
 

A Heuristic Approach on Carp using Complete 

Ai Problems 

 K. Keerthi 
M.Tech (CSE) 

 

Kadapa 

 
 

Abstract— Many security primitives are based on complete 

mathematical problems. Using hard/complete AI problems for 

security is emerging as an exciting new paradigm, but has been 

under-explored. In this paper, it present a new security 

primitive based on hard AI problems, namely, a novel family of 

graphical password systems built on top of Captcha technology, 

which they call Captcha as graphical passwords (CaRP). CaRP 

is both a Captcha and a graphical password scheme. CaRP 

addresses a number of security problems altogether, such as 

online guessing attacks, relay attacks, and, if combined with 

dual-view technologies, shoulder-surfing attacks. Notably, a 

CaRP password can be found only probabilistically by 

automatic online guessing attacks even if the password is in the 

search set. CaRP also offers a novel approach to address the 

well-known image hotspot problem in popular graphical 

password systems, such as Pass Points, that often leads to weak 

password choices. CaRP is not a panacea, but it offers 

reasonable security and usability and appears to fit well with 

some practical applications for improving online security. 

 
Keywords— Graphical password, password, hotspots, CaRP, 

Captcha, dictionary attack, password guessing attack, security 

primitive. 

I. INTRODUCTION 

A FUNDAMENTAL task in security is to create 

cryptographic primitives based on hard mathematical 

problems that are computationally intractable. For example, 

the  problem of integer factorization is fundamental to the 

RSA public-key cryptosystem and the Rabin encryption. The 

discrete logarithm problem is fundamental to the ElGamal 

encryption, the Diffie- Hellman key exchange, the Digital 

Signature Algorithm, the elliptic curve cryptography and so 

on. 

Using hard AI (Artificial Intelligence) problems for security, 

initially proposed in, is an exciting new paradigm. Under this 

paradigm, the most notable primitive invented is Captcha, 

which distinguishes human users from computers by 

presenting a challenge, i.e., a puzzle, beyond the capability of  

computers but easy for humans. Captcha is now a standard 

Internet security technique to protect online email and other  

Services from being abused by bots. However, this new 

paradigm has achieved just a limited success as compared  

with the cryptographic primitives based on hard math 

problems and their wide applications. Is it possible to create  

any new security primitive based on hard AI problems? This 

is a challenging and interesting open problem. 

In this paper, introducing a new security primitive based 

on hard AI problems, namely, a novel family of graphical 

password systems integrating Captcha technology, which we  

 

call CaRP (Captcha as gRaphical Passwords). CaRP is click-

based graphical passwords, where a sequence of clicks on an 

image is used to derive a password. Unlike other click-based 

graphical passwords, images used in CaRP are Captcha 

challenges, and a new CaRP image is generated for every 

login attempt. The notion of CaRP is simple but generic. 

CaRP can have multiple instantiations. In theory, any 

Captcha scheme relying on multiple-object classification can 

be converted to a CaRP scheme. We present exemplary 

CaRPs built on both text Captcha and image-recognition 

Captcha. One of them is a text CaRP wherein a password is a 

sequence of characters like a text password, but entered by 

clicking the right character sequence on CaRP images. 

CaRP offers protection against online dictionary attacks on 

passwords, which have been for long time a major security 

threat for various online services. This threat is widespread 

and considered as a top cyber security risk. Defense against 

online dictionary attacks is a more subtle problem than it 

might appear. Intuitive countermeasures such as throttling 

logon attempts do not work well for two reasons: 

 1) It causes denial-of-service attacks (which were exploited 

to lock highest bidders out in final minutes of eBay auctions  

and incurs expensive helpdesk costs for account reactivation. 

2) It is vulnerable to global password attacks whereby 

adversaries intend to break into any account rather than a 

specific one, and thus try each password candidate on 

multiple accounts and ensure that the number of trials on each 

account is below the threshold to avoid triggering account 

lockout. 

CaRP also offers protection against relay attacks, an 

increasing threat to bypass Captchas protection, wherein  

Captcha challenges are relayed to humans to solve. Koobface 

Was a relay attack to bypass Facebook’s Captcha in creating 

New accounts. CaRP is robust to shoulder-surfing attacks if 

combined with dual-view technologies.  

