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Abstract

In this article, we consider a continuous review perishable inventory
system with a finite number of homogeneous sources of demands. The in-
ventory is replenished according to a state dependent (s, S) ordering policy
and the lead times are assumed to follow an exponential distribution. The
life time of each item is assumed to be exponential. The server goes for a
vacation of an exponentially distributed duration whenever the inventory
level reaches zero. If the server finds empty stock when he returns to the
system, he continues his vacation. The demands that occur during stock
out period and/or during the server vacation period enter into the orbit.
These orbiting demands send out signal to compete for their demand and
the retrial times are distributed as exponential. The joint probability dis-
tribution of the inventory level and the number of demands in the orbit are
obtained in the steady state case. Various system performance measures
are derived and the results are illustrated numerically.

Keywords : Continuous review Inventory System, Random life time,
State dependent (s, S) policy, Finite population, Retrial demands
Multiple vacation

1 Introduction

In most of the inventory models considered in the literature, the demanded
items are directly delivered from the stock (if available). The demands occurring
during the stock-out period are either lost (lost sales) or satisfied only after the
arrival of ordered items (backlogging). The often quoted review articles Nahmias
[7] and Raafat [10] and Goyal and Giri [5] provide excellent summaries of many
of these modelling efforts.

However, in Queueing systems with server vacations have been widely stud-
ied in different contexts in the literature. Continuous review inventory system
with server vacation has been received little attention in the literature. Daniel
and Ramanarayanan [3] have first introduced the concept of server vacation in
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inventory with two servers. In [4], they have studied an inventory system in
which the server takes a rest when the level of the inventory is zero.

The concept of retrial demands in inventory was introduced by Artalejo et al.
[2]. They have assumed Poisson demand, exponential lead time and exponential
retrial time. In that work, the authors proceeded with an algorithmic analysis
of the system. Ushakumari [14] considered a retrial inventory system with clas-
sical retrial policy. Krishnamoorthy and Jose [6] analysed three different retrial
inventory with positive service time and positive lead-Time. Sivakumar [12] has
considered a retrial inventory system with multiple server vacation and in[11]
he has considered a perishable inventory system with retrial demands.

In this paper, we address a continuous review perishable inventory system
with a finite number of homogeneous sources of demands. The operating policy
is a state dependent ordering policy. According to this policy the placement of
order occurs in the following situations:

1. When the on hand inventory level reaches the prefixed level s, he places
an order for Q(= S − s) items.

2. When the server returns to the system (the following situations may arise
because of the nature of the item),

• If the on hand inventory level is i which is less than or equal to s, he
place an order for Q items and terminates his vacation.

• If the inventory level is zero and the ordered items are not pending,
he place an order for Q units and continues his vacation.

The server terminates his vacation only when he finds the positive inventory
level. During the vacation period, any arriving primary demands enter the orbit.
These orbiting demands compete for their demands after a random time. The
inter-retrial times follows exponential distribution.

The rest of the paper is organized as follows. In Section 2, we describe the
problem and in the next section analyse the mathematical model of the problem
under study. The steady-state analysis of the model is presented in section 4
and some key system performance measures are derived in Section 5. In the last
section, we perform sensitivity analyses on the total expected cost rate in terms
of numerical illustrations.

2 Problem formulation

We consider an inventory system with a maximum stock of S units and the
items are distributed by the server to the demands. The items are perishable
in nature. The lifetime of each item is exponential with parameter γ(> 0). The
demands are originated from the population of finite size N . The demand time
points form a Quasi-random distribution with parameter α, demand only single
unit at a time. The operating policy is the state dependent (s, S) ordering
policy. The replenishment of stock occur after some random time. The lead
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time is exponentially distributed with mean rate µ(> 0). When the on-hand
inventory level zero, the server goes for vacation. The duration of the server
vacation is an exponential random variable with parameter β(> 0). Due to
the perishable nature of the items, during the server vacation period the stock
replenished and the items may perish. The situation makes to place an order.
According to our ordering policy, when the server returns to the system, if the
on hand inventory level is i(> 0) which is less than or equal to the prefixed
level s, he place an order for Q items and he terminates his vacation or the
inventory level zero and the ordered items are not pending, he place an order
for Q units and continues his vacation. Server terminates his vacation only
when he finds the positive stock. Demands that occur during stock-out period
and/or during server vacation periods enters into the orbit. These orbiting
demands compete for their demands according to an exponential distribution
with parameter θ(> 0). We consider the classical policy where each demands in
the orbit conducts his own attempts to obtain service independently from the
other demands present in the orbit. We can then assume that the probability of
a retrial during the time interval (t, t+dt), given that j demands were in orbit at
time t, is jθdt+ o(dt). Each source is either free or in the orbit at any time. We
also assume that the inter-demand times between the primary demands, lead
times, lifetime of each items, retrial demand times and server vacation time are
mutually independent random variables.

