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ABSTRACT

The canonical polynomials play a major role in the Recursive formulation
of the Tau method of Lanczos and Ortiz. However,the construction of these
polynomials, subsequent to its use, in the tau method is highly demanding
and hence polynomial associated with individual DE are often constructed.
In this paper, we shall present a derived formula which captures the poly-
nomials for a general class of problems involving non-overdetermined m-th
order ODEs (m not fixed). The derivative of this polynomial will also be
obtained. For the purpose of validating these results, they are cast as the-
orems for which mathematical induction principle is employed. We hope
to incorporate the results obtained into the tau approximation process for
purpose of deriving a general tau approximant of the solution of this class
of problems in a future work.
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1.0 INTRODUCTION

Differential equations result from physical models of anything that varies
- whether in space, in time, in value, in cost, in colour, etc. For example, dif-
ferential equations exist for models of quantities such as: volume, pressure,
temperature, density, magnetization, fracture Strength, dislocation density,
chemical potential, etc. These differential equations take the general form

yn = f(x, y, y
′
, ..., yn−1) (1.1a)

where y(i) ≡ diy
dxi

, i = 1, 2, ..., n, is the ith derivative of y with respect to x.
The above equation is referred to as nth order differential equation because
the highest order derivative appearing in the equation is of order n. A unique
soluton y(x) of (1.1a) can be obtained when given supplementary conditions

y(i)(0) = αi, for i = 0, 1, ...n− 1 (1.1b)

(1.1a) and (1.1b) is referred to as initial value problem (IVP). One of the
methods that give an accurate approximate solution to (1.1) is the Tau
Method.

The essential of the Tau Method (see Lanczos[11,12] and Ortiz[14]) is to
perturb the given differential problem in such a way that its exact solution
becomes a polynomial. This is achieved by using a polynomial perturbation
term, added to the right hand side of the differential equation. The desired
Tau approximation is written in terms of a special polynomial basis, called
the canonical polynomial basis, uniquely associated with the given differen-
tial operator D (see Ortiz[19]) which defines the given problem. Such basis
does not depend on the degree of approximation. The order of the approxi-
mation can be increased by just adding one or more canonical polynomials
to those already generated and updating the coefficients affecting them.

1.1 LITERATURE REVIEW

To give more flexibility in computation of Tau solution, Lanczos[12] in
1956, introduced a systematic use of the so-called canonical polynomials in
the Tau method. A recursive generation of Lanczos canonical polynomials
was proposed by Ortiz[14]. The basic approach proposed by Ortiz will be
restated briefly in this section as contained in Adeniyi et al[2].

Let y(x) be a known function which satisfies

Ly(x) = f(x) (1.2a)

where L is an mth order linear differential operator with polynomial coeffi-
cients and

f(x) = f0 + f1x+ f2x
2 + ....+ fσx

σ
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is a given polynomial of degree σ with real coefficients fi, i = 0(1)σ.
In addition, we assume that y(x), a ≤ x ≤ b, satisfies the following general
linear bondary conditions

tj∑
l=1

m−1∑
k=0

a(lkj)y
(k)(xij) = αj , j = 1(1)m (1.2b)

where y(k)(xij), k = 0(1)m− 1, is the value of y(k)(x) at x = xij , l = 1(1)tj ,
j = 1(1)m; tj denotes the point of evaluation; alkj , xij and αj are given
real numbers. Uniquely associated with operator L in (1.2a) is a sequence

{Qr(x)}, r ∈ NoS, of canonical polynomials Qr(x) such that

LQr(x) = xr (1.3)

where s is a small finite or empty set of indices with cardinality s(s ≤ m+h);
h is the maximum difference between the exponent r of x and the leading
exponent of the generating polynomial Lxr, for r ∈ No. The construction
of Qr(x) using Lxr is described exhaustively by Ortiz[14]. To apply the

constructed polynomials Qr(x), r ∈ N0, in the Tau method, we consider the
perturbed equation

Lyn(x) = f(x) +Hn(x) (1.4)

of (1.2a), where

Hn(x) =
m+s−1∑
i=0

τm+s−1Tn−m+i+1(x) (1.5)

Adopt (1.3) in (1.4) to get

Lyn(x) =

σ∑
i=0

fiLQi(x) +

m+s−1∑
i=0

τm+s−1

n−m+i+1∑
r=0

C(n−m+i+1)
r LQr(x) (1.6)

From the linearity of the operator L, we obtain

Lyn(x) = L

{
σ∑
i=0

fiQi(x) +

m+s−1∑
i=0

τm+s−1

n−m+i+1∑
r=0

C(n−m+i+1)
r Qr(x)

}

By assuming that L−1 exists and is unique, we have

yn(x) =

σ∑
i=0

fiQi(x) +

m+s−1∑
i=0

τm+s−1

n−m+i+1∑
r=0

C(n−m+i+1)
r Qr(x) (1.7)
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2.0 PROBLEM STATEMENT AND METHODOLOGY

In this paper, we intend to obtain a general formula for the canonical
polynomials together with its derivatives for the initial value problem (IVPs)
m-th order ordinary differential equation (ODE)

