
A Dynamic Resource Dispatches in a Cloud

Environment Using Join-Idle-Queue (JIQ)

V.Prasath

Assistant Professor

Department of CSE

PKIET, Karaikal

India

R.Buvanesvari

Assistant Professor

 Department of CSE

PKIET, Karaikal

India

 A.Shanmugapriya

UG Student

Department of CSE

PKIET, Karaikal

India

 R.Annapoorani

UG Student

Department of CSE

PKIET,Karaikal

India

Abstract—In the cloud, the time for dispatching resources to the

systems may be maximum due to the interaction occurs between

the processors while allocating resources to them. We address

this problem of dispatching resources in the cloud environment

for the enhancement of scalability, adaptability and to increase

its performance status. We propose a novel class of algorithm

called Join-Idle-Queue for balancing the load among large

systems which results in the efficient utilization of the processor

in the cloud under its memory constraints. Our approach is

mainly focused on dynamically distributing resources among

systems at a very least time by using a middleware server. This

algorithm continuously executes on dynamic, local input and

does not require maximum time for allocating resources as other

novel class of algorithms do. We evaluate our approach through

simulation and experiment results demonstrate that this

algorithm (JIQ) achieves good performance by consuming less

time.

 Keywords—Cloud Computing,, Resource Dispatches, Join-Idle-

Queue, Load Balancing.

 I. INTRODUCTION

 Cloud computing is a popular trend in current computing

which attempts to provide cheap and easy access to

computational resources. It provides a powerful computing

model that allows users to access resources on-demand.

Nowadays, cloud computing has become a key technology for

online allotment of computing resources and online storage of

user's data in a lower cost, where computing resources are

available all the time, over the internet with pay per use

concept. Cloud computing is business oriented concept where

computing resources are outsourced by cloud provider to their

client, who demand computing online [1]. Maintenance of

cloud computing applications is also easier, because they do

not need to be installed on each user's computer and can be

accessed from different places. In the cloud, the time for

dispatching resources to the systems may be maximum due to

the interaction occurs between the processors while allocating

resources to them. We take this problem into consideration

and proposes a novel class of algorithm called Join-Idle-

Queue for balancing the load among large systems which

results in the efficient utilization of the processor in the cloud

under its memory constraints .We are also focusing on load

balancing of cloud computing with some JIQ techniques [2],

which are responsible to manage the load when some node of

the cloud system is overloaded and others are under loaded.

 The aim of this paper is to demonstrate and discuss a critical

role the load balancing of resources plays in improving the

availability of resources and maintaining the performance in

cloud systems at a very least time. In addition, JIQ technique

adding capacity to the dynamic balance mechanism for the

cloud. The experiment demonstrates that the algorithm is

obtains better load-balancing degree and using less time in

loading all tasks. It may result that the amount of computation

assigned to each processor is balanced so that some processors

do not sit idle while executing other tasks. In our approach, we

present a centralized design that is the middleware server

which provides the communication

 Further the load between the clients and the other severs in

the cloud balancing techniques, in the area of cloud

computing, reduces costs associated with document

management systems and also maximizes availability of

resources [4]. This article discusses possible ways to improve

the performance of cloud networks by the introduction of join-

idle-queue load balancing technique that arranges the

processor in a queue according to its memory space. When the

client requesting for uploading their resources within the

cloud, the defined middleware server will carry the request

from the client and verify the join-idle-queue for the processor

contained the memory needed to upload the resources.

 It is used to dispatch jobs evenly to the front end servers. It

uses the join-the-shortest-queue (JSQ) algorithm that

1058

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20666

dispatches jobs to the processor with the less time period. The

JSQ algorithm is a greedy algorithm from the view of an

incoming job, as the algorithm grants the job the highest

instantaneous processing speed, assuming a processor sharing

(PS) service discipline [2]. The JSQ algorithm is not optimal,

but is shown to have great performance in comparison to

algorithms with much higher complexity. Another benefit of

the JSQ algorithm is its low communication overhead in

traditional server farms, as the load balancer can easily track

the number of jobs at each processor: all incoming requests

connect through the centralized load balancer and all

responses are also sent through the load balancer. The load

balancer is hence aware of all arrivals of jobs to a particular

processor, and all departures

 As well, this makes tracking a simple task. No extra

communication is required for the JSQ algorithm [2].

 Our design goals ensures the following,

A. Performance

 Ensure that performance is maintained at an acceptable

level so that users don‟t experience significant lags when they

are trying to carry out a particular task. The cloud should not

be a performance detriment to the overall ability to do

business. A traffic accelerator that optimizes the throughput

between two sites and allows you to accelerate the data center-

to-cloud resource combination is one good solution. The

enormous flexibility of cloud hosting is one of its greatest

benefits we consider computational and memory resources

and the objective is to achieve max-min fairness among sites

for computational resources under memory constraints and for

allocating the resources in a minimal time. Under this

objective, each site receives CPU resources proportional to its

CPU demand.

B. Adaptability

 The resource allocation process must dynamically and

efficiently adapt to changes in the demand from users.