Notation :

Aij : element/sub-matrix at ith row, jth column of the matrix A.
e : a column vector of appropriate dimension containing all ones.
I : an identity matrix of appropriate dimension.

3 Analysis

Let X(t), Y (t), Z(t) and Z ′(t), respectively, denote the inventory level, number
of demands in the orbit, server status(0-is on vacation & 1-is available for provide
item) and the status of the ordered item(0-received & 1-not received) at time
t. From the assumption made on the input and output processes, it may be
verified that the stochastic process {X(t), Y (t), Z(t), Z ′(t) : t ≥ 0} is a Markov
process with state space E, which is defined as, Here

E = E1 ∪E2 ∪ E3 ∪ E4,

E1 = {(i, j, k, l) | i = s+ 1, s+ 2, . . . , S, j = 0, 1, 2, . . . , N, k = 0, 1, l = 0}

E2 = {(i, j, k, l) | i = 1, 2, . . . , s, j = 0, 1, 2, . . . , N, k = 0, l = 0}

E3 = {(i, j, k, l) | i = 1, 2, . . . , s, j = 0, 1, 2, . . . , N, k = 1, l = 1}

E4 = {(i, j, k, l) | i = 0, j = 0, 1, 2, . . . , N, k = 0, l = 0, 1}

The values taken by these random variables are listed in the following table.
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i j k l

0

0

0
1 0
2
... 1
N

1
0

0 0

2
1

1 1...
...

s N

s+ 1 0
0

0
s+ 2 1
...

...
1

S N

The state space of the stochastic process {X(t), Y (t), Z(t), Z ′(t)|t ≥ 0} is the
collection of all quadruples (i) = (i, j, k, l) where each entry is selected from
each column as we move from left to right; we may cross vertical lines but not
horizontal ones. These quadruples can be ordered in the lexicographic order in
each box separated by the horizontal lines. Define the following sets:

(i) = (<< i, 0 >>,<< i, 1 >>, . . . , << i,N >>),

<< i, k >> = (< i, k, 0 >,< i, k, 1 >),

< i, k, 0 > = ((i, k, 0, 0)),

< i, k, 1 > = ((i, k, 1, 1)) for i = 1, 2, . . . , s,

< i, k, 1 > = ((i, k, 1, 0)) for i = s+ 1, s+ 2, . . . , S.

Then the state space of the process can be ordered as {(0), (1), (2), . . . , (S)},
where (0) = ((0, j, 0, 0), (0, j, 0, l)) for j = 0, 1, . . . , N,

Then the infinitesimal generator P can be conveniently expressed in block
partitioned matrix with entries,

P =



































(0) (1) (2) · · · (s) · · · (Q) (Q+ 1) · · · (S)

(0) A0 C0

(1) B1 A1 C1

...
. . .

. . .
. . .

(s) Bs As C1

...
. . .

. . .

(Q) BQ AQ

(Q + 1) BQ+1 AQ+1

...
. . .

. . .

(S) BS AS


































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For i = 0, 1, 2, . . . , S,

Ai =



















0 1 2 · · · N − 1 N

0 Di0 Ei0

1 Di1 Ei1

2 Di2 Ei2
...

. . .
. . .

N − 1 DiN−1 EiN−1

N DiN



















For i = 1, 2, . . . , S,

Bi =



















0 1 2 · · · N − 1 N

0 Fi0

1 Gi1 Fi1

2 Gi2 Fi2
...

. . .
. . .

N − 1 GiN−1 FiN−1

N GiN FiN



















For i = 0, 1, . . . , s,

Ci =















0 1 2 . . . N

0 Hi0

1 Hi1

2 Hi2
...

. . .