Ly(x) :=

m∑
r=0

{
Nr∑
k=0

Prkx
k

}
y(r)(x) =

F∑
r=0

frx
r (2.1a)

L∗y(xrk) :=
m−1∑
r=0

arky
(r)(xrk) = αk, k = 1(1)m (2.1b)

where Nr, F are given non-negative integers and ark, xrk, αk, fr, Prk are
given real numbers by seeking an approximant

yn(x) =
n∑
r=0

arx
r, n < +∞ (2.2)

which is the exact solution of the corresponding perturbed problem

Lyn(x) =
F∑
r=0

frx
r +Hn(x) (2.3a)

L∗yn(xrk) = αk, k = 1(1)m (2.3b)

where

Hn(x) =
m+s−1∑
r=0

τm+s−rTn−m+r+1(x) (2.4)

is the perturbation term. The parameters τr, r = 1(1)m + s, are to be
determined,

Tr(x) = Cos

[
rCos−1

{
2x− a− b
b− a

}]
≡

r∑
k=0

C
(r)
k xk (2.5)

is the Chebyshev polynomial valid in the interval [a, b] (assuming that (2.1)
is defined in this interval) and

s = max {Nr − r |0 ≤ r ≤ m} (2.6)
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2.1 THE GENERALIZED CANONICAL POLYNOMIAL FOR
NON-OVERDETERMINED m-th ORDER ODEs

The canonical polynomials for the initial value problems (2.1) will be
obtained in this section for cases m=1,2,3, and 4 before the general formula
for the case m=m is obtained. Since we are presently considering non-
overdetermined problems, s will be zero throughout this section.
The following individual cases are considered and from which the general
case will be deduced.

Case m = 1 :

(P1,0 + P1,1x) y
′
(x) + P0,0y(x) = f(x) (2.7a)

y(0) = α0 (2.7b)

By Definition (see [1],[6],[7],[8]),

xr = LQr(x)

From (2.7a), the differential operator L is given by

L = (P1,0 + P1,1x)
d

dx
+ P1,0

Lxr = rP1,0x
r−1 + (rP1,1 + P0,0)x

r

⇒ Lxr = rP1,0LQr−1(x) + (rP1,1 + P0,0)LQr(x)

Lxr = L {rP1,0Qr−1(x) + (rP1,1 + P0,0)Qr(x)}

And due to the existence of L−1, we have

xr = rP1,0Qr−1(x) + (rP1,1 + P0,0)Qr(x)

therefore

Qr(x) =
xr − rP1,0Qr−1(x)

rP1,1 + P0,0
, r ≥ 0

The results for r = 0, 1, 2, 3 are

Q0(x) =
1

P0,0

Q1(x) =
x

P0,0 + P1,1
− P1,0

P0,0 (P0,0 + P1,1)

Q2(x) =
x2

P0,0 + 2P1,1
− 2P1,0x

(P0,0 + P1,1) (P0,0 + 2P1,1)

+
2P 2

1,0

P0,0 (P0,0 + P1,1) (P0,0 + 2P1,1)
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Q3(x) =
x3

P0,0 + 3P1,1
− 3P1,0x

2

(P0,0 + 2P1,1) (P0,0 + 3P1,1)

+
6P 2

1,0x

(P0,0 + P1,1) (P0,0 + 2P1,1) (P0,0 + 3P1,1)

−
6P 3

1,0

P0,0 (P0,0 + P1,1) (P0,0 + 2P1,1) (P0,0 + 3P1,1)

Case m = 2 :(
P2,0 + P2,1x+ P2,2x

2
)
y
′′
(x) + (P1,0 + P1,1x) y

′
(x) + P0,0y(x) = f(x)

(2.8a)
y
′
(0) = α1, y(0) = α2 (2.8b)

From (2.8a),

L =
(
P2,0 + P2,1x+ P2,2x

2
) d2

dx2
+ (P1,0 + P1,1x)

d

dx
+ P0,0

Passing through the same process as in the case m=0, we have

Qr(x) =
xr − [r (r − 1)P2,1 + rP1,0]Qr−1(x)− r (r − 1)P2,0Qr−2(x)

r (r − 1)P2,2 + rP1,1 + P0,0
, r ≥ 0

From which we obtain Qr(x) for r = 0, 1, 2, 3 as

Q0(x) =
1

P0,0

Q1(x) =
x

P0,0 + P1,1
− P1,0

P0,0 (P0,0 + P1,1)

Q2(x) =
x2

P0,0 + 2P1,1

− 2P1,0x

(P0,0 + P1,1) (P0,0 + 2P1,1)
+

2P 2
1,0

P0,0 (P0,0 + P1,1) (P0,0 + 2P1,1)

Q3(x) =
x3

P0,0 + 3P1,1

− 3P1,0x
2

(P0,0 + 2P1,1) (P0,0 + 3P1,1)
+

6P 2
1,0x

(P0,0 + P1,1) (P0,0 + 2P1,1) (P0,0 + 3P1,1)

−
6P 3

1,0

P0,0 (P0,0 + P1,1) (P0,0 + 2P1,1) (P0,0 + 3P1,1)
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Case m = 3 :(
P3,0 + P3,1x+ P3,2x

