International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

A Distributed Algorithm for Resource Deadlock Detection Using
Time Stamping

Himanshi Grover

Faculty of Engineering and technology
Manav Rachna International University
Faridabad, India

ABSTRACT Keywords

Deadlock is one of the most serious problems in Deadlocks, Distributed database systems, Distributed
multitasking concurrent programming systems. The database management systems
deadlock problem becomes further complicated when the

nderlying system is Distributed. Deadlock detection and
HNAETIVING System 15 SR ' 1. INTRODUCTION

optimization is very difficult in distributed systems. The
A deadlock occurs if each of two transactions (for example, A and

deadlock problem is intrinsic to a distributed database))
B) needs exclusive use of some resource (for example, a particular

systems which employs locking at its concurrency control record in a data set) that the other already holds. Thus a

algorithm. Till now various techniques have been Transaction A waits for the resource to become available to it
introduced to detect and prevent deadlocks which is being withheld by B. However, if transaction B is not in

This paper presents a simple algorithm to detect resource a position to release it because it, in turn, is waiting on some

deadlocks in distributed databases. The proposed algorithm resource held by A, both are therefore deadlocked and the only

is an improvement over the algorithm by B.M Jhonston. In way of breaking the deadlock is to cancel one of the transactions,

- . . - thus releasing its resources.
the original algorithm there were no priority criteria to g

decide that which transaction needs to be aborted. But the The deadlocks occur when several queries/transactions are being

proposed algorithm makes this decision by using the attempted by same or different users by accessing the same data.

. . . These have to be sequenced to prevent or resolve the deadlocks.
timestamps of transactions. Accordingly the youngest

transaction is aborted. The algorithm ensures that only one A distributed system can be visualized as a set of sites, each site

. . . e consisting of a number of independent transactions. A distributed
process in the deadlock cycle will detect it, thus simplifying J P

database is a database in which storage devices are not all

the resolution problem. All true deadlocks are detected in i
attached to a commonCPU. It may be stored in

finite time and no false deadlocks are reported. An informal . . .)
multiple computers located in the same physical location, or may

proof of correctness of the algorithm and an example are be dispersed over a network of interconnected computers.

also presented. Collections of data can be distributed across multiple physical

locations. A distributed database can reside on network servers on
the Internet, on corporate intranets or extranets, or on other

company networks.

IJERTV21S111102 www.ijert.org 4124

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

IJERTV21S111102

A distributed database management system (DDBMS') is a
software system that permits the management of a distributed
database and makes the distribution transparent to the
users.DDBMS is software for managing databases stored on
multiple computers in a network.

No transaction knows the global state of the whole system. The
transactions communicate through messages. The communication
is asynchronous and a message may take an arbitrary but finite
time. Several deadlock detection algorithms have been published.
Messages sent from process A to process B are received by
process B in the same order as they were sent. To detect the
presence of deadlock in the proposed algorithm we do not use
probe messages. Instead we use a update message, one of its

function being to check for the occurrence of deadlock.

2. RELATED WORK
deadlock

transactions need access simultaneously to data that has

As mentioned earlier occurs whenever
been by each other and none is able to complete the
transaction. In the literature various techniques have been
discussed both in stand alone systems as well as in
distributed systems. In fact, the distributed Computing
environment provides a tightly coupled facilities which-are
targeted towards a common goal, whereas stands alone
system is more of an end-to-end architecture which also

facilitates enveloping a distributed computing environment.

We shall discuss about techniques which can detect local as
well as global deadlocks. Whenever a cycle is created i.e.
when the message initiated by the initiator again comes
back to the transaction initiating it and thus we conclude

that deadlock has occurred.

Chandy & Mishra [6] has presented an algorithm uses
transaction wait for graphs (TWFG) to represent the status
of transactions at the local sites and uses probes to detect
global deadlocks. The algorithm by which a transaction Ti
determines if it is deadlocked is called a probe computation.

The probes are meant only for deadlock detection and are

distinct from requests and replies. A transaction sends at
most one probe in any probe computation. If the initiator of
the probe computation gets back the probe, then it is

involved in a deadlock

G.S Ho and C. V. Ramamurthy [9] have presented a new
approach in which the transaction table at each site
maintains information regarding resources held and waited
on by local transactions. The resources table at each of the
sites maintains information regarding the transactions
holding and waiting for local resources. Periodically, a site
is chosen as a central controller responsible for performing
deadlock detection. The drawback of this scheme is that it
requires 4n messages, where n is the number of sites in

the system.

