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Abstract - This paper proposes a hybrid writer-dependent 

offline signature verification framework that integrates deep 

visual features with structural graph-based representations. A 

convolutional neural network inspired by SigNet is employed to 

extract global visual descriptors, while a graph neural network 

captures stroke-level structural characteristics from skeletonized 

signatures. The two feature sets are fused and refined using 

ReliefF-based feature selection. Writer-specific models are then 

constructed using centroid-based distance measures and adaptive 

thresholds estimated through Equal Error Rate (EER) 

optimization. Extensive experiments conducted on the CEDAR 

offline signature dataset using multiple train and test splits 

demonstrate that the proposed approach consistently achieves low 

error rates and high verification accuracy of 93.40%. The results 

confirm that combining visual and structural information 

significantly improves robustness against skilled forgeries. 

Keywords - Offline signature verification; writer-dependent 

threshold; deep learning; graph neural networks; feature fusion;  

I.  INTRODUCTION  

Offline handwritten signature verification remains a 
challenging biometric problem due to significant intra-writer 
variability and the presence of skilled forgeries. Despite the 
increasing adoption of biometric technologies, handwritten 
signatures continue to be widely used in financial, 
administrative, and legal applications because of their social 
acceptance and ease of acquisition. Unlike physiological 
biometrics, signatures are behavioral in nature and are therefore 
subject to variations in writing style, mood, and writing 
conditions, making reliable verification particularly difficult. 
This challenge is further amplified in offline scenarios, where 
dynamic information such as stroke order, writing speed, and 
pen pressure is unavailable. 

Early approaches to offline signature verification primarily 
relied on handcrafted features, including geometric descriptors, 
directional histograms, and texture-based representations. While 
these methods demonstrated reasonable performance, their 
effectiveness often deteriorated in the presence of skilled 
forgeries. The advent of deep learning has significantly 
advanced the field by enabling automatic and hierarchical 
feature learning directly from raw signature images. In 
particular, convolutional neural networks (CNNs), such as 
SigNet, have shown strong capability in learning discriminative 
global representations for signature verification tasks [1]. 

However, CNN-based approaches predominantly focus on 
visual appearance and may not fully capture the structural 
relationships among strokes that characterize individual writing 
styles. To address this limitation, graph-based representations 
have been explored as a complementary modelling strategy, as 
they explicitly encode spatial and topological relationships 
between stroke components. Recent studies demonstrate that 
graph neural networks (GNNs) are effective in capturing such 
structural dependencies and can substantially enhance 
verification performance when combined with visual features 
[2]. 

Motivated by these observations, this work proposes a 
hybrid writer-dependent verification framework that integrates 
deep visual features with structural graph-based representations. 
The proposed approach leverages the complementary strengths 
of convolutional and graph-based learning to improve 
robustness against skilled forgeries. The remainder of this paper 
is organized as follows: Section 2 reviews related work; Section 
3 describes the proposed methodology; Section 4 presents the 
experimental setup and results; Section 5 provides a comparative 
analysis with existing methods; and Section 6 concludes the 
paper. 

II. RELATED WORKS 

Offline handwritten signature verification has been 
extensively investigated due to its importance in biometric 
authentication systems. Early studies primarily relied on 
handcrafted features combined with traditional classifiers. 
Kalera et al. [3] proposed a distance-based verification 
framework using geometric and statistical descriptors, while 
Chen and Srihari [4] explored graph-based matching techniques 
to model structural relationships between signature strokes. 
Although these methods achieved moderate success, their 
performance was often limited by sensitivity to intra-writer 
variability and the inability to generalize well to skilled 
forgeries. 

With the advent of deep learning, convolutional neural 
networks (CNNs) significantly advanced the field by enabling 
automatic feature learning directly from raw signature images. 
Hafemann et al. [5] demonstrated that CNNs can learn highly 
discriminative representations for offline signature verification, 
outperforming traditional handcrafted approaches. Subsequent 
works adopted Siamese and triplet network architectures to learn 
similarity metrics between signature pairs, further improving 
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verification performance under writer-dependent and writer-
independent scenarios [6]. 