CaRP requires solving a Captcha challenge in every login. 

This impact on usability can be mitigated by adapting the 

CaRP image’s difficulty level based on the login history of 

the account and the machine used to log in. 

       Typical application scenarios for CaRP include: 

1) E-Banking: CaRP can be applied on touch-screen 

devices whereon typing passwords is cumbersome, esp. for 

secure Internet applications such as e-banks. Many e-banking 

systems have applied Captchas in user logins. For example, 

ICBC (www.icbc.com.cn), the largest bank in the world, 

requires solving a Captcha challenge for every online login 

attempt. 

 Annamacharya Institute of Technology (AITK),

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

1



 

2) Spam mitigation: CaRP increases spammer’s operating 

cost and thus helps reduce spam emails. For an email service 

provider that deploys CaRP, a spam bot cannot log into an 

email account even if it knows the password. Instead, human 

involvement is compulsory to access an account. If CaRP is 

combined with a policy to throttle the number of emails sent 

to new recipients per login session, a spam bot can send only 

a limited number of emails before asking human assistance 

for login, leading to reduced outbound spam traffic. 

3) Cross-device authentication:  Typing passwords is 

cumbersome on touch devices such as Smartphone’s and 

tablets, where click/touch-based input is convenient. CaRP 

can offer the same password entry experience across different 

types of devices, including desktops, Smartphone’s and 

tablets. Therefore, it is inherently a cross-device 

authentication mechanism, and a single implementation can 

simultaneously serve a wide range of different devices. On 

the contrary, text passwords are more friendly to desktop 

users, but less so to Smartphone or tablet users. 

 

A. CAPTCHA AS GRAPHICAL PASSWORDS  

A. A New Way to Thwart Guessing Attacks  

In a guessing attack, a password guess tested in an 

unsuccessful trial is determined wrong and excluded from 

subsequent trials. The number of undetermined password 

guesses decreases with more trials, leading to a better chance 

of finding the password. Mathematically, let S be the set of 

password guesses before any trial, ρ be the password to find, 

T denote a trial whereas Tn denote the n-th trial, and p(T = ρ) 

be the probability that ρ is tested in trial T . Let En be the set 

of password guesses tested in trials up to (including) Tn . The 

password guess to be tested in n-th trial Tn is from set S\E n 

−1, i.e., the relative complement of En−1 in S. If ρ ∈  S, then we 

have 

p (T = ρ|T1 _= ρ, . . . , Tn−1 ≠ρ ) > p(T = ρ),  (1)  

and       

  En → S 

 

   

p(T = ρ|T1 ≠ ρ, . . . , Tn−1 ≠ ρ) → 1    }with ns         (2)   

where |S | denotes the cardinality of S. From Eq. (2), the 

password is always found within |S| trials if it is in S; 

otherwise S is exhausted after |S| trials. Each trial determines 

if the tested password guess is the actual password or not, 

and the trial’s result is deterministic. 

To counter guessing attacks, traditional approaches in 

designing graphical passwords aim at increasing the effective 

password space to make passwords harder to guess and thus 

require more trials. No matter how secure a graphical 

password scheme is, the password can always be found by a 

brute force attack. In this paper, we distinguish two types of 

guessing attacks: automatic guessing attacks apply an 

automatic trial and error process but S can be manually 

constructed whereas human guessing attacks apply a manual 

trial and error process. 

 

CaRP adopts a completely different approach to counter 

automatic guessing attacks. It aims at realizing the following 

equation: 

p(T = ρ|T1, . . . , Tn−1) = p(T = ρ),   ∀ n (3) 

In an automatic guessing attack. Eq. (3) means that each trial 

is computationally independent of other trials. Specifically, 

no matter how many trials executed previously, the chance of 

finding the password in the current trial always remains the 

same. That is, a password in S can be found only 

probabilistically by automatic guessing (including brute-

force) attacks, in contrast to existing graphical password 

schemes where a password can be found within a fixed 

number of trials. 

