
A Framework for Nested Web Services

Ketan N. Kanere
M.E. (Computer Engineering)

D. J. Sanghvi College of Engineering

Vile Parle, Mumbai-400056

Dr. Abhijit Joshi
Vice Principal (Academic)

D. J. Sanghvi College of Engineering

Vile Parle, Mumbai-400056

Abstract — In olden days web applications were created

individually to serve the purpose according to the requirements.

Today web services are used to develop web based applications.

These web services consist of agents for the task operation. The

agents running inside a web service contain a nested call to other

agents to complete their tasks. Due to which, the processing time

of these agents consume the processing time according to external

process of other web services. Moreover there will be errors

within external web services. Because of all these reasons the flow

of the web services must be defined before the implementation of

the web service. As a result of all these, the Web Services

Composition (WSC) is used to define the flows and descriptions

to support the verification process of the web services agents. We

are proposing a new architecture which will be a modified

version of the existing Execution Mean Time Interval (EMTI), by

extending the Web Services Description Language (WSDL) of the

nested schema. Here we will also monitor all the elements in the

required agents. At the same time the hidden false error and

exception can be corrected before the implementation and the

execution of the web service using the web agent.

Index Terms — web services agent, web services composition,

web services verification, nested structure, extending WSDL.

I. INTRODUCTION

A Web service is a communicating link between two

electronic nodes over World Wide Web. A web service is a

software program used at execution time provided at a network

address over the web; it is a service that is “always running”

and never stops executing which is also called as the concept of

utility computing.

Nested web services are web services consist of web agents

that perform the task of the particular web service or any

operation which needs to take place. Web services may or may

not call external agents for the completion of their tasks. There

are two types of agents in web service basically called as

independent agent (IA) and dependent agent (DA).

Independent agent (IA) is the agent of the web service

which can perform its task individually, on the other hand

Dependent agent (DA) are that type of agent of web service

which calls external services for the completion of its task and

execution. Hence, nested web services come in execution when

agents in web services are dependent agents, i.e., they require

external agents or external services for the completion of their

tasks.

II. A TESTING ENVIRONMENT FOR MULTIPLE AGENTS

Web service composition is very large and complex. It is

very difficult to test complex web service composition. But,

with the help of distributed structure of agents it becomes

possible. At the initial stage the test environment was

developed for Business Process Execution Language (BPEL) -

based Web Service composition. The High Petri Nets (HPN) is

used to model the Business Process Execution Language. The

High Petri nets can be easily referenced by test case generation

and test evaluation, this property of HPN will be used in

modeling BPEL - based Web Service composition (WSC). The

multi-agent test environment for BPEL - based Web Service

Composition can be implemented by analyzing the parameters

and ontology of the BPEL - based Web Service Composition.

It is defined on the basis of XML due its flexibility and

extensible use. The agent communication, the terms for test

case generation and test evaluation is based on the parameters

and ontology [4].

Figure 1: Agents for testing BPEL - based WSC

The figure 1 gives the testing environment for BPEL -

based WSC. It consists of media agents, tester, test agents, call

interface and BPEL - based web services composition. The

media agents consist of Composition Structure (CS) agents

which analyze the structure of BPEL - based web services

composition. The structure is analyzed to create a HPN

presentation, which describe the structure [4].

The tester consists of the Test Case Generator (TCG)

agents to generate test cases and test criteria. Similarly, the

Test Case Execution (TCE) agents in tester execute test cases

and generate results. The Test agents consist of Test Oracles

(TO) agents to verify results by TCE whether they match with

BPEL-WSDL specification. Test Assistance (TA) agents are a

part of test agents which is generally the interface between

tester and computer. It guides the tester in the process of testing

[4].

The role of providing flexibility to each kind of web service

is performed by the Coordinate Interface (CI) components

written in different languages and tested in a uniform

environment through to CI [4].

III. TRUSTED WEB SERVICE

The Web services developer must ensure that the delivered

web services should have the quality such as availability and

reliability during their execution time. But, during the

1190

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030992

execution time of the service agent a critical problem takes

place, such as the infinite loop problem in the web service

process.

There are many methods proposed to protect the unusual

errors. Most of these methods focus on the verification and

validation part during the development process. Still, the

infinite loop problem cannot be resolved completely using

these methods as this problem occurs due to unexpected

random values obtained from the execution of request and

response process. To address this issue, a protection

mechanism is suggested that completely detects and protects

the unbound loop problem of web services when a dynamic

situation occurs in the request services of each requester [2].