N HiN















The dimension of the main matrices are defined in Table 1 and the dimension
of the sub-matrices are explicitly from the structure of the matrices. The sub-
matrices are defined as, For j = 0, 1, 2, . . . , N,

Dij =















































































 0
0 D00

ij

!

i = 0







0 1
0 D00

ij D01
ij

1 0 D11
ij






i = 1, 2, . . . , Q

 1
1 D11

ij

!

i = Q+ 1, Q+ 2, . . . , S
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Eij =















































 0
0 E00

0j

!

i = 0





0 1
0 E00

ij 0
1 0 0



 i = 1, 2, . . . , Q

Fij =

























































































































0
0 F 00

1j

1 F 10
1j






i = 1







0 1
0 F 00

ij 0
1 0 F 11

ij






i = 2, 3, . . . , Q

 0 1
1 0 F 11

ij

!

i = Q+ 1

 1
1 F 11

ij

!

i = Q+ 2, Q+ 3, . . . , S.

Gij =



















































































































0
0 0
1 G10

1j



 i = 1





0 1
0 0 0
1 0 G11

ij



 i = 2, 3, . . . , Q

 0 1
1 0 G11

ij

!

i = Q+ 1

 1
1 G11

ij

!

i = Q+ 2, Q+ 3, . . . , S.
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Hij =















































 0 1
0 H00

ij 0

!

i = 0





0 1
0 0 0
1 0 H11

ij



 i = 1

Define ηj = (N − j)α, ψij = (N − j)α+ iγ

D00
0j =

(

0 1

1 −ηj − µ
�

For i = 1, 2, . . . , s

D00
ij =

(

0

0 −β − ψij

�

D01
ij =

(

0

0 β
�

D11
ij =

(

0

0 −ψij − jθ
�

D00
ij =

(

0

0 −β − ψij

�

For i = s+ 1, s+ 2, . . . , S

D01
ij =

(

1

0 β
�

D11
ij =

(

1

1 −ψij − µ
�

E00
0j =

�

0 1

0 ηj
1 ηj

�

For i = 1, 2, . . . , S

E00
ij =

(

0

0 ηj
�

F 00
1j =

(

0

0 γ
�

F 10
1j =

(

0 1

1 ψ1j

�

For i = 2, 3, . . . , s+ 1,

F 00
ij =

(

0

0 iγ
�

F 11
ij =

(

1

1 ψij

�

For i = s+ 2, s+ 3, . . . , S,

F 11
ij =

(

0

0 ψij

�

F 00
ij =

(

0

0 iγ
�

G10
1j =

(

0 1

1 jθ
�

For i = 2, 3, . . . , s+ 1,

G11
ij =

(

1

1 jθ
�

For i = s+ 2, s+ 3, . . . , S,

G11
ij =

(

0

0 jθ
�

H00
0j =

�

0

0 0
1 µ

�

H11
0j =

(

0

1 µ
�

Matrix Dimension Matrix Dimension
A0 (2(N + 1), 2(N + 1)) C1 (2(N + 1), N + 1)

Ai, i = 1, 2, . . . , Q (2(N + 1), 2(N + 1)) Bi, i = 1, 2, . . . , Q (2(N + 1), 2(N + 1))
Ai, i = Q + 1, . . . , S (N + 1, N + 1) BQ+1 (N + 1, 2(N + 1))

C0 (2(N + 1), 2(N + 1)) Bi, i = Q+ 2, . . . , S (N + 1, N + 1)

Table 1: Dimension of the matrices
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4 Steady state analysis

It can be seen from the structure of P that the homogeneous Markov process
{(X(t), Y (t), Z(t), Z ′(t)), t ≥ 0} on the finite state spaceE is irreducible. Define

Φ((i, j, k, l; i1, j1, k1, l1), t) = Pr
[

(X(t), Y (t), Z(t), Z′(t)) = (i, j, k, l)|(X(0), Y (0), Z(0), Z′(0)) = (i1, j1, k1, l1)
]

Hence the limiting distribution
π(i,j,k,l) = lim

t→∞

Φ((i, j, k, l; i1, j1, k1, l1), t) exists.

