Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

A Heuristic Approach on Carp using Complete
Al Problems

K. Keerthi

M.Tech (CSE)
Annamacharya Institute of Technology (AITK),

Abstract— Many security primitives are based on complete
mathematical problems. Using hard/complete Al problems for
security is emerging as an exciting new paradigm, but has been
under-explored. In this paper, it present a new security
primitive based on hard Al problems, namely, a novel family of
graphical password systems built on top of Captcha technology,
which they call Captcha as graphical passwords (CaRP). CaRP
is both a Captcha and a graphical password scheme. CaRP
addresses a number of security problems altogether, such as
online guessing attacks, relay attacks, and, if combined with
dual-view technologies, shoulder-surfing attacks. Notably, a
CaRP password can be found only probabilistically by
automatic online guessing attacks even if the password is in the
search set. CaRP also offers a novel approach to address the
well-known image hotspot problem in popular graphical
password systems, such as Pass Points, that often leads to weak
password choices. CaRP is not a panacea, but it offers
reasonable security and usability and appears to fit well with
some practical applications for improving online security.

Keywords— Graphical password, password, hotspots, CaRP,
Captcha, dictionary attack, password guessing attack, security
primitive.

I. INTRODUCTION

A FUNDAMENTAL task in security is to create
cryptographic primitives based on hard mathematical
problems that are computationally intractable. For example,
the problem of integer factorization is fundamental to the
RSA public-key cryptosystem and the Rabin encryption. The
discrete logarithm problem is fundamental to the ElGamal
encryption, the Diffie- Hellman key exchange, the Digital
Signature Algorithm, the elliptic curve cryptography and so
on.
Using hard Al (Artificial Intelligence) problems for security,
initially proposed in, is an exciting new paradigm. Under this
paradigm, the most notable primitive invented is Captcha,
which distinguishes human users from computers by
presenting a challenge, i.e., a puzzle, beyond the capability of
computers but easy for humans. Captcha is now a standard
Internet security technique to protect online email and other
Services from being abused by bots. However, this new
paradigm has achieved just a limited success as compared
with the cryptographic primitives based on hard math
problems and their wide applications. Is it possible to create
any new security primitive based on hard Al problems? This
is a challenging and interesting open problem.

In this paper, introducing a new security primitive based
on hard Al problems, namely, a novel family of graphical
password systems integrating Captcha technology, which we

Kadapa

call CaRP (Captcha as gRaphical Passwords). CaRP is click-
based graphical passwords, where a sequence of clicks on an
image is used to derive a password. Unlike other click-based
graphical passwords, images used in CaRP are Captcha
challenges, and a new CaRP image is generated for every
login attempt. The notion of CaRP is simple but generic.
CaRP can have multiple instantiations. In theory, any
Captcha scheme relying on multiple-object classification can
be converted to a CaRP scheme. We present exemplary
CaRPs built on both text Captcha and image-recognition
Captcha. One of them is a text CaRP wherein a password is a
sequence of characters like a text password, but entered by
clicking the right character sequence on CaRP images.
CaRP offers protection against online dictionary attacks on
passwords, which have been for long time a major security
threat for various online services. This threat is widespread
and considered as a top cyber security risk. Defense against
online dictionary attacks is a more subtle problem than it
might appear. Intuitive countermeasures such as throttling
logon attempts do not work well for two reasons:
1) It causes denial-of-service attacks (which were exploited
to lock highest bidders out in final minutes of eBay auctions
and incurs expensive helpdesk costs for account reactivation.
2) It is vulnerable to global password attacks whereby
adversaries intend to break into any account rather than a
specific one, and thus try each password candidate on
multiple accounts and ensure that the number of trials on each
account is below the threshold to avoid triggering account
lockout.
CaRP also offers protection against relay attacks, an
increasing threat to bypass Captchas protection, wherein
Captcha challenges are relayed to humans to solve. Koobface
Weas a relay attack to bypass Facebook’s Captcha in creating
New accounts. CaRP is robust to shoulder-surfing attacks if
combined with dual-view technologies.
CaRP requires solving a Captcha challenge in every login.
This impact on usability can be mitigated by adapting the
CaRP image’s difficulty level based on the login history of
the account and the machine used to log in.