2 + P3,3x
3
)
y
′′′

(x) +
(
P2,0 + P2,1x+ P2,2x

2
)
y
′′
(x)

+ (P1,0 + P1,1x) y
′
(x) + P0,0y(x) = f(x) (2.9a)

y(0) = α0, y
′
(0) = α1, y

′′
(0) = α2 (2.9b)

From (2.9a), we obtain

Qr(x) =
xr − r (r − 1) (r − 2)P3,0Qr−3(x)

r (r − 1) (r − 2)P3,3 + r (r − 1)P2,2 + rP1,1 + P0,0

− [r (r − 1) (r − 2)P3,1 + r (r − 1)P2,0]Qr−2(x)

r (r − 1) (r − 2)P3,3 + r (r − 1)P2,2 + rP1,1 + P0,0

− [r (r − 1) (r − 2)P3,2 + r (r − 1)P2,1 + rP1,0]Qr−1(x)

r (r − 1) (r − 2)P3,3 + r (r − 1)P2,2 + rP1,1 + P0,0
, r ≥ 0

From which we obtain Qr(x) for r = 0, 1, 2, 3 as

Q0(x) =
1

P0,0

Q1(x) =
x

P0,0 + P1,1
− P1,0

P0,0 (P0,0 + P1,1)

Q2(x) =
x2

P0,0 + 2P1,1 + 2P2,2
− (2P2,1 + 2P1,0)x

(P0,0 + P1,1) (P0,0 + 2P1,1 + 2P2,2)

+
P1,0 (2P2,1 + 2P1,0)

P0,0 (P0,0 + P1,1) (P0,0 + 2P1,1 + 2P2,2)
− 2P2,0

P0,0 (P0,0 + 2P1,1 + 2P2,2)

Case m = 4 :(
P4,0 + P4,1x+ P4,2x

2 + P4,3x
3 + P4,4x

4
)
y(iv)(x)

+
(
P3,0 + P3,1x+ P3,2x

2 + P3,3x
3
)
y′′′(x) +

(
P2,0 + P2,1x+ P2,2x

2
)
y′′(x)

+ (P1,0 + P1,1x) y′(x) + P0,0y(x) = f(x) (2.10a)

y(0) = α0, y′(0) = α1, y′′(0) = α2, y′′′(0) = α3 (2.10b)
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This yields the canonical polynomial

Qr(x) =

xr

r(r − 1)(r − 2)(r − 3)P4,4 + r(r − 1)(r − 2)P3,3 + r(r − 1)P2,2 + rP1,1 + P0,0

− [r(r − 1)(r − 2)(r − 3)P4,3 + r(r − 1)(r − 2)P3,2 + r(r − 1)P2,1 + rP1,0]Qr−1(x)

r(r − 1)(r − 2)(r − 3)P4,4 + r(r − 1)(r − 2)P3,3 + r(r − 1)P2,2 + rP1,1 + P0,0

− [r(r − 1)(r − 2)(r − 3)P4,2 + r(r − 1)(r − 2)P3,1 + r(r − 1)P2,0]Qr−2(x)

r(r − 1)(r − 2)(r − 3)P4,4 + r(r − 1)(r − 2)P3,3 + r(r − 1)P2,2 + rP1,1 + P0,0

− [r(r − 1)(r − 2)(r − 3)P4,1 + r(r − 1)(r − 2)P3,0]Qr−3(x)

r(r − 1)(r − 2)(r − 3)P4,4 + r(r − 1)(r − 2)P3,3 + r(r − 1)P2,2 + rP1,1 + P0,0

− r(r − 1)(r − 2)(r − 3)P4,0Qr−4(x)

r(r − 1)(r − 2)(r − 3)P4,4 + r(r − 1)(r − 2)P3,3 + r(r − 1)P2,2 + rP1,1 + P0,0

For r = 0, 1, 2,

Q0(x) =
1

P0,0

Q1(x) =
x

P0,0 + P1,1
− P1,0

P0,0 (P0,0 + P1,1)

Q2(x) =
x2

P0,0 + 2P1,1 + 2P2,2
− 2 (P1,0 + P2,1)x

(P0,0 + P1,1) (P0,0 + 2P1,1 + 2P2,2)

+
2
(
P 2
1,0 − (P0,0 + P1,1)P2,0 + P1,0P2,1

)
P0,0 (P0,0 + P1,1) (P0,0 + 2 (P1,1 + P2,2))

Hence , we obtained the canonical polynomials formula of the m-th order
ODEs as

Qr(x) =
xr −

∑m
k=1

∑m
j=k

(
j!
(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

, r ≥ 0 (2.11)

Theorem
If the linear differential operator associated with the m-th order linear

ODE:
Ly(x) = P0(x)y(0)(x) + ...+ Pm(x)y(m)(x) = f(x)

where Pk(x) is a k-th degree polynomials, y(k)(x) is the kth derivative of
y(x) and f(x) is a polynomial function, is given by

L = Pm(x)
dm

dxm
+ Pm−1(x)

dm−1

dxm−1
+ ...+ P0(x)

then

Qr(x) =
xr −

∑m
k=1

∑m
j=k

(
j!
(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

, r ≥ 0 (2.12)
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Proof
We shall employ the principles of mathematical induction to establish

the validity of our Qr(x). If we fix r = 1, then we can apply the principles
of mathematical induction on m:

Q1(x) =
x−

∑m
k=1

∑m
j=k

(
j!
(
1
j

)
Pj,j−k

)
Q1−k(x)∑m

k=0 k!
(
1
k

)
Pk,k

(2.13)

We try for m = 1,

Q1(x) =
x− 1!