The mechanism ensures that users will definitely be

protected from a critical lost which takes place from the

unusual infinite loop of the web services system. Also, the

service agents with dynamic loop control condition can be

trustable [2]. The protection mechanism system framework for

distributed web services is given in figure 2.

Figure 2: System framework for distributed web services

Here, the system is divided into three subsystems, namely,

testing, controlling and learning. And these three subsystems

are further divided as follows:

The Testing subsystem consists of two parts, namely,

Checking Parameters Module and EMTI Module.

1 Checking Parameters Module (CPM): In order to protect the

problem of the infinite loop in service process the CPM tests

the services of web services software by choosing right

parameters.

2 EMTI Module (EMTIM): The EMTI module records the

execution time of the web services when it runs. Under the

testing process, the EMTIM will record and store every valid

process time of the web services software in the execution

mean time interval database, i.e., EMTI_DB.

The second subsystem is controlling which consists of three

modules: time checking module (TCM), reporting module

(RM), and termination module (TM).

1 Time Checking Module (TCM): TCM checks the time-

boundary by comparing the execution time with the EMTI

boundary. For example, the TCM will be checking for every 5

seconds; nevertheless, the requesters can set another value

based on the critical of the system.

2 Reporting Module (RM): If the TCM found that there is a

potential of infinite loop occurs for the running web services

software, the process will be transferred to the RM. Now, RM

is responsible for creating a warning message to requesters.

The message will be sent to requesters to call a termination

module, or continue execution.

3 Termination Module (TM): As per the outcome of the TCM

and RM, the TM will act if the requesters choose to terminate

the computing process. Therefore, there will be no un-expected

result from the invalid loop execution.

The last subsystem is learning which consist of the two

modules, namely, Time Recording Module (TRM) and EMTI

module [2].

1 Time Recording Module (TRM): Referring to the EMTI

boundary from the testing process mentioned previously, the

every execution time will be recorded when the web services

software normally terminates. The number of the normal

execution time is depended on the recording period that sets by

the administrator or the organizational policy. However, the

size of the time period indicates the critical of the system. For

example, if the system is not the critical system, the size of

time period to record every execution time before calculating

the EMTI can be every 1 hour; otherwise, it may be 5 minutes.

2 EMTI Module (EMTIM): This EMTIM is quite similar to the

EMTI module in the testing phase except that the recording of

the executing time is obtained from the TRM. The EMTIM in

the deployment process will select the execution time storing in

the EMTI_DB, starting from the last calculation value of the

last EMTI to the last execution time of the calculation

boundary. For example, if the last execution time of EMTI is

15 seconds, then, in the last 5 seconds of the time recording

period, there are 30 values of the execution times before the

new EMTI to be calculated. So, these 30 values will be

selected to compute the EMTI boundary, meanwhile, the TM

still records the incoming execution time of other rounds of the

web services software.

The protection mechanism framework also consists of a

part called as Event Monitoring Management (EMM). It

calculates time execution of service functions, counting from

the service is called until it returns the result to the requester.

As a result, time of each service process will be obtained. This

measured time unit will be sent to the controlling subsystem

during the run time process of the web services.

IV. EXTENDING WSDL SCHEMA

The Web Service Description Language (WSDL) is used to

define the interface of a web service in XML format. The

interface is used to define the functional and non functional

properties of the web service [3].

The focus will be on the non functional property of a web

service, especially the criteria which is non functional property

of a web service. The Web Service Definition Language

(WSDL) schema will be extended by adding criteria

information as a new element, i.e., „criteria service‟, which is

available in the new namespace. It is also possible to specify

the criteria with a service in an X-WSDL document using the

„criteria service‟ element [9].

In Service Oriented Architecture (SOA), the functional

properties are published and invoked. That is, the pattern of

register, search and invoke service is maintained [5]. However,

WSDL and Universal Description, Discovery and Integration

(UDDI) are modified to accommodate the specification of

1191

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030992

criteria. Following steps are used to add criteria in the web

service:

1. Specify criteria by using X-WSDL: The provider of the

service specifies the criteria in the description of the web

service using X-WSDL. The criteria have to be specified

along with the service in the WSDL document. In order to

be able to do so the elements required for the

specification of the criteria must be defined in the WSDL

schema. We therefore first extend the WSDL schema and

then show the extension to the WSDL document.