Typical application scenarios for CaRP include:

1) E-Banking: CaRP can be applied on touch-screen
devices whereon typing passwords is cumbersome, esp. for
secure Internet applications such as e-banks. Many e-banking
systems have applied Captchas in user logins. For example,
ICBC (www.icbc.com.cn), the largest bank in the world,
requires solving a Captcha challenge for every online login
attempt.

Volume 3, | ssue 18

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

2) Spam mitigation: CaRP increases spammer’s operating
cost and thus helps reduce spam emails. For an email service
provider that deploys CaRP, a spam bot cannot log into an
email account even if it knows the password. Instead, human
involvement is compulsory to access an account. If CaRP is
combined with a policy to throttle the number of emails sent
to new recipients per login session, a spam bot can send only
a limited number of emails before asking human assistance
for login, leading to reduced outbound spam traffic.

3) Cross-device authentication: Typing passwords is
cumbersome on touch devices such as Smartphone’s and
tablets, where click/touch-based input is convenient. CaRP
can offer the same password entry experience across different
types of devices, including desktops, Smartphone’s and
tablets. Therefore, it is inherently a cross-device
authentication mechanism, and a single implementation can
simultaneously serve a wide range of different devices. On
the contrary, text passwords are more friendly to desktop
users, but less so to Smartphone or tablet users.

A. CAPTCHA AS GRAPHICAL PASSWORDS

A. A New Way to Thwart Guessing Attacks

In a guessing attack, a password guess tested in an
unsuccessful trial is determined wrong and excluded from
subsequent trials. The number of undetermined password
guesses decreases with more trials, leading to a better chance
of finding the password. Mathematically, let S be the set of
password guesses before any trial, p be the password to find,
T denote a trial whereas T, denote the n-th trial, and p(T = p)
be the probability that p is tested in trial T . Let E, be the set
of password guesses tested in trials up to (including) T, . The
password guess to be tested in n-th trial T, is from set S\E ,
1, 1.e., the relative complement of E,; in S. If p € S, then we
have

P(T=pTi_=p ..., Ti1#p) >p(T=p), 1)
and

E,—S

P(T=p[Ti#p, ..., Th1#p) — 1 Iwithn->s 2

where |S | denotes the cardinality of S. From Eq. (2), the
password is always found within |S| trials if it is in S;
otherwise S is exhausted after |S] trials. Each trial determines
if the tested password guess is the actual password or not,
and the trial’s result is deterministic.

To counter guessing attacks, traditional approaches in
designing graphical passwords aim at increasing the effective
password space to make passwords harder to guess and thus
require more trials. No matter how secure a graphical
password scheme is, the password can always be found by a
brute force attack. In this paper, we distinguish two types of
guessing attacks: automatic guessing attacks apply an
automatic trial and error process but S can be manually
constructed whereas human guessing attacks apply a manual
trial and error process.

CaRP adopts a completely different approach to counter
automatic guessing attacks. It aims at realizing the following
equation:

P(T=pTs ..., Tad) =p(T=p), Vn @)
In an automatic guessing attack. Eq. (3) means that each trial
is computationally independent of other trials. Specifically,
no matter how many trials executed previously, the chance of
finding the password in the current trial always remains the
same. That is, a password in S can be found only
probabilistically by automatic guessing (including brute-
force) attacks, in contrast to existing graphical password
schemes where a password can be found within a fixed
number of trials.