Let Π = (π<<<0>>>, π<<<1>>>, . . . , π<<<S>>>) where,

π<<<i>>> = (π<<i,0>>, π<<i,1>>, . . . , π<<i,N>>), i = 0, 1, . . . , S

π<<i,j>> = (π<i,j,0>), i = 0, j = 0, 1, . . . , N,

π<i,j,0> = (π(i,j,0,0), π(i,j,0,1)), i = 0, j = 0, 1, . . . , N,

π<<i,j>> = (π<i,j,0>, π<i,j,1>), i = 1, 2, . . . , Q, j = 0, 1, . . . , N,

π<i,j,0> = (π(i,j,0,0)), i = 1, 2, . . . , Q, j = 0, 1, . . . , N,

π<i,j,1> =

�

(π(i,j,1,1)), i = 1, 2, . . . , s, j = 0, 1, . . . , N,

(π(i,j,1,0)), i = s+ 1, s+ 2, . . . , Q, j = 0, 1, . . . , N

π<<i,j>> = (π<i,j,1>), i = Q+ 1, Q+ 2, . . . , S, j = 0, 1, . . . , N,

π<i,j,1> = (π(i,j,1,0)), i = Q+ 1, Q+ 2, . . . , S, j = 0, 1, . . . , N.

The limiting distribution Π can be computed by using

ΠP = 0 and Πe = 1. (4.1)

The first equation of the above yields the following set of equations :

π<<<i+1>>>Bi+1 + π<<<i>>>Ai = 0, i = 0, 1, . . . , Q− 1,

π<<<i+1>>>Bi+1 + π<<<i>>>Ai + π<<<i−Q>>>C0 = 0, i = Q, (4.2)

π<<<i+1>>>Bi+1 + π<<<i>>>Ai + π<<<i−Q>>>C1 = 0, i = Q+ 1, . . . , S − 1,

π<<<i>>>Ai + π<<<i−Q>>>C1 = 0, i = S.

The equations (except (4.2)) can be recursively solved to get

π<<<i>>> = π<<<Q>>>Ωi, i = 0, 1, . . . , S,

where

Ωi =











































(−1)Q−iBQA
−1
Q−1BQ−1 · · ·Bi+1A

−1
i , i = 0, 1, . . . , Q− 1,

I, i = Q,

(−1)2Q−i+1
S−i
P

j=0

h�

BQA
−1
Q−1BQ−1 · · ·Bs+1−jA

−1
s−j

�

C1A
−1
S−j

×
�

BS−jA
−1
S−j−1BS−j−1 · · ·Bi+1A

−1
i

�i

, i = Q+ 1, . . . , S,
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and π<<<Q>>> can be obtained by solving

π<<<Q>>>



(−1)Q
s−1
X

j=0

h�

BQA
−1
Q−1BQ−1 · · ·Bs+1−jA

−1
s−j

�

C1A
−1
S−j

×
�

BS−jA
−1
S−j−1BS−j−1 · · ·BQ+2A

−1
Q+1

�i

BQ+1 +AQ

+(−1)QBQA
−1
Q−1BQ−1 · · ·B1A

−1
0 C0

i

= 0,

and

π<<<Q>>>

"

Q−1
X

i=0

�

(−1)Q−iBQA
−1
Q−1BQ−1 · · ·Bi+1A

−1
i

�

+ I

+

S
X

i=Q+1



(−1)2Q−i+1
S−i
X

j=0

h�

BQA
−1
Q−1BQ−1 · · ·Bs+1−jA

−1
s−j

�

C1A
−1
S−j

×
�

BS−jA
−1
S−j−1BS−j−1 · · ·Bi+1A

−1
i

�i�i

e = 1.

5 System performance measures

In this section , we derive some system performance measures in the steady-state
case.

5.1 Expected inventory level

Let ζi denote the expected inventory level in the steady-state. Then ζi is given
by

ζi =

S
X

i=1

iπ<<<i>>>e

5.2 Expected reorder rate

Let ζr denote the expected reorder level in the steady-state. Then ζr is given
by

ζr =

N
X

k=0

"

[(s+ 1)γ + (N − k)α+ kθ]π<s+1,k,1>e+

s
X

i=0

βπ<i,k,0>e

#
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5.3 Expected perishable rate

Let ζp denote the expected perishable rate in the steady-state. Then ζp is given
by