C. Scalability

 The resource allocation process must be scalable both in

the number of machines in the cloud and the number of sites

that the cloud hosts. This means that the resources consumed

(by the process) per machine in order to achieve a given

performance objective must increase sub linearly with both

the number of machines and the number of sites.

D. Minimum time consuming

 Since we are arranging the processors in a queue

according to its memory, the time for dispatching load to the

processors is minimum. It continuously executes on dynamic,

local input and does not require maximum time for allocating

resources.

 These guiding principles performance, adaptability,

scalability, minimum time consuming provide a useful

checklist in helping ensure that your cloud performs exactly as

you want it to.

 However, this paper (a) dynamically adapts existing

placements in response to a change (in demand, capacity,

etc.), (b) dynamically scale resources for an application

beyond a single physical machine, (c) scale beyond some

thousand physical machines (due to their centralized

underlying architecture) [3].

II. ARCHITECTURE OF DISPATCHING

RESOURCES

 Our architecture associates with mainly dispatching and

balancing the resources (load) in the cloud using Join-Idle-

Queue technique. It has a middleware server responsible for

dispatching the resources and a load balancer for allocating

the resources to the processors based on the memory of each

processors listed in the queue. A single hardware load

balancer that accommodates hundreds of processors is both

expensive and at times wasteful as it increases the granularity

of scaling.fig.1.shows the Join-Idle-Queue (JIQ) architecture

for large-scale load balancing with distributed dispatchers.

 The central idea is to decouple discovery of lightly loaded

servers from job assignment [7]. The basic version involves

idle processors informing dispatchers at the time of their

idleness, without interfering with job arrivals. This removes

the load balancing work from the critical path of request

processing. The challenge lies in the distributed nature of the

dispatchers as the idle processors need to decide which

dispatcher to inform what job to allocate. Informing a large

number of dispatchers will increase the rate at which jobs

arrive at idle processors, but runs the risk of inviting too many

jobs to the same processor all at once and results in large

queuing overhead [2].

 The processor can conceivably remove itself from the

dispatchers once it receives the first job, but this will require

twice as much communication between processors and

dispatchers. On the other hand, informing only one dispatcher

will result in wasted cycles at idle processors and assignment

of jobs to occupied processors instead, which adversely affects

response times.

 To solve the problem, the proposed JIQ algorithm load

balances idle processors across dispatchers, which we call the

secondary load balancing problem. In order to solve the

primary load balancing problem of assigning jobs to

processors, we first need to solve the secondary problem of

assigning idle processors to dispatchers, which curiously takes

place in the reverse direction. While the primary problem

1059

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20666

concerns the reduction of average queue length at each

processor, the secondary problem concerns the availability of

idle processors at each dispatcher.

 Jobs

 Middleware Server

 (Dispatcher)

 I-Queue

 … ………

 Se

 Servers

Fig.1.Architecture of JIQ

 It is not a priori obvious that load balancing idle

processors across dispatchers will outperform the algorithm

because of the challenges outlined above. The analysis also

applies to the FIFO service discipline [2]. Analyzing the

performance of FIFO reentrant queues is outside the scope of

this paper, but the analysis of FIFO queues is a necessary first

step.

 The main contributions of the paper are as follows:

 1. We analyze and combine both the primary and secondary

load balancing systems and find that the JIQ algorithm

reduces the effective load on the system. The mean queue

length in the system is shown to be insensitive to service time

distributions for the processor sharing (PS) discipline in the

large system limit.

 2. The proposed JIQ algorithm incurs no communication

overhead at job arrivals, hence does not increase actual

response times. With equal or less complexity JIQ produces

smaller queuing with the actual value depending on the load

and processor-to-dispatcher ratio.

 The evaluation of the performance of JIQ algorithm is based

on simulation with a variety of service time distributions,

corresponding to different application workloads.

 The objective of the load balancing algorithm is to provide

fast response time at each processor without incurring

excessive communication overhead. In particular,

communication overhead on the critical path, i.e., at the arrival

of a request, is to be avoided as it adds to the overall response

time. Communication off the critical path is much less costly

as it can ride on heartbeats sent from processors to job

dispatchers signaling the health of the nodes.

III. ALGORITHM DESCRIPTION

 The algorithm consists of the load balancing systems, which

communicate through a data structure called I-queue.

Together, they serve to decouple the discovery of idle servers

from the process of job assignment. Fig.1. illustrates the

overall system architecture with an I-queue of a dispatcher.

An I-queue is a list of a subset of processors based on its

memory capacity that have reported to be idle. All processors

are accessible from each of the dispatchers. The load

balancing system exploits the information of idle servers

present in the I-queues, and avoids communication overhead

from probing server loads. At a job arrival, the dispatcher

consults its I-queue. If the I-queue is non-empty, the

dispatcher removes the first idle processor from the I-queue

and directs the job to this idle processor [2]. It refers to

sharing of memory demand of the process while demand

exceeds the capacity of each processor.