2. Publish the criteria associated service: Publish the X-

WSDL description in the X-UDDI registry.

3. Invoke the criteria associated service: Client searches in

the X-UDDI to find the appropriate web service

according to the desired criteria.

The above mentioned steps results in new software

architecture with X-WSDL and it is given in figure 3.

Figure 3: Modified SOA architecture with X-WSDL

The X-WSDL schema is shown as follows:

<xs:element name="definitions">

<xs:key name="criteriaservice">

<xs:selector xpath="cr:service"/>

<xs:field xpath="@name"/> </xs:key

</xs:element>

Definition - it is a root element of the WSDL which contains

the name of web service and namespace.

Types – a container for data type definitions using some type

system (such as XSD).

Message – an abstract typed definition of the data being

communicated.

Port Type – an abstract set of operations supported by one or

more endpoints.

Binding – a concrete protocol and data format specification for

a particular port type.

Port – a single endpoint defined as a combination of a binding

and a network address.

Service – a collection of related endpoints

The WSDL document is extended at the service level. This

is sufficient as the search is based on the criteria associated

service [3]. Therefore, the service element of the standard

WSDL is extended to support the additional feature of criteria

and description. Service is a collection of ports where port is

the endpoint which is the collection of binding and service

access address. The service element is extended to include the

criteria information along with the ports and bindings. The

criteria name attribute provides a unique name to every

criterion defined within the service element. Service element

may be containing more than one criteria name. Criteria name

is the name of the non-functional property. This helps the user

to find the more appropriate service by specifying the criteria.

The description attribute provides the detailed description of

the criteria attribute. This is used to specify the complete

requirement of the user in the documented form. The WSDL

schema shown below is extended using the element criteria

name and criteria service name.

<definition name=" "

targetNamespace=http://localhost:8080/X-UDDI/wsdl1

xmlns=http://schemas.xmlsoap.org/wsdl/

xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/

xmlns:cr=" http://localhost:8080/X-UDDI/wsdl1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name=" ">

<part name=" " type=" "/>

</message>

<portType name=" ">

<operation name=" ">

<input message=" "/>

<output message=" "/>

</operation>

</portType>

<binding name=" " type=" ">

<operation name=" ">

<soap:operation soapAction=" "/>

<input>

<soap:body encodingStyle=" "/>

</input>

<output>

<soap:body encodingStyle=" "/>

</output>

</operation>

</binding>

<cr:service name=" ">

<criteria name=” ”

<description=” ”

<port binding=" " name=" ">

<soap:address location="">

</port></service></definition>

Consider a pizza ordering example where customer wants

to order a pizza from a pizza shop on the basis of two criteria

that are farmhouse pizza and margarita pizza.

The user‟s two criteria are incorporated in the WSDL

document using the newly added elements, criteria name and

description [9]. This modified WSDL schema is given below.

<xs:element name="definitions">

<xs:key name="criteriaservice">

<xs:selector xpath="cr:service"/>

<xs:field xpath="@name"/> </xs:key

</xs:element>

1192

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030992

<wsdl:definitions

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:cr=” http://localhost:8080/EUDDI/wsdl1”

targetNamespace=“http://localhost:8080/EUDDI/wsdl1”

<cr:service name="PizzaOrderService">

<cr:criteria name= “Farmhousepizza”/>

<cr:description name =”Farmhouse”

</criteriadescription”>

<cr:criteria name= “margerita” element=

“cr:bookpizza”/>

<cr:description name = “ grated cheese should be added as

topping” element= “cr:Bookpizza”

</criteriadescription”>

<cr:port name="Bookpizza" binding=" "> </cr:port>

</cr:service>

</definition>

Next step is to publish the X-WSDL of the service in

XUDDI. The definition of the service which is associated with

the criteria is published in X-UDDI. Suppose the

Pizza_Order_Service is providing two types of pizza,

farmhouse and margerita, which are to be associated as criteria

with the service. The code for publishing pizza order with

criteria list is given as follows:

<save_dService generic="2.0" xmlns=" ">

<businessService businessKey="*****" serviceKey="">

<name>Pizza_Order_Service</name>

<criteria Bag>

< criteria >

< criteria Name>Farmhouse</ criteria Name>

< criteriaDescription> “Pizza is available with

grated cheese topping” </ criteriaDescription>

</criteria >

< criteria >

<criteria Name>Margerita </ criteria Name>

< criteriaDescription> “with extra cheese and chicken

sizzlings”</criteriaDescription>

</ criteria >

</ criteriaBag>

</BusinessService>

</save_dService>

V. OUR PROPOSED APPROACH

We have proposed a framework based on the requirements

for checking the externally created nested web services and

finding out the error rate. The changes will be made to the

EEMTI framework as shown in figure 4.