How to achieve the goal? If a new image is used for each
trial, and images of different trials are independent of each
other, then Egq. (3) holds. Independent images among
different login attempts must contain invariant information so
that the authentication server can verify claimants. By
examining the ecosystem of user authentication, we noticed
that human users enter passwords during authentication,
whereas the trial and error process in guessing attacks is
executed automatically. The capability gap between humans
and machines can be exploited to generate images so that
they are computationally-independent yet retain invariants
that only humans can identify, and thus use as passwords.
The invariants among images must be intractable to machines
to thwart automatic guessing attacks. This requirement is the
same as that of an ideal Captcha [25], leading to creation of
CaRP, a new family of graphical passwords robust to online
guessing attacks.

B. CaRP: An Overview

In CaRP, a new image is generated for every login attempt,
even for the same user. CaRP uses an alphabet of visual
objects (e.g., alphanumerical characters, similar animals) to
generate a CaRP image, which is also a Captcha challenge. A
major difference between CaRP images and Captcha images
is that all the visual objects in the alphabet should appear in a
CaRP image to allow a user to input any password but not
necessarily in a Captcha image. Many Captcha schemes can
be converted to CaRP schemes, as described in the next
subsection.

CaRP schemes are clicked-based graphical passwords.
According to the memory tasks in memorizing and entering a
password, CaRP schemes can be classified into two
categories: recognition and a new category, recognition-
recall, which requires recognizing an image and using the
recognized objects as cues to enter a password. Recognition-
recall combines the tasks of both recognition and cued-recall,
and retains both the recognition-based advantage of being
easy for human memory and the cued-recall advantage of a
large password space. Exemplary CaRP schemes of each type
will be presented later.

Volume 3, | ssue 18

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

1) SYSTEM ARCHITECTURE:

CAPTCHA
Servers 2
N | Application Server " UserlCllent
& Computer
APl Ser

O VO

L
% Serves the application
Veity Server Solves the CAPTCHA
that is displayed within
Frovide back-end services the application

for all application servers

User Authentication with CaRP Schemes

Like other graphical passwords, we assume that CaRP
schemes are used with additional protection such as secure
channels between clients and the authentication server
through Transport Layer Security (TLS). A typical way to
apply CaRP schemes in user authentication is as follows. The
authentication server AS stores a salt s and a hash value H (p,
s) for each user ID, where p is the password of the account
and not stored. A CaRP password is a sequence of visual
object IDs or clickable-points of visual objects that the user
selects. Upon receiving a login request, AS generates a CaRP
image, records the locations of the objects in the image, and
sends the image to the user to click her password. The
coordinates of the clicked points are recorded and sent to AS
along

p: Password (e.g., chars);

s: Salt Authentication

User | i Secure Hash Server {UserID, Hfp, s), s}

i 1: Authentication Request

| Image Generate a CaRP Image
i F

Click on Image: |
<Xy Y12, Xar V2>, | . UserlD

<Xy, ¥12,<X2, Va2, o 1. Recover p’ from <Xy, y12,<%y, Y22, ..;

2. H(p’, s) = H{p, 5)?: Yes: success;

id: -t .
| Success or fail No: fail.

Fig. 1. Flowchart of basic CaRP authentication.

To recover a password successfully, each user-clicked point
must belong to a single object or a clickable-point of an
object. Objects in a CaRP image may overlap slightly with
neighboring objects to resist segmentation. Users should not
click inside an overlapping region to avoid ambiguity in
identifying the clicked object. This is not a usability concern
in practice since overlapping areas generally take a tiny
portion of an object.

Security of user authentication web applications relies on
two parties: Hypertext Transfer Protocol Secure (HTPS) and
Hyper Text Transfer Protocol (HTTP) Authentication. It

builds a secure communication channel between client and
Web Server.

The CaRP schemes in some embodiments such as CaRP
for Web Applications may be implemented to work with the
widely used HTTP Basic Authentication. Note that for both
HTTP authentications, TLS/SSL provides the communication
security between a client and a web server.

It is a flow diagram of an illustrative process for
implementing CaRP with internet protocols such as HTTP
Basic Access Authentication .The process Involves acts
implemented at a client and security administrator which may
be embodied in a web server .The security administrator may
store User Id and Password indicators.