Despite these advances, most CNN-based approaches 
primarily focus on global appearance features and often neglect 
the underlying structural information present in handwriting. To 
address this limitation, several studies have explored graph-
based representations that explicitly model stroke connectivity 
and spatial relationships. Graph-based techniques have been 
shown to capture discriminative structural cues such as stroke 
intersections and continuity, which are difficult to model using 
convolutional filters alone. In this context, graph neural 
networks (GNNs) have emerged as a powerful tool for learning 
relational patterns in handwritten data [7]. 

Recent works have investigated hybrid approaches that 
combine deep visual features with structural or topological 
representations. Maergner et al. [8] demonstrated that 
integrating structural descriptors with deep features improves 
robustness against skilled forgeries. Similarly, hybrid deep–
graph frameworks have been shown to outperform single-
modality approaches by leveraging complementary information 
from both appearance and structure [9]. However, many of these 
methods employ complex architectures or lack a unified 
verification strategy, limiting their practical applicability. 

With these observations, the present work proposes a unified 
writer-dependent verification framework that integrates CNN-
based visual representations with graph-based structural 
features. Unlike existing methods, the proposed approach 
employs an adaptive writer-specific thresholding mechanism 
based on Equal Error Rate (EER) analysis and evaluates 
performance across multiple training–testing splits. This design 
enables robust verification while maintaining computational 
efficiency and practical applicability. 

III. PROPOSED METHODOLOGY 

The proposed framework consists of six major stages: 

A. Preprocessing 

B. Feature Extraction 

C. Feature Fusion 

D. Feature Selection 

E. Writer-dependent Threshold estimation 

F. Writer-dependent verification 
A schematic overview of the proposed system is illustrated 

in Fig. 1. 

A. Preprocessing 

Each signature image is first converted to grayscale and 
denoised using median filtering to suppress impulsive noise 
while preserving edge information [10]. Subsequently, Otsu’s 
thresholding method is applied to obtain a binary representation 
by automatically determining an optimal threshold that 
maximizes inter-class variance between foreground and 
background pixels [11]. Morphological operations are then 
employed to remove small artifacts and enhance stroke 
continuity. All images are resized to a fixed resolution of 
224×224 pixels to ensure uniformity across samples. Finally, 
skeletonization is performed to reduce the binary signature to a 
one-pixel-wide representation while preserving its essential 
structural and topological characteristics, which are crucial for 
subsequent graph construction and analysis. 

 

Fig. 1. Block diagram of the proposed methodology 

B. Feature Extraction 

After preprocessing, the cleaned and normalized signature 
images are used for feature extraction, which aims to transform 
the visual information into meaningful numerical 
representations suitable for verification. 

 In the proposed work, feature extraction is performed in two 
complementary stages: 

1) Deep visual feature extraction  

2) Structural feature extraction 

 

1) Deep visual feature extraction :  

 
To effectively capture the global visual characteristics of 

handwritten signatures, a deep convolutional neural network 
(CNN) inspired by the SigNet architecture is employed in this 
work. SigNet, originally proposed for offline signature 
verification, has demonstrated strong capability in learning 
discriminative representations directly from raw signature 
images by exploiting hierarchical feature learning mechanisms 
[5]. The motivation for adopting a CNN-based approach lies in 
its ability to automatically extract meaningful patterns without 
relying on handcrafted descriptors, which often fail to generalize 
across diverse writing styles. 

The network architecture consists of multiple convolutional 
and pooling layers arranged in a hierarchical manner. In the 
initial layers, convolutional filters learn low-level features such 
as edges, stroke boundaries, and local orientation patterns. As 
the depth of the network increases, higher-level layers capture 
more abstract and semantically meaningful information, 
including stroke arrangements, global shape characteristics, and 
writing style variations that are distinctive to individual writers. 

Max-pooling layers are interleaved between convolutional 
layers to progressively reduce spatial resolution while retaining 
salient features. This design not only improves computational 
efficiency but also introduces a degree of translation invariance, 
making the learned representations more robust to minor 
variations in writing position and scale. The extracted feature 
maps are subsequently flattened and passed through fully 
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connected layers, which integrate spatial and contextual 
information into a compact representation. 