How to achieve the goal? If a new image is used for each 

trial, and images of different trials are independent of each 

other, then Eq. (3) holds. Independent images among 

different login attempts must contain invariant information so 

that the authentication server can verify claimants. By 

examining the ecosystem of user authentication, we noticed 

that human users enter passwords during authentication, 

whereas the trial and error process in guessing attacks is 

executed automatically. The capability gap between humans 

and machines can be exploited to generate images so that 

they are computationally-independent yet retain invariants 

that only humans can identify, and thus use as passwords. 

The invariants among images must be intractable to machines 

to thwart automatic guessing attacks. This requirement is the 

same as that of an ideal Captcha [25], leading to creation of 

CaRP, a new family of graphical passwords robust to online 

guessing attacks. 

 

B. CaRP: An Overview 

In CaRP, a new image is generated for every login attempt, 

even for the same user. CaRP uses an alphabet of visual 

objects (e.g., alphanumerical characters, similar animals) to 

generate a CaRP image, which is also a Captcha challenge. A 

major difference between CaRP images and Captcha images 

is that all the visual objects in the alphabet should appear in a 

CaRP image to allow a user to input any password but not 

necessarily in a Captcha image. Many Captcha schemes can 

be converted to CaRP schemes, as described in the next 

subsection. 

CaRP schemes are clicked-based graphical passwords. 

According to the memory tasks in memorizing and entering a 

password, CaRP schemes can be classified into two 

categories: recognition and a new category, recognition-

recall, which requires recognizing an image and using the 

recognized objects as cues to enter a password. Recognition-

recall combines the tasks of both recognition and cued-recall, 

and retains both the recognition-based advantage of being 

easy for human memory and the cued-recall advantage of a 

large password space. Exemplary CaRP schemes of each type 

will be presented later. 

 

 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

2



 

1) SYSTEM ARCHITECTURE: 

 

 
       

User Authentication with CaRP Schemes 

Like other graphical passwords, we assume that CaRP 

schemes are used with additional protection such as secure 

channels between clients and the authentication server 

through Transport Layer Security (TLS). A typical way to 

apply CaRP schemes in user authentication is as follows. The 

authentication server AS stores a salt s and a hash value H (ρ, 

s) for each user ID, where ρ is the password of the account 

and not stored. A CaRP password is a sequence of visual 

object IDs or clickable-points of visual objects that the user 

selects. Upon receiving a login request, AS generates a CaRP 

image, records the locations of the objects in the image, and 

sends the image to the user to click her password. The 

coordinates of the clicked points are recorded and sent to AS 

along 

 

 
To recover a password successfully, each user-clicked point 

must belong to a single object or a clickable-point of an 

object. Objects in a CaRP image may overlap slightly with 

neighboring objects to resist segmentation. Users should not 

click inside an overlapping region to avoid ambiguity in 

identifying the clicked object. This is not a usability concern 

in practice since overlapping areas generally take a tiny 

portion of an object. 

 Security of user authentication web applications relies on 

two parties: Hypertext Transfer Protocol Secure (HTPS) and 

Hyper Text Transfer Protocol (HTTP) Authentication. It 

builds a secure communication channel between client and  

Web Server. 

    The CaRP schemes in some embodiments such as CaRP 

for Web Applications may be implemented to work with the 

widely used HTTP Basic Authentication. Note that for both 

HTTP authentications, TLS/SSL provides the communication 

security between a client and a web server. 

      It is a flow diagram of an illustrative process for 

implementing CaRP with internet protocols such as HTTP 

Basic Access Authentication .The process Involves acts 

implemented at a client and security administrator which may 

be embodied in a web server .The security administrator may 

store User Id and Password indicators. 

    At security Administrator receives an access request from 

the client. The access request may optionally include the 

user’s user ID. 

    At security administrator generates a CaRP image. In some 

embodiments, the CaRP image includes all of the potential 

password-elements that make up the primitive domain. In 

other embodiments the CaRP image includes less than all of 

the potential password elements that make up the primitive 

domain. 