Chim-fu young[12] has proposed an algorithm which is an
improvement over Chandy , Mishra and Haas algorithm in
which Deadlock is found by passing special messages
called probe messages along the edges of a wait-for graph
.As compared to chandy’s algorithm :

v' This algorithm is error free

v ltsuffers very little performance degradation

as compared to the original one .
v Even for large values of multiprogramming
Level, the probe based algorithm can
Outperform time —out .
v' The rate of probe initiation is a dominant

Factor in determining system’s performance

In this algorithm we focus on clearing the dependency table
regularly. If the dependency tables are cleared periodically
then the number of probe messages will be great as many
probes needed to be propagated. As the controller initiates
the probes periodically, the number of probe messages
could be used to estimate the total blocking time period of

a process.

www.ijert.org

4125

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

IJERTV21S111102

Brian M. Johnston[13] ,et al. has presented an algorithm

to detect the presence of deadlock in the proposed TRANSACTIONS
algorithm we do not use probe messages. Instead we use a
update message The function of update message is two fold: T id | TS | wait for held by req Q

first to modify the Wait-for variables and second to check
the occurrence of deadlock. As compared to many recent
algorithms in this field, the proposed algorithm can detect
the most frequent deadlocks with minimum message
passing. With message complexity defined as the number of
messages transmitted between initiating a update message
and detecting the cycle. In the worst case, in a system of n
transactions, the overall message complexity of the

proposed algorithm is O (n)

3. THE PROPOSED ALGORITHM

Each site in the network carries a unique site identifier
called site_ID. Within the network a site maintains a certain
portion of the database. Each site owns some data objects
and maintains a few transactions. Each data object is
identified by a unique identifier denoted by Data-obj. Every
data object controlled by a site has a variable called
Locked-by. The variable Locked-by determines the current
state of the data object. If the data object is not locked by
any transaction, Locked-by will store nil, else, it stores the
identification of the locking transaction.

Each transaction has a unique site identifier denoted by T-
ID. Each transaction has a timestamp value (TS) associated
with it, which tells us when the transaction has entered into
the system. A transaction can use data objects within its
own site or make explicit requests for a data object in
another site. As each site has a unique Site_ID, and every
transaction within a site has a unique T_ID, the T-ID can be
considered to be network.

unique throughout

Figure 1: Structure of each transaction

Each transaction Ti at site Si has the following data
structure: a variable called Wait-for (Ti), a variable called
Held-by (Ti),

Request-Q (Ti). If the current transaction is not waiting for

and a queue of requesting transactions

any other transaction then Wait-for(Ti) is set to nil, else, it
denotes which transaction is at the head of the locked data
object. If Held_by (Ti) is set to nil if the current transaction
is executing, else it stores the transaction that is holding the
data object required by the current transaction. Request-Q
(Ti) contains all outstanding requests for data objects which
are-being held by the transaction Ti. Each element in the
Request-Q(Ti) is a tuple (Tj,Di), where Tj is the requesting
transaction and Di is the particular data object held by Ti..
Suppose a transaction Ti makes a lock request for a data
object Dj. If Dj is free then Dj is granted to TI and
Locked_by (Dj) is set to Ti. If Dj is not free then Dj sends a
not granted message to TI along with the transaction
identifier locking Dj (henceforth, called Ti). Ti joins the
Request-Q(Tj) and sets its Wait-for equal to Wait-for(T,).
Now Ti initiates a update message to modify all the Wait-
for variables which are affected by the changes in
Locked by variable of the data objects. Update message is
a recursive function call that will continue updating all
elements of every Request-Q in the chain. When a
transaction Tj receives the update message it checks if its
Wait-for value is the same as the new Wait-for value. If it is
not the same then the value is modified. Now, a check for
deadlock is performed.

If a deadlock is not detected then the update message is
is declared and deadlock

forwarded, else deadlock

resolution is initiated.

www.ijert.org

4126

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

Our algorithm is divided into two phases .The first phase {Transaction Tk receiving a clear(Tj, Tk)
deals with the detection of deadlocks and the second phase message}

deals with its resolution. The first phase is similar to the one begin

presented by B.M Jhonston [13] and is mentioned above purge the tuple having Tj as the requesting
but the technique used for resolution in his algorithm does transaction from Request-Q(TK);

not have any particular criteria for deciding the priority that end:

which transaction needs to be aborted and hence a new

resolution technique using time stamping has been 4. LLUSTRATIVE EXAMPLE
resented here.