(
1
1

)
P1,0Q0(x)

0!
(
1
0

)
P0,0 + 1!

(
1
1

)
P1,1

⇒ Q1(x) =
x− P1,0Q0(x)

P0,0 + P1,1
(2.14)

and this is the same as our Q1(x) obtained in (2.7) above, confirming that
it is true for m = 1.Now assume that (2.11) is true for m = n, thus (2.11)
becomes

Q1(x) =
x−

∑n
k=1

∑n
j=k

(
j!
(
1
j

)
Pj,j−k

)
Q1−k(x)∑n

k=0 k!
(
1
k

)
Pk,k

(2.15)

The next thing is to show that (2.11) holds for m = n + 1. From our con-
struction of Q1(x) in (2.13) and (2.15) for m = n to m = n+ 1, we have

Q1(x) =
x−

{∑n
k=1

∑n
j=k (Pj,j−k) j!

(
1
j

)}
Q1−k∑n

k=0 k!
(
1
k

)
Pk,k + (n+ 1)!

(
1

n+1

)
Pn+1,n+1

+

{
(Pn+1,n−k+1) (n+ 1)!

(
1

n+1

)}
Q1−k∑n

k=0 k!
(
1
k

)
Pk,k + (n+ 1)!

(
1

n+1

)
Pn+1,n+1

(2.16)

Q1(x) =
x−

{∑n
k=1

∑n
j=k (Pj,j−k) j!

(
1
j

)
+ (Pn+1,n−k+1) (n+ 1)!

(
1

n+1

)}
Q1−k∑n+1

k=0(Pk,k)k!
(
1
k

)
(2.17)

Q1(x) =
x−

{∑n
k=1

∑n
j=k (Pj,j−k) j!

(
1
j

)
+ (Pn+1,n−k+1) (n+ 1)!

(
1

n+1

)}
Q1−k∑n+1

k=0(Pk,k)k!
(
1
k

)
(2.18)

Thus, it is true for m = n+ 1 also.
If we choose to fix r = l, so that we can again apply the principle of

mathematical induction on m,

Ql(x) =
xl −

∑m
k=1

∑m
j=k

(
j!
(
1
j

)
Pj,j−k

)
Ql−k(x)∑m

k=0 k!
(
1
k

)
Pk,k

, r ≥ 0 (2.19)
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We try for m = 1,

Ql(x) =
xl − 1!

(
1
1

)
P1,0Ql−1(x)

0!
(
1
0

)
P0,0 + 1!

(
1
1

)
P1,1

(2.20)

Ql(x) =
xl − lP1,0Ql−1(x)

P0,0 + lP1,1
(2.21)

and this is in conformity with our earlier results, thus, it is true for m = 1.

Now, assume that (2.19) is true for m = n, thus (2.19) becomes

Ql(x) =
xl −

∑n
k=1

∑n
j=k

(
j!
(
1
j

)
Pj,j−k

)
Ql−k(x)∑n

k=0 k!
(
1
k

)
Pk,k

(2.22)

The next thing is to prove that (2.19) holds for m = n+ 1.
From our construction of Ql(x) for m = n up to m = n+ 1, we have

Ql(x) =
xl −

{∑n
k=1

∑n
j=k (Pj,j−k) j!

(
1
j

)}
Ql−k(x)∑n

k=0 k!
(
1
k

)
Pk,k + (n+ 1)!

(
1

n+1

)
Pn+1,n+1

+

{
(Pn+1,n−k+1) (n+ 1)!

(
1

n+1

)}
Q1−k(x)∑n

k=0 k!
(
1
k

)
Pk,k + (n+ 1)!

(
1

n+1

)
Pn+1,n+1

(2.23)

Ql(x) =
xl −

{∑n
k=1

∑n
j=k (Pj,j−k) j!

(
1
j

)
+ (Pn+1,n−k+1) (n+ 1)!

(
1

n+1

)}
Ql−k∑n+1

k=0(Pk,k)k!
(
1
k

)
(2.24)

Ql(x) =
xl −

∑n+1
k=1

∑n+1
j=k

(
j!
(
1
j

)
Pj,j−k

)
Ql−k(x)∑n+1

k=0 k!
(
1
k

)
Pk,k

(2.25)

Thus it is true for m = n+ 1.

Finally, if we choose to fix r = l+ 1, and we apply the principle of math-
ematical induction on m. With r = l + 1, (2.11) is now

Ql+1(x) =
xl+1 −

∑m
k=1

∑m
j=k

(
j!
(
l+1
j

)
Pj,j−k

)
Ql−k+1(x)∑m

k=0 k!
(
l+1
k

)
Pk,k

(2.26)

We try for m = 1
,

Ql+1(x) =
xl+1 − 1!