The security administrator sends the CaRP image to the 

client .A user selects regions/points on the received image to 

enter the user’s password. 

    The coordinates [(x1,y1),(x2,y2)….(xk,yk)] of the selected 

points on the CaRP image are provided to the security 

administrator .In some embodiments the user’s userID is also 

provided, using the HTTP Basic Authentication, to the 

security administrator with the coordinates 

[(x1,y1),(x2,y2)…(xk,yk)] of the selected points on the CaRP 

image. 

    The security administrator may map the coordinates back 

on the CaRP image previously provided to the client and 

recover a sequence of purported password-elements, p΄ that 

the user selects on the CaRP image at the client. The 

Administrator may determine whether the sequence of 

password-elements that makes up the user’s password. 

 For Example, the security administrator may retrieve the salt 

s of the associated with the user-ID; calculate a hash value 

stored for the account. 

   Access is granted only if the purported password is verified 

to be the same as the actual password, e.g., hash value of the 

password agrees with the hash value stored for the account. 

    The security administrator denies access, then the process 

may return to back, and different CaRP image is generated 

.Each generated CaRP image is computationally uncorrelated 

with another CaRP image. 

    The security Administrator may deny access after a 

number of failed attempts. 

In some embodiments, the security Administrator has the 

capability to recover a user’s password p in a successful 

authentication procedure. The Security admin does not 

required storing the user passwords. Instead, only a password 

indicator for a password may be recorded. Further security 

measure can be taken to make hard or impossible for the 

security admin to recover passwords. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

3



 

II. CARP SCHEMES 

 

1. RECOGNITION-BASED CARP 

For this type of CaRP, a password is a sequence of visual 

objects in the alphabet. Per view of traditional recognition-

based graphical passwords, recognition-based CaRP seems to 

have access to an infinite number of different visual objects. 

We present two recognition-based CaRP schemes and a 

variation next. 

 

A. ClickText 

ClickText is a recognition-based CaRP scheme built on top of 

text Captcha. Its alphabet comprises characters without any 

visually-confusing characters. For example, Letter “O” and 

digit “0” may cause confusion in CaRP images, and thus one 

character should be excluded from the alphabet. A ClickText 

password is a sequence of characters in the alphabet, e.g., ρ 

=“AB#9CD87”, which is similar to a text password. A 

ClickText image is generated by the underlying Captcha 

engine as if a Captcha image were generated except that all 

the alphabet characters should appear in the image. During 

generation, each character’s location is tracked to produce 

ground truth for the location of the character in the generated 

image. The authentication server relies on the ground truth to 

identify the characters corresponding to user-clicked points. 

In ClickText images, characters can be arranged randomly 

 

                                                       

 

 

 

 
Fig. 2.  A ClickText image with 33 characters 

on 2D space. This is different from text Captcha challenges in 

which characters are typically ordered from left to right in 

order for users to type them sequentially. Fig. 2 shows a 

ClickText image with an alphabet of 33 characters. In 

entering a password, the user clicks on this image the 

characters in her password, in the same order, for example 

“A”, “B”, “#”, “9”, “C”, “D”, “8”, and then “7” for password 

ρ = “AB#9CD87”. 

 

B. ClickAnimal 

Captcha Zoo  is a Captcha scheme which uses 3D models 

of horse and dog to generate 2D animals with different 

textures, colors, lightings and poses, and arranges them on a 

cluttered background. A user clicks all the horses in a 

challenge image to pass the test. Fig. 3 shows a sample 

challenge wherein all the horses are circled red 

 

 

 

 

 

 

 

 
Fig. 3.  Captcha Zoo with horses circled red. 

ClickAnimal is a recognition-based CaRP scheme built on 

top of Captcha Zoo  with an alphabet of similar animals such 

as dog, horse, pig, etc. Its password is a sequence of animal 

names such as ρ = “Turkey, Cat, Horse, Dog…” For each 

animal, one or more 3D models are built. The Captcha 

generation process is applied to generate ClickAnimal 

images: 3D models are used to generate 2D animals by 

applying different views, textures, colors, lightning effects, 

and optionally distortions. The resulting 2D animals are then 

arranged on a cluttered background such as grassland. Some 

animals may be occluded by other animals in the image, but 

their core parts are not occluded in order for humans to 

identify each of them. Fig. 4 shows a ClickAnimal image 

with an alphabet of 10 animals. Note that different views 

applied in mapping 3D models to 2D animals, together with 

occlusion in 

the following step, produce many different shapes for the 

same animal’s instantiations in the generated images. 