At security Administrator receives an access request from
the client. The access request may optionally include the
user’s user ID.

At security administrator generates a CaRP image. In some
embodiments, the CaRP image includes all of the potential
password-elements that make up the primitive domain. In
other embodiments the CaRP image includes less than all of
the potential password elements that make up the primitive
domain.

The security administrator sends the CaRP image to the
client .A user selects regions/points on the received image to
enter the user’s password.

The coordinates [(x1,y1),(x2,y2)....(xk,yk)] of the selected
points on the CaRP image are provided to the security
administrator .In some embodiments the user’s userID is also
provided, using the HTTP Basic Authentication, to the
security administrator with the coordinates
[(x1,y1),(x2,y2)...(xk,yk)] of the selected points on the CaRP
image.

The security administrator may map the coordinates back
on the CaRP image previously provided to the client and
recover a sequence of purported password-elements, p” that
the user selects on the CaRP image at the client. The
Administrator may determine whether the sequence of
password-elements that makes up the user’s password.

For Example, the security administrator may retrieve the salt
s of the associated with the user-ID; calculate a hash value
stored for the account.

Access is granted only if the purported password is verified
to be the same as the actual password, e.g., hash value of the
password agrees with the hash value stored for the account.

The security administrator denies access, then the process
may return to back, and different CaRP image is generated
.Each generated CaRP image is computationally uncorrelated
with another CaRP image.

The security Administrator may deny access after a
number of failed attempts.

In some embodiments, the security Administrator has the
capability to recover a user’s password p in a successful
authentication procedure. The Security admin does not
required storing the user passwords. Instead, only a password
indicator for a password may be recorded. Further security
measure can be taken to make hard or impossible for the
security admin to recover passwords.

Volume 3, | ssue 18

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

Il. CARP SCHEMES

1. RECOGNITION-BASED CARP
For this type of CaRP, a password is a sequence of visual
objects in the alphabet. Per view of traditional recognition-
based graphical passwords, recognition-based CaRP seems to
have access to an infinite number of different visual objects.
We present two recognition-based CaRP schemes and a
variation next.

A. ClickText

ClickText is a recognition-based CaRP scheme built on top of
text Captcha. Its alphabet comprises characters without any
visually-confusing characters. For example, Letter “O” and
digit “0” may cause confusion in CaRP images, and thus one
character should be excluded from the alphabet. A ClickText
password is a sequence of characters in the alphabet, e.g., p
=“AB#9CDS87”, which is similar to a text password. A
ClickText image is generated by the underlying Captcha
engine as if a Captcha image were generated except that all
the alphabet characters should appear in the image. During
generation, each character’s location is tracked to produce
ground truth for the location of the character in the generated
image. The authentication server relies on the ground truth to
identify the characters corresponding to user-clicked points.
In ClickText images, characters can be arranged randomly

Fig. 2. A ClickText image with 33 characters

on 2D space. This is different from text Captcha challenges in
which characters are typically ordered from left to right in
order for users to type them sequentially. Fig. 2 shows a
ClickText image with an alphabet of 33 characters. In
entering a password, the user clicks on this image the
characters in her password, in the same order, for example
“A”, “B”, “#7, <97, “C”, “D”, “8”, and then “7” for password
p = “AB#9CDS87”.

B. ClickAnimal

Captcha Zoo is a Captcha scheme which uses 3D models
of horse and dog to generate 2D animals with different
textures, colors, lightings and poses, and arranges them on a
cluttered background. A user clicks all the horses in a
challenge image to pass the test. Fig. 3 shows a sample
challenge wherein all the horses are circled red