(
l+1
1

)
P1,0Ql(x)

0!
(
l+1
0

)
P0,0 + 1!

(
l+1
1

)
P1,1

(2.27)
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Ql+1(x) =
xl+1 − (l + 1)Ql(x)

P0,0 + (l + 1)P1,1
(2.28)

which shows it is true for m = 1.

We assume it is true for m = n so that (2.26), with r = l + 1, becomes

Ql+1(x) =
xl+1 −

∑n
k=1

∑n
j=k

(
j!
(
l+1
j

)
Pj,j−k

)
Ql−k+1(x)∑n

k=0 k!
(
l+1
k

)
Pk,k

(2.29)

The next thing is to prove that (2.26) holds for m = n+ 1,

Ql+1(x) =
xl+1 −

{∑n
k=1

∑n
j=k (Pj,j−k) j!

(
l+1
j

)}
Ql−k+1(x)∑n

k=0 k!
(
l+1
k

)
Pk,k + (n+ 1)!

(
l+1
n+1

)
Pn+1,n+1

+

{
(Pn+1,n−k+1) (n+ 1)!

(
l+1
n+1

)}
Q1−k+1(x)∑n

k=0 k!
(
l+1
k

)
Pk,k + (n+ 1)!

(
l+1
n+1

)
Pn+1,n+1

(2.30)

Q(l+1)(x) =
xl+1 −

∑n
k=1

∑n
j=k (Pj,j−k) j!

(
l+1
j

)∑n+1
k=0(Pk,k)k!

(
l+1
k

)
+

(Pn+1,n−k+1) (n+ 1)!
(
l+1
n+1

)
Ql−k+1∑n+1

k=0(Pk,k)k!
(
l+1
k

) (2.31)

Ql+1(x) =
xl+1 −

∑n+1
k=1

∑n+1
j=k

(
j!
(
l+1
j

)
Pj,j−k

)
Ql−k+1(x)∑n+1

k=0 k!
(
1
k

)
Pk,k

, (2.32)

Thus, the formula for Qr(x) given by (2.11) holds for all r and for all m.
Hence, its validation.
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3.0 THE DERIVATIVES OF m-th ORDER DIFFERENTIAL
EQUATION

The method of section 2 is also applied here to obtain a general result
for the derivative of the canonical polynomial. So doing, we considered the
individual cases below:

Case m = 1:
First Derivative:

Q′r(x) =
rxr−1 − rP1,0Q

′
r−1(x)

P0,0 + rP1,1
(3.1)

Second Derivative:

Q′′r(x) =
r(r − 1)xr−2 − rP1,0Q

′′
r−1(x)

P0,0 + rP1,1
(3.2)

Third Derivative:

Q′′′r (x) =
r(r − 1)(r − 2)xr−3 − rP1,0Q

′′′
r−1(x)

P0,0 + rP1,1
(3.3)

If we continue with this process, we shall obtain the nth derivative for case
m = 1 as

Q(n)
r (x) =

n!
(
r
n

)
xr−n − rP1,0Q

(n)
r−1(x)

P0,0 + rP1,1
(3.4)

Following a similar procedure, the nth derivatives for cases m = 2 and m = 3
are

Q(n)
r (x) =

n!
(
r
n

)
xr−n − r(r − 1)P2,1Q

(n)
r−1(x)− r(r − 1)P2,0Q

(n)
r−2(x)

P0,0 + rP1,1 + r(r − 1)P2,2

(3.5)
and

Q(n)
r (x) =

n!
(
r
n

)
xr−n − [r(r − 1)(r − 2)P3,2 + r(r − 1)P2,1 + rP1,0]Q

(n)
r−1(x)

P0,0 + rP1,1 + r(r − 1)P2,2 + r(r − 1)(r − 2)P3,3

−
[r(r − 1)(r − 2)P3,1 + r(r − 1)P2,0]Q

(n)
r−2(x) + r(r − 1)(r − 2)P3,0Q

(n)
r−3(x)

P0,0 + rP1,1 + r(r − 1)P2,2 + r(r − 1)(r − 2)P3,3

(3.6)

respectively.
We deduce from that for general m-th order equation that the n-th deriva-
tive of Qr(x) is
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Q(n)
r (x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

(3.7)

Theorem

If the canonical polynomials associated with the m-th order linear DE:

Ly(x) ≡ P0(x)y(0)(x) + ...+ Pm(x)y(m)(x) = f(x)

where Pk(x) is a k-th degree polynomial, y(k)(x) is the kth derivative of y(x)
and f(x) is a polynomial function, is given by

Qr(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

then

Q(n)
r (x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

(3.8)

Proof

We shall establish this by the principle of mathematical induction. We
start by fixing r = 1 and subject m to varied values:

Let us try for m = 1,

Q
(n)
1 (x) =

n!
(
1
n

)
x1−n − 1!{1

1
P1,0Q

(n)
0 (x)0!

(
1

0

)
P0,0 + 1!