Combined with the additional anti-recognition mechanisms 

applied in the mapping step, these make it hard for computers 

to recognize animals in the generated image, yet humans can 

easily identify different instantiations of animals. 

 

C. AnimalGrid 

The number of similar animals is much less than the 

number of available characters. ClickAnimal has a smaller 

alphabet, and thus a smaller password space, than ClickText. 

CaRP should have a sufficiently-large effective password 

space to resist human guessing attacks. AnimalGrid’s 

password space can be increased by combining it with a grid-

based graphical password, with the grid depending on the size 

of the selected animal. 

DAS is a candidate but requires drawing on the grid. To be 

consistent with ClickAnimal, we change from drawing to 

clicking: Click-A-Secret (CAS) wherein a user clicks the grid 

cells in her password. AnimalGrid is a combination of 

ClickAnimal and CAS. The number of grid-cells in a grid 

should be much larger than the alphabet size. Unlike DAS, 

grids in our CAS are object-dependent, as we will see next. It 

has the advantage that a correct animal should be clicked in 

order for the clicked grid-cell(s) on the follow-up grid to be 

correct. If a wrong animal is clicked, the follow-up grid is 

wrong. A click on the correctly labeled grid-cell of the wrong 

grid would likely produce a wrong grid-cell at the 

authentication server side when the correct grid is used. 

To enter a password, a ClickAnimal image is displayed 

first. After an animal is selected, an image of n × n grid 

appears, with the grid-cell size equaling the bounding 

rectangle of the selected animal. Each grid-cell is labeled to 

help users identify. Fig. 4 shows a 6 × 6 grid when the red 

turkey in the left image of Fig. 4 was selected. A user can 

select zero to multiple grid-cells matching her password. 

Therefore a password is a sequence of animals interleaving 

with grid-cells, e.g., ρ = “Dog, Grid(2), Grid(1); Cat, Horse, 

Grid(3)”, where Grid(1) means the grid-cell indexed as 1, and 

grid-cells after an animal means that the grid is determined by 

the bounding rectangle of the animal. A password must begin 

with an animal. 

When a ClickAnimal image appears, the user clicks the 

animal on the image that matches the first animal in her 

password. The coordinates of the clicked point are recorded. 

The bounding rectangle of the clicked animal is then found 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

4



 

interactively as follows: a bounding rectangle is calculated 

and displayed, e.g., the white rectangle shown in Fig. 4. 

 

 

 

 

 

 

 
Fig. 4. A ClickAnimal image (left) and 6 × 6 grid (right) determined by 

red turkey’s bounding rectangle 

  The user checks the displayed rectangle and corrects 

inaccurate edges by dragging if needed. This process is 

repeated until the user is satisfied with the accuracy of the 

bounding rectangle. In most cases, the calculated bounding 

rectangle is accurate enough without needing manual 

correction. 

Once the bounding rectangle of the selected animal is 

identified, an image of n × n grid with the identified 

bounding rectangle as its grid-cell size is generated and 

displayed. If the grid image is too large or too small for a user 

to view, the grid image is scaled to a fitting size. The user 

then clicks a sequence of zero to multiple grid-cells that 

match the grid-cells following the first animals in her 

password, and then gets back to the ClickAnimal image. For 

the example password ρ given previously, she clicks a point 

inside grid-cell(2), and then a point inside grid-cell(1) to 

select the two grid-cells. The coordinates of user-clicked 

points on the grid image (the original one before scaling if the 

grid image is scaled) are recorded. The above process is 

repeated until the user has   

finished  entering her  password.  The resulting  sequence 

of  coordinates  of user-clicked  points, e.g.,  “AP(150,50), 

GP(30,66), GP(89,160 ), AP(135,97),…” where “AP(x,y)” 

denotes the point with coordinates (x,y) on a ClickAnimal 

image, and “GP(x,y)” denotes the point with coordinates 

(x,y) on a grid image, is sent to the authentication server. 