Fig. 3. Captcha Zoo with horses circled red.
ClickAnimal is a recognition-based CaRP scheme built on
top of Captcha Zoo with an alphabet of similar animals such

as dog, horse, pig, etc. Its password is a sequence of animal
names such as p = “Turkey, Cat, Horse, Dog...” For each
animal, one or more 3D models are built. The Captcha
generation process is applied to generate ClickAnimal
images: 3D models are used to generate 2D animals by
applying different views, textures, colors, lightning effects,
and optionally distortions. The resulting 2D animals are then
arranged on a cluttered background such as grassland. Some
animals may be occluded by other animals in the image, but
their core parts are not occluded in order for humans to
identify each of them. Fig. 4 shows a ClickAnimal image
with an alphabet of 10 animals. Note that different views
applied in mapping 3D models to 2D animals, together with
occlusion in

the following step, produce many different shapes for the
same animal’s instantiations in the generated images.
Combined with the additional anti-recognition mechanisms
applied in the mapping step, these make it hard for computers
to recognize animals in the generated image, yet humans can
easily identify different instantiations of animals.

C. AnimalGrid

The number of similar animals is much less than the
number of available characters. ClickAnimal has a smaller
alphabet, and thus a smaller password space, than ClickText.
CaRP should have a sufficiently-large effective password
space to resist human guessing attacks. AnimalGrid’s
password space can be increased by combining it with a grid-
based graphical password, with the grid depending on the size
of the selected animal.

DAS is a candidate but requires drawing on the grid. To be
consistent with ClickAnimal, we change from drawing to
clicking: Click-A-Secret (CAS) wherein a user clicks the grid
cells in her password. AnimalGrid is a combination of
ClickAnimal and CAS. The number of grid-cells in a grid
should be much larger than the alphabet size. Unlike DAS,
grids in our CAS are object-dependent, as we will see next. It
has the advantage that a correct animal should be clicked in
order for the clicked grid-cell(s) on the follow-up grid to be
correct. If a wrong animal is clicked, the follow-up grid is
wrong. A click on the correctly labeled grid-cell of the wrong
grid would likely produce a wrong grid-cell at the
authentication server side when the correct grid is used.

To enter a password, a ClickAnimal image is displayed
first. After an animal is selected, an image of n x n grid
appears, with the grid-cell size equaling the bounding
rectangle of the selected animal. Each grid-cell is labeled to
help users identify. Fig. 4 shows a 6 x 6 grid when the red
turkey in the left image of Fig. 4 was selected. A user can
select zero to multiple grid-cells matching her password.
Therefore a password is a sequence of animals interleaving
with grid-cells, e.g., p = “Dog, Grid(2), Grid(1); Cat, Horse,
Grid(3)”, where Grid(1) means the grid-cell indexed as 1, and
grid-cells after an animal means that the grid is determined by
the bounding rectangle of the animal. A password must begin
with an animal.

When a ClickAnimal image appears, the user clicks the
animal on the image that matches the first animal in her
password. The coordinates of the clicked point are recorded.
The bounding rectangle of the clicked animal is then found

Volume 3, | ssue 18

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

interactively as follows: a bounding rectangle is calculated
and displayed, e.g., the white rectangle shown in Fig. 4.

Fig. 4. A ClickAnimal image (left) and 6 x 6 grid (right) determined by
red turkey’s bounding rectangle

The user checks the displayed rectangle and corrects
inaccurate edges by dragging if needed. This process is
repeated until the user is satisfied with the accuracy of the
bounding rectangle. In most cases, the calculated bounding
rectangle is accurate enough without needing manual
correction.

Once the bounding rectangle of the selected animal is
identified, an image of n x n grid with the identified
bounding rectangle as its grid-cell size is generated and
displayed. If the grid image is too large or too small for a user
to view, the grid image is scaled to a fitting size. The user
then clicks a sequence of zero to multiple grid-cells that
match the grid-cells following the first animals in her
password, and then gets back to the ClickAnimal image. For
the example password p given previously, she clicks a point
inside grid-cell(2), and then a point inside grid-cell(1) to
select the two grid-cells. The coordinates of user-clicked
points on the grid image (the original one before scaling if the
grid image is scaled) are recorded. The above process is
repeated until the user has
finished entering her password. The resulting sequence
of coordinates of user-clicked points, e.g., “AP(150,50),
GP(30,66), GP(89,160), AP(135,97),...” where “AP(X,y)”
denotes the point with coordinates (x,y) on a ClickAnimal
image, and “GP(X,y)” denotes the point with coordinates
(x,y) on a grid image, is sent to the authentication server.