(
1

1

)
P1,1 (3.9)

Q
(n)
1 (x) =

n!
(
1
n

)
x1−n − P1,0Q

(n)
0 (x)

P0,0 + P1,1
(3.10)

which shows that it is true for m = 1, since this (i.e 3.10) is in conformity
with (3.8) when r = 1.

We assume that it is true for m = q,

Q(n)
r (x) =

n!
(
r
n

)
xr−n −

∑q
k=1

(∑q
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k

(3.11)

Now we shall prove that (3.8) holds for m = q + 1.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

13www.ijert.org



From our construction of Q
(n)
1 (x) in (3.8) (with r = 1) for m = q up to

m = q + 1, we have

Q
(n)
l (x) =

n!
(
1
n

)
x1−n −

(∑q
k=1

∑q
j=k (Pj,j−k) j!

(
1
j

))
Q

(n)
1−k(x)∑q

k=0 k!
(
1
k

)
Pk,k + (q + 1)!

(
1
q+1

)
Pq+1,q+1

+

{
(Pq+1,q−k+1) (q + 1)!

(
1
q+1

)}
Q

(n)
1−k(x)∑q

k=0 k!
(
1
k

)
Pk,k + (q + 1)!

(
1
q+1

)
Pq+1,q+1

(3.12)

Q
(n)
l (x) =

n!
(
1
n

)
x1−n −

{∑q
k=1

∑q
j=k (Pj,j−k) j!

(
1
j

)}
Q

(n)
1−k(x)∑q+1

k=0 k!
(
1
k

)
Pk,k

+

{
(Pq+1,q−k+1) (q + 1)!

(
1
q+1

)}
Q

(n)
1−k(x)∑q+1

k=0 k!
(
1
k

)
Pk,k

(3.13)

Q
(n)
l (x) =

n!
(
1
n

)
x1−n −

∑q+1
k=1

∑q+1
j=k (Pj,j−k) j!

(
1
j

)
Q

(n)
1−k(x)∑q+1

k=0 k!
(
1
k

)
Pk,k

(3.14)

Thus, it is true for m = q + 1 also.

If we decide to fix r = l, so that we can apply the principle of mathe-
matical induction on m again, we have

Q
(n)
l (x) =

n!
(
1
n

)
xl−n −

∑m
k=1

∑m
j=k (Pj,j−k) j!

(
1
j

)
Q

(n)
l−k(x)∑m

k=0 k!
(
1
k

)
Pk,k

(3.15)

We try for m = 1,

Q
(n)
l (x) =

n!
(
1
n

)
xl−n − 1!

(
1
1

)
P1,0Q

(n)
l−1(x)

0!
(
1
0

)
P0,0 + 1!

(
1
1

)
P1,1

(3.16)

Q
(n)
l (x) =

n!
(
1
n

)
xl−n − lP1,0Q

(n)
l−1(x)

P0,0 + lP1,1
(3.17)

Since this tallies with (3.8) with r replaced by l, thus it is true for m = 1.

Let us assume that (3.8) holds for m = q. Now to prove that (3.8) holds
for m = q + 1.
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From our construction of Q
(n)
l (x) in (3.8) for m = q up to m = q+ 1, we

have

Q
(n)
l (x) =

n!
(
1
n

)
xl−n −

{∑q
k=1

∑q
j=k (Pj,j−k) j!

(
1
j

)}
Q

(n)
l−k(x)∑q

k=0 k!
(
1
k

)
Pk,k + (q + 1)!

(
1
q+1

)
Pq+1,q+1

+

{
(Pq+1,q−k+1) (q + 1)!

(
1
q+1

)}
Q

(n)
l−k(x)∑q

k=0 k!
(
1
k

)
Pk,k + (q + 1)!

(
1
q+1

)
Pq+1,q+1

(3.18)

Q
(n)
l (x) =

n!
(
1
n

)
xl−n∑q+1

k=0 (Pk,k) k!
(
1
k

)
−

∑q
k=1

∑q
j=k

{
j!
(
1
j

)
(Pj,j−k) + (q + 1)!

(
1
q+1

)
(Pq+1,q+1)

}
Q

(n)
l−k(x)∑q+1

k=0 (Pk,k) k!
(
1
k

)
(3.19)

Q
(n)
l (x) =

n!
(
1
n

)
xl−n −

∑q+1
k=1

(∑q+1
j=k j!

(
1
j

)
Pj,j−k

)
Q

(n)
l−k(x)∑q

k=0 k!
(
1
k

)
Pk,k

(3.20)

Thus it is true for m = q + 1

Finally, if we choose to fix r = l+ 1, and we apply the principle of math-
ematical induction on m. With our r = l + 1, (3.15) becomes

Q
(n)
l+1(x) =

n!
(
l+1
n

)
xl−n+1 −

∑m
k=1

∑m
j=k (Pj,j−k) j!

(
l+1
j

)
Q

(n)
l−k+1(x)∑m

k=0 k!
(
l+1
k

)
Pk,k

(3.21)
We try for m = 1,

Q
(n)
(l+1)(x) =

n!
(
l+1
n

)
xl−n+1 − 1!

(
l+1
1

)
P1,0Q

(n)
l (x)

0!
(
l+1
0

)
P0,0 + 1!