 When a processor becomes idle, it chooses one I-queue

based on a load balancing algorithm and informs the I-queue

of its idleness or joins the I-queue. For all algorithms in this

class, each idle processor joins only one I-queue to avoid extra

communication to withdraw from I-queues., or joins it.

Depend upon the memory usage of the processors and demand

of process, the resources are allocated to the processors by

verifying the I-queue and thus the resources are dispatched

only through middleware server [6].

 To illustrate the effect of length of busy cycles on response

times, compare the two busy cycle patterns on a single

processor illustrated in Fig. 2. The letter ‟b‟ denotes ‟busy‟

and the letter ‟i‟ denotes ‟idle‟. The two patterns can result

from different load balancing schemes in the system. The load

is the same for both patterns, as they share the same mean idle

time. However, pattern 2 indicates a much larger arrival rate

than pattern 1 when the processor is idle. This results in

shorter busy cycles and a much shorter response time.

1060

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20666

Pattern 1: i b i b

Pattern 2: i b i b i b i b

Fig.2. Busy (b) / idle (i) patterns of a processor.

 This JIQ defines that the processors within the cloud are

first arranges in the I-Queue based on the memory space

available at each processors. Then the queue is loaded with the

processors and the resource of high memory demand is

allocated in high free memory processors and other resources

are allocated in another processors corresponding to its

memory demand. The most free memory processor in the

cloud will receive the resource.

 We study the performance of algorithms with analysis and

simulation in the rest of the paper.

IV. EVALUATION THROUGH

SIMULATION

 We evaluate the class of JIQ algorithms against the shortest

queue (SQ) algorithm for a variety of service time

distributions via simulation. The deterministic distribution

models applications with constant job sizes. We also evaluate

the JIQ-SQ algorithms against the SQ algorithm, since the JIQ

algorithms evaluated have strictly lower communication

overhead than SQ [5]. Moreover, the overhead does not

interfere with job arrivals, as in the case of SQ. It is based on

Job-idle-queue algorithm and it refers to dispatching resources

based on the memory demand of that resource. These

resources will be allocated to the processors considering their

available memory space. When these resources get allocated

to the corresponding processor, it should be removed from the

I-Queue. By re-considering the memory space available at the

previously resource allocated processor, it can join to the I-

Queue. The resource of high memory demand is allocated in

high free memory processors and other resources are allocated

in another corresponding processor. The most free memory

processor in the cloud will receive the process. Thus the

processor will join the I-Queue continuously after it has been

removed based on its memory capacity, the time for allocating

the incoming resources is minimum and also the performance

get increased significantly.

V. CONCLUSION

 In this paper we dynamically balancing load among the

processor in the cloud Environment. The main aim of this

paper is to reduce the time for allocating the resources to the

processor. For balancing a load we introduce a technique

called JIQ thus increases the performance speed of the

processor and also it requires only a less time for resource

allocation. We evaluate a simulation through this algorithm

that we introduced is used to access all the processor so that

the no processor in the cloud remain idle. In our approach the

performance speed of the processor is increased by

dynamically balancing the load among the processor in a

minimal time.

VI. FUTURE WORK

 The extension of the JIQ algorithms proves to be useful at

very high load. It will be interesting to acquire a better

understanding of the algorithm with a varying reporting

threshold [2]. We would also like to understand better the

relationship of the reporting frequency to response times, as

well as an algorithm to further reduce the complexity of the

JIQ-SQ algorithm while maintaining its superior performance.

REFERENCES

[1] CloudComputing,accessed (23/01/2013),from http:
//en.wikipedia.org/wiki /Cloud Computing overview with load balancing
techniques.

[2] http://join-idle-queue algorithm.

[3] Fetahi Wuhib , Rolf Stadler, and Mike Spreitzer , [2] „„A Gossip
Protocol For Dynamic Resource Management in Large Cloud
environment‟‟, IEEE Transaction on Network Service Management,
vol.9 , no.2, in June 2012.

[4] Zenon Chaczko 1, Venkatesh Mahadevan 2, Shahrzad Aslanzadeh 1 and
Christopher Mcdermid1 1, 3 & 4 University of Technology Sydney,
Australia 2 Swinburne University of Technology, Australia,
„„Availability and Load Balancing in cloud Computing‟‟, International
Conference on Computer and Software Modeling IPCSIT vol.14 (2011)
© (2011) IACSIT Press, Singapore,2011.

[5] J. Name Stand. Abbrev., in press. V.Gupta, M. Harchol-Balter, K.
Sigman, and W.Whitt ,” Analysis of join-the-shortest-Queue Routing
for web server farms Perforance Evaluation” ,(64):1062,1081, 2007..

[6] Zhen Xiao ,Senior Member,IEEE ,Weijia Song and Qi Chen, „„Dynamic
Resource Allocation Using Virtual Machine for Cloud Computing
Environment‟‟,IEEE on Parallel and Distributed System(TPDS),

[7] Ram Prasad Padhy P.Goutam Prasar Roa, “Load Balancing in Cloud
Computing systems” in may 2011.

1061

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20666