Using the ground truth, the server recovers the first animal
from the received sequence, regenerates the grid image from
the animal’s bounding rectangle, and recovers the clicked
grid-cells. This process is repeated to recover the password
the user clicked. Its hash is then calculated and compared
with the stored hash.

2. RECOGNITION-RECALL CARP

In recognition-recall CaRP, a password is a sequence of
some invariant points of objects. An invariant point of an
object (e.g. letter “A”) is a point that has a fixed relative
position in different incarnations (e.g., fonts) of the object,
and thus can be uniquely identified by humans no matter how
the object appears in CaRP images. To enter a password, a
user must identify the objects in a CaRP image, and then use
the identified objects as cues to locate and click the invariant
points matching her password. Each password point has a
tolerance range that a click within the tolerance range is
acceptable as the password point. Most people have a click
variation of 3 pixels or less [18]. TextPoint, a recognition-
recall CaRP scheme with an alphabet of characters, is
presented next, followed by a variation for challenge-
response authentication.

A. TextPoints

Characters contain invariant points. Fig. 5 shows some
invariant points of letter “A”, which offers a strong cue to
memorize and locate its invariant points. A point is said to be
an internal point of an object if its distance to the closest
boundary of the object exceeds a threshold. A set of internal
invariant points of characters is selected to form a set of
clickable points for TextPoints. The internality ensures that a
clickable point is unlikely occluded by a neighboring
character and that its tolerance region unlikely overlaps with
any tolerance region of a neighboring character’s clickable
points on the image generated by the underlying Captcha
engine. In determining clickable points, the distance between
any pair of clickable points in a character must exceed a
threshold so that they are perceptually distinguishable and
their tolerance regions do not overlap on CaRP images. In
addition, variation should also be taken into consideration.
For example, if the center of a stroke segment in one
character is selected, we should avoid selecting the center of
a similar stroke segment in another character. Instead, we
should select

Fig. 5. Some mvariant pomts (red crosses) of “A™

a different point from the stroke segment, e.g., a point at one-
third length of the stroke segment to an end. This variation in
selecting clickable points ensures that a clickable point is
context-dependent: a similarly structured point may or may
not be a clickable point, depending on the character that the
point lies in. Character recognition is required in locating
clickable points on a TextPoints image although the clickable
points are known for each character. This is a task beyond a
bot’s capability.

A password is a sequence of clickable points. A character
can typically contribute multiple clickable points. Therefore
TextPoints has a much larger password space than ClickText.

Image Generation. TextPoints images look identical to
ClickText images and are generated in the same way except
that the locations of all the clickable points are checked to
ensure that none of them is occluded or its tolerance region
overlaps another clickable point’s. We simply generate
another image if the check fails. As such failures occur rarely
due to the fact that clickable points are all internal points, the
restriction due to the check has a negligible impact on the
security of generated images.

Authentication. When creating a password, all clickable
points are marked on corresponding characters in a CaRP
image for a user to select. During authentication, the user first
identifies her chosen characters, and clicks the password
points on the right characters. The authentication server maps
each user-clicked point on the image to find the closest
clickable point. If their distance exceeds a tolerable range,
login fails. Otherwise a sequence of clickable points is

Volume 3, | ssue 18

Published by, www.ijert.org 5

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

recovered, and its hash value is computed to compare with
the stored value.