(
l+1
1

)
P1,1

(3.22)

Q
(n)
(l+1)(x) =

n!
(
l+1
n

)
xl−n+1 − (l + 1)P1,0Q

(n)
l (x)

P0,0 + (l + 1)P1,1
(3.23)

and this is the same as (3.8) with r replaced l+ 1, confirming that it is true
for m = 1.

We assume that it is true for m = q, thus (3.21) can now be written as:

Q
(n)
l+1(x) =

n!
(
l+1
n

)
xl−n+1 −

∑q
k=1

(∑q
j=k j!

(
l+1
j

)
Pj,j−k

)
Q

(n)
l−k+1(x)∑q

k=0 k!
(
l+1
k

)
Pk,k

(3.24)
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The next stage of our work is to prove that it is true for m = q + 1.

From our construction of Q
(n)
l+1(x) in (3.21) for m = q up to m = q + 1,

we have

Q
(n)
l+1(x) =

n!
(
l+1
n

)
xl−n+1 −

{∑q
k=1

∑q
j=k (Pj,j−k) j!

(
l+1
j

)}
Q

(n)
l−k+1(x)∑q

k=0 k!
(
l+1
k

)
Pk,k + (q + 1)!

(
l+1
q+1

)
Pq+1,q+1

+

{
(Pq+1,q−k+1) (q + 1)!

(
l+1
q+1

)}
Q

(n)
l−k+1(x)∑q

k=0 k!
(
l+1
k

)
Pk,k + (q + 1)!

(
l+1
q+1

)
Pq+1,q+1

(3.25)

Q
(n)
l+1(x) =

n!
(
l+1
n

)
xl−n+1∑q+1

k=0 (Pk,k) k!
(
l+1
k

)
−

∑q
k=1

∑q
j=k

{
j!
(
l+1
j

)
(Pj,j−k) + (q + 1)!

(
l+1
q+1

)
(Pq+1,q−k+1)

}
Q

(n)
l−k+1(x)∑q+1

k=0 (Pk,k) k!
(
l+1
k

)
(3.26)

Q
(n)
l+1(x) =

n!
(
l+1
n

)
xl−n+1 −

∑q+1
k=1

(∑q+1
j=k j!

(
l+1
j

)
Pj,j−k

)
Q

(n)
l−k+1(x)∑q+1

k=0 k!
(
l+1
k

)
Pk,k

(3.27)
From the above, we can conveniently say that (3.8) holds for all calues of m
and r.

We now want to fix our n at n = 1 and apply the principle of mathe-
matical induction on m.

With n = 1, (3.8) becomes

Q
′
r(x) =

1!
(
r
1

)
xr−1 −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

′
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

(3.28)

We try for m = 1,

Q
′
r(x) =

1!
(
r
1

)
xr−1 − 1!

(
r
1

)
P1,0Q

′
r−1(x)

0!
(
r
0

)
P0,0 + 1!

(
r
1

)
P1,1

(3.29)

Q′r(x) =
rxr−1 − rP 1,0Q

′
r−1(x)

P0,0 + rP 1,1
(3.30)

which is the same as (3.4), confirming the correctness of (3.36), that is, it is
true for m = 1.
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We assume that it is true for m = q, that is (3.28) becomes

Q
′
r(x) =

rxr−1 −
∑q

k=1

∑q
j=k

(
j!
(
r
j

)
Pj,j−k

)
Q

′
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k

(3.31)

Next is to prove that it is true for m = q + 1,

Q
′
r(x) =

rxr−1 −
∑q

k=1

∑q
j=k

{
j!
(
r
j

)
Pj,j−k

}
Q

′
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

+

{
(Pq+1,q−k+1) (q + 1)!

(
r
q+1

)}
Q

′
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

(3.32)

Q
′
r(x) =

rxr−1∑q
k=0 k!

(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

−

∑q
k=1

∑q
j=k

{
j!
(
r
j

)
Pj,j−k + (Pq+1,q−k+1) (q + 1)!

(
r
q+1

)}
Q

′
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

(3.33)

Q
′
r(x) =

rxr−1 −
∑q+1

k=1

(∑q+1
j=k Pj,j−kj!

(
r
j

))
Q

′
r−k(x)∑q+1

k=0 k!
(
r
k

)
Pk,k

(3.34)

Thus it is true for m = q + 1

We again fix n at n = l and apply the principle of mathematical induc-
tion on m. With n = l, (3.8) becomes

Q(l)
r (x) =

l!
(
r
1

)
xr−l −

∑m
k=1

∑m
j=k

(
j!
(
r
j

)
Pj,j−k

)
Q

(l)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k

(3.35)

We try for m = 1,

Q(l)
r (x) =

l!
(
r
1

)
xr−l − 1!

(
r
1

)
P1,0Q

(l)
r−1(x)

0!
(
r
0

)
P0,0 + 1!

(
r
1

)
P1,1

(3.36)

Q(l)
r (x) =

l!
(
r
1

)
xr−l − rP1,0Q

(l)
r−1(x)

P0,0 + rP1,1
(3.37)

We assume that it is true for m = q, so that (3.35) becomes

Q(l)
r (x) =

l!
(
r
1

)
xr−l −

∑q
k=1

∑q
j=k

(
j!
(
r
j

)
Pj,j−k

)
Q

(l)
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k

(3.38)
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We now prove for m = q + 1.