ζi =

S
X

i=1

iγπ<<<i>>>e

5.4 Expected number of demands in the orbit

Let ζo denote the expected number of demands in the orbit in the steady-state.
Then ζo is given by

ζo =

N
X

k=1

S
X

i=0

kπ<<i,k>>e

5.5 The blocking probability

Let ζB denote the probability that the demands is blocked and ζB is given by

ζB =

Q
X

i=1

N−1
X

k=0

π<i,k,0>e+ π<<<0>>>e

5.6 The overall rate of retrial

The overall rate of trials at which the orbiting demands request his demand is
given by

ζSR =

S
X

i=1

N
X

k=1

kθπ<<i,k>>e

5.7 The successful rate of retrial

The rate at which the orbiting demands successfully receive his demands is given
by

ζSR =

S
X

i=1

N
X

k=1

kθπ<i,k,1>e

5.8 The fraction of time the server is on vacation

The fraction of time the server is on vacation is given by

ζSV =

N
X

k=0

"

Q
X

i=1

π<i,k,0>e+ π(0,k,0,0)

#
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5.9 Fraction of successful rate of retrials

The fraction of successful rate of retrials is given by

ζFR =
ζSR

ζOR

6 Cost analysis

The long-run expected cost rate for this model is defined to be

TC(S, s) = chζi + csζr + cpζp + cwζo.

where,

cs : Setup cost per order
ch : The inventory carrying cost per unit item per unit time
cw : Waiting cost of a demand in the orbit per unit time
cp : The cost per unit failure

Due to the complex form of the limiting distribution, it is difficult to discuss
the properties of the cost function analytically. Hence, a detailed computational
study of the cost function is carried out.

6.1 Numerical Examples

We have studied the effect of varying the cost and the other system parameters
on the optimal values and the results agreed with what one would expect.

Example 1. In this example, we study the impact of the setup cost cs, holding
cost ch, perishable cost cp and the waiting cost cw on the the total expected cost
rate TC(s, S). Towards this end, we first fix the parameter values as α = 7, β =
0.2, γ = 0.5, θ = 4 and µ = 5. We observe the following from Table 1.

• The optimal cost increases when ch, cs, cw and cp increase.

Example 2. Here, we study the impact of the primary demand rate α, the
lead time rate µ, the retrial demand rate θ and the vacation time β on the total
expected cost rate TC(s, S). We first fix the cost values as ch = 0.02, cs =
25, cp = 2 and cw = 8 We observe the following from Figure 1 to 4.

• The optimal expected cost rate increases when α increases.

• As is to be expected, µ increases the total expected cost rate decreases.

• The total expected cost rate increases when γ increases and decreases when
β and θ increases.
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ch cs cp cw
3 6 9 12

0.1 5 2 78.570140 150.559809 222.549478 294.539147
4 83.999053 155.988721 227.978390 299.968059
6 89.427965 161.417634 233.407303 305.396972

10 2 79.333920 151.323589 223.313258 295.302926
4 84.762832 156.752501 228.742170 300.731839
6 90.191745 162.181413 234.171082 306.160751

15 2 80.097699 152.087368 224.077037 296.066706
4 85.526612 157.516281 229.505950 301.495618
6 90.955524 162.945193 234.934862 306.924531

0.2 5 2 78.957920 150.947589 222.937257 294.926926
4 84.386832 156.376501 228.366170 300.355839
6 89.815744 161.805413 233.795082 305.784751

10 2 79.721699 151.711368 223.701037 295.690706
4 85.150612 157.140281 229.129949 301.119618
6 90.579524 162.569193 234.558862 306.548531

15 2 80.485479 152.475148 224.464817 296.454486
4 85.914391 157.904060 229.893729 301.883398
6 91.343304 163.332972 235.322641 307.312310

0.3 5 2 79.345699 151.335368 223.325037 295.314706
4 84.774611 156.764280 228.753949 300.743618
6 90.203524 162.193193 234.182862 306.172530

10 2 80.109479 152.099148 224.088817 296.078485
4 85.538391 157.528060 229.517729 301.507398
6 90.967303 162.956972 234.946641 306.936310

15 2 80.873258 152.862927 224.852596 296.842265
4 86.302171 158.291840 230.281508 302.271177
6 91.731083 163.720752 235.710421 307.700090

Table 2: Effect of cost parameters on total expected cost rate
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