Figure 4: Extended EMTI working [10]

The proposed changes which need to be made in Extending

WSDL Schema (EWS) and Monitoring Failure (MF) block of

EEMTI framework. The EWS will be designed using the XML

schema for extending in WSDL. This method adds description

in the message type of the WSDL definition which is described

for explaining nested structure on the EMTI architecture. Here

we will be adding additional information to the WSDL schema

as shown in figure 5. The added information will be criteria

name and criteria description. This will extend more

information of the WSDL schema. This extended information

will be given to the Monitoring Nested Structure (MNS) and

the Monitoring Failure (MF). The nesting in the structure and

the faults will be checked hence forth.

Figure 5: Extending WSDL Schema

Hence, the schema will be extended by adding parameters

like criteria name and criteria description. The output will be an

updated extended WSDL document. The MNS is an engine for

tracking the nested structure remains same as mention in [10].

The MF checks the failure in the system. Currently, MF

handles SOAP exceptions and EMTI faults. This is not enough.

So we proposed here to modify MF block. The modified MF

block will check for bound errors and exceptions along with

the errors handled by MF block in current system as shown in

figure 6.

The information from the SOAP Exception includes the

cause of errors and the error nodes; these errors will be

recorded to the EMTI_DB.

1193

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030992

Figure 6: Monitoring failure module

VI. CONCLUSIONS

The proposed framework consists of modified Extending

WSDL Schema (EWS) and Monitoring Failure (MF). The

extended WSDL schema criteria will be added as the definition

to the existing WSDL file which changes the description of the

document.

The additional description in the WSDL file which are

criteria type and information will give an extended schema

with more information. Hence, this will help in capturing the

information which is to be given to the Monitoring Failure

block.

Further, the modified Monitoring failure(MF) will check

for bound errors and exception in addition to SOAP-Exception

and EMTI-fault which will improve the performance of the

system.

REFERENCES
[1] OASIS. (2007, April.), “Web Services Business

Activity(WSBusinessActivity) Version 1.1,” Available:

http://docs.oasisopen. org/ws-tx/wstx-wsba-1.1-spec-os.pdf [Aug. 10,
2012].

[2] N. Srirajun, P. Bhattarakosol, P. Tantasanawong, and S. Han, “Trustable

Web Services with Dynamic Confidence Time Interval,” in Proc. of the

4th Int. Conf. on New Trends in Information Science and Service Science
(NISS), 2010, pp.11-13.

[3] WSDL 2.0: A Pragmatic Analysis and an Interoperation Framework, 2008

SYS-CONMedia,

[4] W. Dong, "Multi-agent Test Environment for BPEL-based Web Service

Composition", the IEEE Int. Conf. on Cybernetics and Intelligent Systems,

2008, pp.855-860.

[5] C. -H. Liu, S. -L. Chen, and X. -Y. Li, "A WS-BPEL Based Structural
Testing Approach for Web Service Compositions,” the IEEE International

Symposium on Service-Oriented System Engineering, 2008, pp.135-141.

[6] N. Srirajun, P. Bhattarakosol, P. Tantasanawong, and S. Han, “A Trustable

Software with A Dynamic Loop Control Mechanism,” in Proc. of the 5th

Int. Conf. on Future Information Technology, 2010, pp. 20-24.

[7] W3C. (2007, June), “Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language,” Available: http://www.w3.org/TR/wsdl20/

[Aug. 10, 2012].

[8] U. Dayal, M. Hsu, and R. Ladin, “A transactional Model for Long- Running

Activities,” in Proc. of the 17th Int. Conf. on Very Large Data Bases, 1991,

pp. 113-122.

[9] N. Parimala, and A. Saini, “Web Service with Criteria: Extending WSDL,”
in Proc. of the 6th Int. Conf. on Digital Information Management, 2011,

pp. 205-210.

[10] Nalinrat Srirajun, Pattarasinee Bhattarakosol, Panjai Tantasanawong,

Sunyoung Han, “EEMTI: An Extending Framework for Nested Web
Service Verification” in Computing and Convergence Technology

(ICCCT), 2012 7th International Conference.

1194

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030992