The output of the final fully connected layer is a fixed-length 
feature vector of 2048 dimensions, serving as a high-level 
descriptor of the signature’s visual appearance. This 
representation effectively encodes global attributes such as 
stroke distribution, shape consistency, and texture patterns, 
which are crucial for distinguishing genuine signatures from 
skilled forgeries. Compared to handcrafted features, the deep 
representations learned by the CNN exhibit stronger 
discriminative power and improved generalization across 
different writers. 

By leveraging the representational strength of deep 
convolutional networks, the proposed framework captures the 
global visual structure of signatures and provides a robust 
foundation for subsequent feature fusion with structural graph-
based representations. 

2) Structural feature extraction: 

  
To capture the structural characteristics of handwritten 

signatures, skeletonized images are transformed into graph-
based representations. In this formulation, each skeleton pixel is 
modelled as a node, while edges are established between 
spatially adjacent pixels using an 8-neighborhood connectivity 
rule. This representation preserves essential structural properties 
such as stroke continuity, curvature, branching patterns, and 
junction points, which play a critical role in distinguishing 
genuine signatures from skilled forgeries. 

Each node is initially represented by a low-dimensional 
feature vector corresponding to its normalized spatial 
coordinates (x, y). These coordinates encode the relative 
position of stroke elements within the signature and provide a 
spatial reference for subsequent learning. To model the 
relationships among neighboring nodes, a Graph Convolutional 
Network (GCN) is employed. GCNs enable effective learning 
from non-Euclidean data by propagating and aggregating 
information across connected nodes, thereby capturing both 
local and global structural dependencies [7]. 

Through successive graph convolution layers, each node 
aggregates information from its local neighborhood, allowing 
the network to learn higher-level structural patterns such as 
stroke continuity, curvature flow, and junction complexity. This 
hierarchical message-passing mechanism enables the network to 
model the topological organization of handwriting more 
effectively than conventional grid-based approaches. 

In the proposed framework, the GCN produces a fixed-
length structural embedding of 128 dimensions. This embedding 
is obtained through a global pooling operation that aggregates 
node-level features into a single vector, effectively summarizing 
the overall structural characteristics of the signature. The 
resulting representation encodes several discriminative 
attributes, including stroke connectivity patterns, junction 
behavior, global stroke distribution, and structural complexity. 

These graph-based structural features complement the 
appearance-based representations extracted by the convolutional 
neural network. While CNNs focus on texture, shape, and visual 
composition, the GNN emphasizes relational and topological 
information that is less sensitive to writing style variations. The 
integration of these complementary feature modalities enhances 

robustness against skilled forgeries and improves overall 
verification performance. 

IV. FEATURE FUSION  

To combine complementary visual and structural 
information, deep visual and graph-based features are fused at 
the feature level. The deep visual representation consists of a 
2048-dimensional vector extracted from a convolutional neural 
network, capturing global appearance attributes such as stroke 
shape and texture. In parallel, a 128-dimensional structural 
feature vector is obtained from a graph neural network, encoding 
stroke connectivity, spatial arrangement, and junction patterns. 

The two feature sets are concatenated to form a unified 2176-
dimensional representation that jointly models appearance and 
structural characteristics. This fusion enables the system to 
leverage both global visual cues and fine-grained topological 
information, resulting in a more discriminative representation 
for distinguishing genuine signatures from skilled forgeries. The 
fused feature vector serves as the input to the subsequent feature 
selection and verification stages. 

V. FEATURE SELECTION 

After feature fusion, the resulting high-dimensional 
representation is further refined using the ReliefF feature 
selection algorithm. The input to the ReliefF module is the fused 
feature vector obtained by concatenating the deep visual features 
(2048 dimensions) and the structural graph-based features (128 
dimensions), resulting in a combined feature space of 2176 
dimensions for each signature sample. 

ReliefF is a supervised, instance-based feature selection 
method designed to estimate the relevance of individual features 
based on their ability to discriminate between classes while 
preserving intra-class consistency [12]. For each training 
sample, the algorithm identifies a set of nearest neighbors 
belonging to the same class (near-hits) and to different classes 
(near-misses). Feature weights are then updated by analyzing 
how feature values vary between these neighboring samples. 
Features that exhibit large inter-class differences and small intra-
class variations are assigned higher importance scores, whereas 
features that contribute little to class discrimination are 
penalized. 