Using the ground truth, the server recovers the first animal 

from the received sequence, regenerates the grid image from 

the animal’s bounding rectangle, and recovers the clicked 

grid-cells. This process is repeated to recover the password 

the user clicked. Its hash is then calculated and compared 

with the stored hash. 

 

     2. RECOGNITION-RECALL CARP 

In recognition-recall CaRP, a password is a sequence of 

some invariant points of objects. An invariant point of an 

object (e.g. letter “A”) is a point that has a fixed relative 

position in different incarnations (e.g., fonts) of the object, 

and thus can be uniquely identified by humans no matter how 

the object appears in CaRP images. To enter a password, a 

user must identify the objects in a CaRP image, and then use 

the identified objects as cues to locate and click the invariant 

points matching her password. Each password point has a 

tolerance range that a click within the tolerance range is 

acceptable as the password point. Most people have a click 

variation of 3 pixels or less [18]. TextPoint, a recognition-

recall CaRP scheme with an alphabet of characters, is 

presented next, followed by a variation for challenge-

response authentication. 

 

A. TextPoints 

Characters contain invariant points. Fig. 5 shows some 

invariant points of letter “A”, which offers a strong cue to 

memorize and locate its invariant points. A point is said to be 

an internal point of an object if its distance to the closest 

boundary of the object exceeds a threshold. A set of internal 

invariant points of characters is selected to form a set of 

clickable points for TextPoints. The internality ensures that a 

clickable point is unlikely occluded by a neighboring 

character and that its tolerance region unlikely overlaps with 

any tolerance region of a neighboring character’s clickable 

points on the image generated by the underlying Captcha 

engine. In determining clickable points, the distance between 

any pair of clickable points in a character must exceed a 

threshold so that they are perceptually distinguishable and 

their tolerance regions do not overlap on CaRP images. In 

addition, variation should also be taken into consideration. 

For example, if the center of a stroke segment in one 

character is selected, we should avoid selecting the center of 

a similar stroke segment in another character. Instead, we 

should select 

 
a different point from the stroke segment, e.g., a point at one-

third length of the stroke segment to an end. This variation in 

selecting clickable points ensures that a clickable point is 

context-dependent: a similarly structured point may or may 

not be a clickable point, depending on the character that the 

point lies in. Character recognition is required in locating 

clickable points on a TextPoints image although the clickable 

points are known for each character. This is a task beyond a 

bot’s capability. 

A password is a sequence of clickable points. A character 

can typically contribute multiple clickable points. Therefore 

TextPoints has a much larger password space than ClickText. 

Image Generation. TextPoints images look identical to 

ClickText images and are generated in the same way except 

that the locations of all the clickable points are checked to 

ensure that none of them is occluded or its tolerance region 

overlaps another clickable point’s. We simply generate 

another image if the check fails. As such failures occur rarely 

due to the fact that clickable points are all internal points, the 

restriction due to the check has a negligible impact on the 

security of generated images. 

Authentication. When creating a password, all clickable 

points are marked on corresponding characters in a CaRP 

image for a user to select. During authentication, the user first 

identifies her chosen characters, and clicks the password 

points on the right characters. The authentication server maps 

each user-clicked point on the image to find the closest 

clickable point. If their distance exceeds a tolerable range, 

login fails. Otherwise a sequence of clickable points is 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

5



 

recovered, and its hash value is computed to compare with 

the stored value. 

It is worth comparing potential password points between 

TextPoints and traditional click-based graphical passwords 

such as PassPoints  In PassPoints, salient points should be 

avoided since they are readily picked up by adversaries to 

mount dictionary attacks, but avoiding salient points would 

increase the burden to remember a password. This conflict 

does not exist in TextPoints. Clickable points in TextPoints 

are salient points of their characters and thus help remember a 

password, but cannot be exploited by bots since they are both 

dynamic (as compared to static points in traditional graphical 

password schemes) and contextual: 

• Dynamic: locations of clickable points and their 

contexts (i.e., characters) vary from one image to 

another. The clickable points in one image are 

computationally inde-pendent of the clickable points in 

another image, as we will see in Section VI-B.  