From our construction of Q
(l)
r (x) in (3.35) for m = q up to m = q + 1,

we have

Q(l)
r (x) =

l!
(
r
1

)
xr−l −

{∑q
k=1

∑q
j=k (Pj,j−k) j!

(
r
j

)}
Q

(l)
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

+

{
(Pq+1,q−k+1) (q + 1)!

(
r
q+1

)}
Q

(l)
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

(3.39)

Q(l)
r (x) =

l!
(
r
1

)
xr−l∑q+1

k=0 (Pk,k) k!
(
r
k

)
−

∑q
k=1

∑q
j=k

{
j!
(
r
j

)
(Pj,j−k) + (q + 1)!

(
r
q+1

)
(Pq+1,q+1)

}
Q

(l)
r−k(x)∑q+1

k=0 (Pk,k) k!
(
r
k

)
(3.40)

Q(l)
r (x) =

l!
(
r
1

)
xr−l −

∑q+1
k=1

(∑q+1
j=k j!

(
r
j

)
Pj,j−k

)
Q

(l)
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k

(3.41)

Thus it is true for m = q + 1 also.
Finally, we shall fix n = l + 1 and apply the principle of mathematical in-
duction on m again.
With n = l + 1, (3.8) can now be written as

Q(l+1)
r (x) =

(l + 1)!
(
r
r+1

)
xr−(l+1) −

∑m
k=1

∑m
j=k

(
j!
(
r
j

)
Pj,j−k

)
Q

(l+1)
r−k (x)∑m

k=0 k!
(
r
k

)
Pk,k

(3.42)
Let us try for m = 1,

Q(l+1)
r (x) =

(l + 1)!
(
r
r+1

)
xr−(l+1) − 1!

(
r
1

)
P1,0Q

(l+1)
r−1 (x)

0!
(
r
0

)
P0,0 + 1!

(
r
1

)
P1,1

(3.43)

Q(l+1)
r (x) =

(l + 1)!
(
r
l+1

)
xr−(l+1) − rP1,0Q

(l+1)
r−1 (x)

P0,0 + rP1,1
(3.44)

And (3.44) is the same as (3.4) with n replaced by l + 1, thus it is true for
m = 1.
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Next, we assume that it is true for m = q, in which case, (3.42) can now
be written as

Q(l+1)
r (x) =

(l + 1)!
(
r
r+1

)
xr−(l+1) −

∑q
k=1

∑q
j=k

(
j!
(
r
j

)
Pj,j−k

)
Q

(l+1)
r−k (x)∑q

k=0 k!
(
r
k

)
Pk,k

(3.45)
Now we want to prove that (3.42) holds for m = q + 1.

From our construction of Q
(l+1)
r (x) in (3.42) for m = q up to m = q+ 1,

we have

Q(l+1)
r (x) =

(l + 1)!
(
r
l+1

)
xr−(l+1) −

{∑q
k=1

∑q
j=k (Pj,j−k) j!

(
r
j

)}
Q

(l+1)
r−k (x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

+

{
(Pq+1,q−k+1) (q + 1)!

(
r
q+1

)}
Q

(l+1)
r−k (x)∑q

k=0 k!
(
r
k

)
Pk,k + (q + 1)!

(
r
q+1

)
Pq+1,q+1

(3.46)

Q(l+1)
r (x) =

(l + 1)!
(
r
r+1

)
xr−(l+1)∑q+1

k=0 (Pk,k) k!
(
r
k

)
−

∑q
k=1

∑q
j=k

{
j!
(
r
j

)
(Pj,j−k) + (q + 1)!

(
r
q+1

)
(Pq+1,q+1)

}
Q

(l)
r−k(x)∑q+1

k=0 (Pk,k) k!
(
r
k

)
(3.47)

Q(l+1)
r (x) =

(l + 1)!
(
r
l+1

)
xr−(l+1) −

∑q+1
k=1

(∑q+1
j=k j!

(
r
j

)
Pj,j−k

)
Q

(l+1)
r−k (x)∑q

k=0 k!
(
r
k

)
Pk,k

(3.48)
From the foregoing, it can be concluded that (3.8) holds for all values of m,
r and n. Thus, the validity of our formula.
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CONCLUSION

The derivation of a general formula for the canonical polynomials as-
sociated with m-th order non-overdetermined linear ODE together with its
associated n-th order derivative has been presented.

The formula are recursive and hence makes for easy determination of
particular cases for which m will be specified. The use of canonical poly-
nomial in the Tau approximation problem to the solution of ODEs is very
attractive as they do not depend on the boundary conditions and when
Tau approximations of higher degrees are needed, the process of their (i.e
canonical polynomial) determination does not begin from the scratch. These
are some of the shortcomings of the two other variants of the Tau method
namely, the differential form and the integrated form.

It is intended that the polynomial reported above will be incorporated
into the Tau method for purpose of generalizing the recursive formulation
of the Tau method itself.
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