By ranking features according to their discriminative 
strength, ReliefF enables the selection of the most informative 
subset while suppressing redundant or noisy dimensions. This 
process significantly reduces the dimensionality of the fused 
feature space and enhances generalization performance. In this 
work, the top-ranked features are retained to form a compact and 
discriminative representation, which serves as the input for the 
subsequent writer-dependent verification stage. 

VI. WRITER-DEPENDENT THRESHOLD 

ESTIMATION 

In the proposed framework, verification is performed in a 
writer-dependent manner, where an independent decision model 
is constructed for each enrolled writer. During the training 
phase, only genuine signature samples belonging to a specific 
writer are used. This strategy allows the system to learn writer-
specific characteristics while avoiding interference from other 
writers’ writing styles. 
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Let  f𝑖 ∈ ℝ𝑑 , 𝑖 = 1,2, … , 𝑁   denote the selected feature 
vectors obtained after feature fusion and ReliefF-based feature 
selection, where d represents the dimensionality of the selected 
feature space and N is the number of genuine training samples 
for a given writer. 

A representative model for each writer is constructed by 
computing the centroid of the corresponding feature vectors: 

𝜇𝑤 =
1

𝑁
∑ f𝑖

𝑁

𝑖=1

          (1) 

This centroid serves as a compact prototype that 
characterizes the typical writing behavior of the writer in the 
learned feature space. 

To establish an appropriate decision boundary, an adaptive 
threshold is estimated for each writer using the Equal Error Rate 
(EER) criterion. Distances between the centroid and both 
genuine and forgery samples are computed, and the threshold is 
selected at the point where the False Acceptance Rate (FAR) 
equals the False Rejection Rate (FRR). This approach ensures a 
balanced trade-off between security and usability while 
accommodating individual variations in handwriting style. 

The resulting writer-specific threshold enables robust and 
personalized verification, allowing the system to effectively 
distinguish genuine signatures from skilled forgeries. 

VII. WRITER-DEPENDENT VERIFICATION 

In this work, verification is performed using a writer-
dependent distance-based strategy, where each enrolled writer is 
associated with an individual decision model. Unlike global 
classifiers that attempt to learn a universal boundary across all 
writers, the proposed approach constructs writer-specific 
reference models and thresholds. This allows the system to 
better capture individual writing characteristics and effectively 
handle intra-writer variability. The verification decision is made 
by measuring the similarity between a query signature and the 
corresponding writer’s learned representation. 

During the verification stage, a query signature undergoes 
the same preprocessing, feature extraction, and feature selection 
steps as those applied during training.  

Let  f𝑞 ∈ ℝ𝑑 denote the resulting feature vector of the query 

signature, where d represents the dimensionality of the selected 
feature space. 

The similarity between the query signature and the enrolled 
writer model is measured using the Euclidean distance between 
the query feature vector and the writer-specific centroid: 

𝐷(f𝑞 , 𝜇𝑤) =∥ f𝑞 − 𝜇𝑤 ∥2     (2) 

where 𝜇𝑤 denotes the centroid computed from the genuine 
training samples of the corresponding writer. 

The verification decision is then made by comparing the 
computed distance with a writer-specific threshold 𝑇𝑤, estimated 
during training using the Equal Error Rate (EER) criterion.  

If the condition  

𝐷(f𝑞 , 𝜇𝑤) ≤ 𝑇𝑤         (3) 

is satisfied, the signature is accepted as genuine; otherwise, 
it is classified as a forgery. 

This writer-dependent verification strategy provides an 
efficient and interpretable decision mechanism. By employing 
individualized centroids and adaptive thresholds, the system 
effectively captures intra-writer variability while maintaining 
strong discrimination against skilled forgeries. 