• Contextual: Whether a similarly structured point is a 

clickable point or not depends on its context. It is only if 

within the right context, i.e., at the right location of a 

right character.  

These two features require recognizing the correct contexts, 

i.e., characters, first. By the very nature of Captcha, 

recognizing characters in a Captcha image is a task beyond 

computer’s capability. Therefore, these salient points of 

characters cannot be exploited to mount dictionary attacks on 

TextPoints. 

 

B. TextPoints4CR 

For the CaRP schemes presented up to now, the 

coordinates of user-clicked points are sent directly to the 

authentication server during authentication. For more 

complex protocols, say a challenge-response authentication 

protocol, a response is sent to the authentication server 

instead. TextPoints can be modified to fit challenge-response 

authentication. This variation is called 

TextPoints for Challenge-Response or TextPoints4CR. 

Unlike TextPoints wherein the authentication server stores a 

salt and a password hash value for each account, the server in 

TextPoints4CR stores the password for each account. 

Another  difference is that each character appears only once 

in a TextPoints4CR image but may appear multiple times in a 

TextPoints image. This is because both server and client in 

TextPoints4CR should generate the same sequence of 

discretized grid-cells independently. That requires a unique 

way to generate the sequence from the shared secret, i.e., 

password. Repeated characters would lead to several possible 

sequences for the same password. This unique sequence is 

used as if the shared secret in a conventional challenge-

response authentication protocol. 

In TextPoints4CR, an image is partitioned into a fixed grid 

with the discretization grid-cell of size μ along both 

directions. The minimal distance between any pair of 

clickable points should be larger than μ by a margin 

exceeding a threshold to prevent two clickable points from 

falling into a single grid-cell in an image. Suppose that a 

guaranteed tolerance of click errors along both x-axis and y-

axis is τ , we require that μ ≥ 4τ . 

Image Generation. To generate a TextPoints4CR image, 

the same procedure to generate a TextPoints image is applied. 

Then the following procedure is applied to make every click-

able point at least τ distance from the edges of the grid-cell it 

lies in. All the clickable points, denoted as set ƒ, are located 

on the image. For every point in ƒ, we calculate its distance 

along x-axis or y-axis to the center of the grid-cell it lies in. A 

point is said to be an internal point if the distance is less than 

0.5μ−τ along both directions; otherwise a boundary point. For 

each boundary point in ƒ, a nearby internal point in the same 

grid-cell is selected. The selected point is called a target point 

of the boundary point. After processing all the points in ƒ, we 

obtain a new set  ƒ 
_
 comprising internal points; these are 

either internal clickable points or target points of boundary 

clickable points. Mesh warping , widely used in generating 

text Captcha challenges, is then used to warp the image so 

that ƒ maps to ƒ 
_
 . The result is a TextPoint4CR image 

wherein every clickable point would tolerate at least τ of click 

errors. Selection of target points should try to reduce warping 

distortion caused by mapping ƒ to ƒ 
_
. 

Authentication. In entering a password, a user-clicked 

point is replaced by the grid-cell it lies in. If click errors are 

within τ, each user-clicked point falls into the same grid-cell 

as the original password point. Therefore the sequence of 

grid-cells generated from user-clicked points is identical to 

the one that the authentication server generates from the 

stored password of the account. This sequence is used as if 

the shared secret between the two parties in a challenge-

response authentication protocol. 

Unlike other CaRP schemes presented in this paper, Text-

Points4CR requires the authentication server to store pass-

words instead of their hash values. Stored passwords must be 

protected from insider attacks; for example, they are 

encrypted with a master key that only the authentication 

server knows. A password is decrypted only when its 

associated account attempts to log in. 

