effectiveness and suitability for real-world offline signature
verification applications.

IX. CONCLUSION

This paper presented a writer-dependent offline signature
verification framework that integrates deep visual features with
structural  graph-based representations. By combining
convolutional neural networks and graph neural networks, the
proposed approach effectively captures both appearance and
structural characteristics of handwritten signatures. The use of
ReliefF-based feature selection and writer-specific thresholding
further enhances discriminative capability and robustness.
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Experimental results on the CEDAR dataset demonstrate
consistent performance improvements across different training—
testing splits, with reduced error rates and improved accuracy as
more genuine samples are used for training. The results confirm
the effectiveness of the proposed method in handling intra-writer
variability and detecting skilled forgeries.

Future work will focus on extending the framework with
advanced deep learning architectures and evaluating its
generalization across larger and more diverse datasets.
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