VIII. EXPERIMENTAL SETUP AND RESULTS 

This section presents the experimental setup and 
performance evaluation of the proposed offline signature 
verification framework. All experiments are conducted on the 
CEDAR offline signature dataset [3], which contains signatures 
from 55 writers. Each writer contributes 24 genuine signatures 
and 24 skilled forgeries, resulting in a total of 2,640 samples. 

A. Experimental Setup 

To evaluate the robustness and generalization capability of 
the proposed approach, experiments are performed using five 
different training–testing splits: 30–70, 40–60, 50–50, 60–40, 
and 70–30. For each split, only genuine signatures are used 
during training to construct writer-specific models, while both 
genuine and skilled forgery samples are used during testing. 

This experimental protocol ensures an independent 
evaluation for each writer and reflects realistic deployment 
scenarios where only a limited number of genuine samples are 
available for user enrollment. The use of multiple training–
testing configurations further enables analysis of system 
behavior under varying levels of training data availability. 

B. Evaluation Metrics  

System performance is assessed using four widely adopted 
biometric evaluation metrics: False Acceptance Rate (FAR), 
False Rejection Rate (FRR), Equal Error Rate (EER), and 
Overall Accuracy. FAR measures the proportion of forged 
signatures incorrectly accepted as genuine, while FRR indicates 
the proportion of genuine signatures incorrectly rejected. EER 
corresponds to the operating point where FAR and FRR are 
equal and serves as a reliable indicator of verification 
performance. Overall accuracy reflects the proportion of 
correctly classified samples across all test cases. 

The verification decision is made using a distance-based 
strategy with writer-dependent thresholds determined using the 
EER criterion. This ensures fair and consistent evaluation across 
all writers. 

C. Results and Discussion   

The experimental results obtained under different training–
testing splits are summarized in Table I, while the corresponding 
accuracy trends are illustrated in Fig. 2. 

From the Table I it is clear that, increasing the proportion of 
training samples consistently improves verification 
performance. In particular, lower EER values and higher 
accuracy are achieved as the training ratio increases from 30% 
to 70%, indicating improved modelling of writer-specific 
characteristics. 
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TABLE I.  RESULTS OBTAINED FOR DIFFERENT TRAINING AND TESTING 

SPLITS ON THE CEDAR DATASET 

Testing 

Set (%) 

Testing 

Set (%) 

FAR 

(%) 

FRR 

(%) 

EER 

(%) 

Accuracy 

(%) 

30 70 8.56 8.77 8.66 91.34 

40 60 7.52 8.85 8.18 91.82 

50 50 6.67 7.27 6.97 93.03 

60 40 6.55 7.82 7.18 92.82 

70 30 5.91 7.27 6.59 93.41 

 

Fig. 2. Accuracy obtained for different Training and Testing splits on the 

CEDAR dataset 

The results demonstrate that the proposed framework 
effectively benefits from additional training data, enabling more 
reliable discrimination between genuine signatures and skilled 
forgeries. The integration of deep visual features and structural 
graph-based representations plays a crucial role in achieving this 
performance improvement. By capturing both appearance-based 
and topological characteristics, the system exhibits enhanced 
robustness against skilled forgery attempts. 

Furthermore, the application of ReliefF-based feature 
selection contributes to improved stability and discrimination by 
reducing redundancy and emphasizing informative features. 
Overall, the proposed approach demonstrates strong verification 
performance across all experimental settings, confirming its 
effectiveness and suitability for real-world offline signature 
verification applications. 

IX. CONCLUSION 

This paper presented a writer-dependent offline signature 
verification framework that integrates deep visual features with 
structural graph-based representations. By combining 
convolutional neural networks and graph neural networks, the 
proposed approach effectively captures both appearance and 
structural characteristics of handwritten signatures. The use of 
ReliefF-based feature selection and writer-specific thresholding 
further enhances discriminative capability and robustness. 

Experimental results on the CEDAR dataset demonstrate 
consistent performance improvements across different training–
testing splits, with reduced error rates and improved accuracy as 
more genuine samples are used for training. The results confirm 
the effectiveness of the proposed method in handling intra-writer 
variability and detecting skilled forgeries. 

Future work will focus on extending the framework with 
advanced deep learning architectures and evaluating its 
generalization across larger and more diverse datasets. 
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