III. SECURITY ANALYSIS 

 

A. Security of Underlying Captcha 

Computational intractability in recognizing objects in 

CaRP images is fundamental to CaRP. Existing analyses on 

Captcha security were mostly case by case or used an 

approximate process. No theoretic security model has been 

established yet. Object segmentation is considered as a 

computationally-expensive, combinatorial-hard problem [30], 

which modern text Captcha schemes rely on. According to 

[30], the complexity of object segmentation, C, is 

exponentially dependent of the number M of objects 

contained in a challenge, and polynomially dependent of the 

size N of the Captcha alphabet: C = α 
M

 P( N), where α > 1 is 

a parameter, and P() is a polynomial function. A Captcha 

challenge typically contains 6 to 10 characters, whereas a 

CaRP image typically contains 30 or more characters. The 

complexity to break a Click-Text image is about α
30

 P( 

N)/(α
10

 P( N)) = α
20

 times the complexity to break a Captcha 

challenge generated by its underlying Captcha scheme. 

Therefore ClickText is much harder to break than its 

underlying Captcha scheme. Fur-the rmore, characters in a 

CaRP scheme are arranged two-dimensionally, further 

increasing segmentation difficulty due to one more dimension 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

6



 

to segment. As a result, we can reduce distortions in 

ClickText images for improved usability yet maintain the 

same security level as the underlying text Captcha. 

ClickAnimal relies on both object segmentation and multiple-

label classification. Its security remains an open question. 

As a framework of graphical passwords, CaRP does not 

rely on any specific Captcha scheme. If one Captcha scheme 

gets broken, a new and more robust Captcha scheme may 

appear and be used to construct a new CaRP scheme. In the 

remaining security analysis, we assume that it is intractable 

for computers to recognize any objects in any challenge 

image generated by the underlying Captcha of CaRP. More 

accurately, the Captcha is assumed to be chosen-pixel attack 

(CPA)-secure defined with the following experiment: an 

adversary A first learns from an arbitrary number of challenge 

images by querying a ground-truth oracle O as follows: A 

selects an arbitrary number of internal object-points and 

sends to O, which responds with the object that each point 

lies in. Then A receives a new challenge image and selects an 

internal object-point to query O again. 

This time O chooses a random bit b ← {0, 1} to determine 

what to return: It returns the true object if b = 1; otherwise a 

false object selected with a certain strategy. A is asked to 

determine whether the returned object is the true object that 

the internal object-point lies in or not. A Captcha scheme is 

said to be CPA-secure if A cannot succeed with a probability 

non-negligibly higher than ½, the probability of a random 

guess. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 

 

They have proposed CaRP, a new security primitive 

relying on unsolved hard AI problems. CaRP is both a 

Captcha and a graphical password scheme. The notion of 

CaRP introduces a new family of graphical passwords, which 

adopts a new  approach to counter online guessing attacks: a 

new CaRP image, which is also a Captcha challenge, is used 

Overall, our work is one step forward in the paradigm of 

using hard AI problems for security. Of reasonable security 

and usability and practical applications, CaRP has good 

potential for refinements, which call for useful future work. 

More importantly, we expect CaRP to inspire new inventions 

of such AI based security primitives. 

 

REFERENCES 

 
1. R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical 

passwords: Learning from the first twelve years,” ACM Comput. 
Surveys, vol. 44, no. 4, 2012. 

2. (2012, Feb.). The Science Behind Passfaces [Online]. 

Available:http://www.realuser.com/published/ScienceBehindPass
faces.pdf 

3. I. Jermyn, A. Mayer, F. Monrose, M. Reiter, and A. Rubin, “The 

design and analysis of graphical passwords,” in Proc. 8th 
USENIX Security Symp., 1999, pp. 1–15. 

4.  H. Tao and C. Adams, “Pass-Go: A proposal to improve the 

usability of graphical passwords,” Int. J. Netw. Security, vol. 7, 
no. 2, pp. 273–292, 2008. 

5.  S. Wiedenbeck, J. Waters, J. C. Birget, A. Brodskiy, and N. 

Memon, “PassPoints: Design and longitudinal evaluation of a 
graphical password system,” Int. J. HCI, vol. 63, pp. 102–127, 

Jul. 2005. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

7