It is worth comparing potential password points between
TextPoints and traditional click-based graphical passwords
such as PassPoints In PassPoints, salient points should be
avoided since they are readily picked up by adversaries to
mount dictionary attacks, but avoiding salient points would
increase the burden to remember a password. This conflict
does not exist in TextPoints. Clickable points in TextPoints
are salient points of their characters and thus help remember a
password, but cannot be exploited by bots since they are both
dynamic (as compared to static points in traditional graphical
password schemes) and contextual:

« Dynamic: locations of clickable points and their
contexts (i.e., characters) vary from one image to
another. The clickable points in one image are
computationally inde-pendent of the clickable points in
another image, as we will see in Section VI-B.

« Contextual: Whether a similarly structured point is a
clickable point or not depends on its context. It is only if
within the right context, i.e., at the right location of a
right character.

These two features require recognizing the correct contexts,
i.e., characters, first. By the very nature of Captcha,
recognizing characters in a Captcha image is a task beyond
computer’s capability. Therefore, these salient points of
characters cannot be exploited to mount dictionary attacks on
TextPoints.

B. TextPoints4CR

For the CaRP schemes presented up to now, the

coordinates of user-clicked points are sent directly to the
authentication server during authentication. For more
complex protocols, say a challenge-response authentication
protocol, a response is sent to the authentication server
instead. TextPoints can be modified to fit challenge-response
authentication. This variation is called
TextPoints for Challenge-Response or TextPoints4CR.
Unlike TextPoints wherein the authentication server stores a
salt and a password hash value for each account, the server in
TextPoints4CR stores the password for each account.
Another difference is that each character appears only once
in a TextPoints4CR image but may appear multiple times in a
TextPoints image. This is because both server and client in
TextPoints4CR should generate the same sequence of
discretized grid-cells independently. That requires a unique
way to generate the sequence from the shared secret, i.e.,
password. Repeated characters would lead to several possible
sequences for the same password. This unique sequence is
used as if the shared secret in a conventional challenge-
response authentication protocol.

In TextPoints4CR, an image is partitioned into a fixed grid
with the discretization grid-cell of size u along both
directions. The minimal distance between any pair of
clickable points should be larger than x by a margin
exceeding a threshold to prevent two clickable points from
falling into a single grid-cell in an image. Suppose that a
guaranteed tolerance of click errors along both x-axis and y-
axis is r, we require that u > 4z .

Image Generation. To generate a TextPoints4CR image,

the same procedure to generate a TextPoints image is applied.
Then the following procedure is applied to make every click-
able point at least 7 distance from the edges of the grid-cell it
lies in. All the clickable points, denoted as set f, are located
on the image. For every point in f, we calculate its distance
along x-axis or y-axis to the center of the grid-cell it lies in. A
point is said to be an internal point if the distance is less than
0.5¢—7 along both directions; otherwise a boundary point. For
each boundary point in f, a nearby internal point in the same
grid-cell is selected. The selected point is called a target point
of the boundary point. After processing all the points in f, we
obtain a new set f - comprising internal points; these are
either internal clickable points or target points of boundary
clickable points. Mesh warping , widely used in generating
text Captcha challenges, is then used to warp the image so
that f maps to f - . The result is a TextPoint4CR image
wherein every clickable point would tolerate at least 7 of click
errors. Selection of target points should try to reduce warping
distortion caused by mapping f to f -.

Authentication. In entering a password, a user-clicked

point is replaced by the grid-cell it lies in. If click errors are
within z, each user-clicked point falls into the same grid-cell
as the original password point. Therefore the sequence of
grid-cells generated from user-clicked points is identical to
the one that the authentication server generates from the
stored password of the account. This sequence is used as if
the shared secret between the two parties in a challenge-
response authentication protocol.
Unlike other CaRP schemes presented in this paper, Text-
Points4CR requires the authentication server to store pass-
words instead of their hash values. Stored passwords must be
protected from insider attacks; for example, they are
encrypted with a master key that only the authentication
server knows. A password is decrypted only when its
associated account attempts to log in.

I1l. SECURITY ANALYSIS

A. Security of Underlying Captcha

Computational intractability in recognizing objects in
CaRP images is fundamental to CaRP. Existing analyses on
Captcha security were mostly case by case or used an
approximate process. No theoretic security model has been
established yet. Object segmentation is considered as a
computationally-expensive, combinatorial-hard problem [30],
which modern text Captcha schemes rely on. According to
[30], the complexity of object segmentation, C, is
exponentially dependent of the number M of objects
contained in a challenge, and polynomially dependent of the
size N of the Captcha alphabet: C = « ™ P(N), where a > 1 is
a parameter, and P() is a polynomial function. A Captcha
challenge typically contains 6 to 10 characters, whereas a
CaRP image typically contains 30 or more characters. The
complexity to break a Click-Text image is about o*® P(
N)/(@™ P(N)) = o® times the complexity to break a Captcha
challenge generated by its underlying Captcha scheme.
Therefore ClickText is much harder to break than its
underlying Captcha scheme. Fur-the rmore, characters in a
CaRP scheme are arranged two-dimensionally, further
increasing segmentation difficulty due to one more dimension

Volume 3, | ssue 18

Published by, www.ijert.org 6

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

to segment. As a result, we can reduce distortions in
ClickText images for improved usability yet maintain the
same security level as the underlying text Captcha.
ClickAnimal relies on both object segmentation and multiple-
label classification. Its security remains an open question.

As a framework of graphical passwords, CaRP does not
rely on any specific Captcha scheme. If one Captcha scheme
gets broken, a new and more robust Captcha scheme may
appear and be used to construct a new CaRP scheme. In the
remaining security analysis, we assume that it is intractable
for computers to recognize any objects in any challenge
image generated by the underlying Captcha of CaRP. More
accurately, the Captcha is assumed to be chosen-pixel attack
(CPA)-secure defined with the following experiment: an
adversary A first learns from an arbitrary number of challenge
images by querying a ground-truth oracle O as follows: A
selects an arbitrary number of internal object-points and
sends to O, which responds with the object that each point
lies in. Then A receives a new challenge image and selects an
internal object-point to query O again.

This time O chooses a random bit b « {0, 1} to determine
what to return: It returns the true object if b = 1; otherwise a
false object selected with a certain strategy. A is asked to
determine whether the returned object is the true object that
the internal object-point lies in or not. A Captcha scheme is
said to be CPA-secure if A cannot succeed with a probability
non-negligibly higher than %, the probability of a random
guess.

CONCLUSION

They have proposed CaRP, a new security primitive
relying on unsolved hard Al problems. CaRP is both a
Captcha and a graphical password scheme. The notion of
CaRP introduces a new family of graphical passwords, which
adopts a new approach to counter online guessing attacks: a
new CaRP image, which is also a Captcha challenge, is used

Overall, our work is one step forward in the paradigm of
using hard Al problems for security. Of reasonable security
and usability and practical applications, CaRP has good
potential for refinements, which call for useful future work.
More importantly, we expect CaRP to inspire new inventions
of such Al based security primitives.

REFERENCES

1. R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical
passwords: Learning from the first twelve years,” ACM Comput.
Surveys, vol. 44, no. 4, 2012.

2. (2012, Feb.). The Science Behind Passfaces [Online].
Auvailable:http://www.realuser.com/published/ScienceBehindPass
faces.pdf

3. L. Jermyn, A. Mayer, F. Monrose, M. Reiter, and A. Rubin, “The
design and analysis of graphical passwords,” in Proc. 8th
USENIX Security Symp., 1999, pp. 1-15.

4. H. Tao and C. Adams, “Pass-Go: A proposal to improve the
usability of graphical passwords,” Int. J. Netw. Security, vol. 7,
no. 2, pp. 273-292, 2008.

5. S. Wiedenbeck, J. Waters, J. C. Birget, A. Brodskiy, and N.
Memon, “PassPoints: Design and longitudinal evaluation of a
graphical password system,” Int. J. HCI, vol. 63, pp. 102-127,
Jul. 2005.

Volume 3, | ssue 18

Published by, www.ijert.org 7