P 4.1 EXAMPLE 1

The proposed resolution technique works as follows: The
])] Consider a distributed database with seven transactions as

timestamps of the transaction detecting the deadlock and
] o))] shown in Figure 2. The state of each transaction is also

the transaction which is the result of intersection of wait_for
) . shown in the figure. However, it does not necessarily imply

and request_Q of the detecting transactions are compared.
))) that each transaction resides in the same site. Figure 2

The younger transaction out of the two is aborted. This
)] shows the state of the system when the deadlock has

chosen transaction sends a clear message to the transaction
o . occurred. When Transaction To makes a request to

holding its requested data object. It also allocates every
Transaction T3, a cycle is created. Then as shown in Table

1,-TO joins the Request-Q of T3. TO will update its Wait-

data object it held to the first requester in its Request-Q and

engueue remaining requesters to the new transaction. The
) o . for to reflect the current state and will propagate the update

transaction receiving the clear message purges the tuple in
)])] message to all elements in its own Request-Q. This

its Request-Q having the aborting transaction as an element
continues until T3 discovers that Wait-for (T3) intersected

with Request-Q(T3) is not nil. Now, T3 declares deadlock
DEADLOCK RESOLUTION

{initiate deadlock resolution as follows}

and is chosen as the transaction to be aborted. T3 sends a
clear message to T2 , so that T3 is purged from Request-
Q(T2). T3 also releases the data objects it held, thus

{Compare timestamps of transaction Ti and Tj}
If (TS (Ti) < TS (Tj))

Then abort Tj;

Else abort Ti;

making transactions T4 and T6 to start executing.

[let the aborted transaction be Tx]

{The aborted transaction releases all the data objects it
holds}

Send clear (Tx, Held-by (Tx));

allocate each data object Di held by Tx to

the first requester T k in Request-Q (Tx);

for every transaction Ti in Request-Q (Tx)

requesting data object Di held by Tx
Enqueue (Tr, Request-Q (TK));

end: Figure 2: Single site with a number of transactions

end;

IJERTV21S111102 www.ijert.org a7

We compare the timestamps of transactions TO and T3

Table 1: Transaction structure for Figure 2

TID | TS | Wait_for Held_b | Request Q
y

T0 4 T0 T3 T1

T1 7 T0 TO0 T2

T2 6 T0 Tl T3

T3 1 T0 T2 T4,T6,T0

T4 2 T0 T3 T5

T5 3 T0 T4 NIL

T6 5 T0 T3 NIL

According to this table, the intersection values are. as
follows:

Wait_for(T0) M Request Q (T0) =nil

Wait_for(T1) N Request Q (T1) =nil

Wait_for(T2) M Request Q (T2) =nil

Wait_for(T3) M Request Q (T3) =TO

Wait_for(T4) M Request Q (T4) =nil

Wait_for(T5) M Request_ Q (T5) =nil

Wait_for(T6) M Request Q (T6) =nil

Timestamp of transaction TO [TS (T0) = 4] is greater than
timestamp of transaction T3 [TS (T3) = 1]. This means that
transaction TO is younger as compared to transaction T3.
And hence we will abort transaction TO and it would release

all its resources.

International Journal of Engineering Research & Technology (IJERT)

4.2 Example 2

ISSN: 2278-0181

Vol. 2 Issue 11, November - 2013

Figure 3: A site having a Eight transactions

As per the directed edges shown in figure 3, we will fill up

the corresponding variable values in Table 2.

Table 2: Transaction structure for Figure 3

T ID | TS | Wait_for | Held_by | Request Q
T0 4 NIL NIL T1
T1 8 T0,T4 T0,T4 T2
T2 1 T0,T4 T1 T3
T3 3 T0,T4 T2 T4,T5,T6
T4 2 T0,T4 T3 NIL

IJERTV21S111102 www.ijert.org

4128

T5 5 T0,T4 T3 NIL
T6 7 T0,T4 T3 T7
T7 6 T0,T4 T6 NIL

According to the above table, the intersection values are as

follows:
Wait_for(T0) M

Wait_for(T1) N

Request_Q (T0) =nil
Request_ Q (T1) =nil

Wait_for(T2) M Request_Q (T2) =nil

Wait_for(T3) I
Wait_for(T4) M
Wait_for(T5) I
Wait_for(T6) M

Wait_for(T7) N

From the above values of intersection we can see that the
intersection values of T3 is not nil rather it is T4 .And
hence we say that deadlock has been detected . Now we will

compare the timestamps of transactions T3 and T4 .. TS

Request Q (T3) =T4
Request_Q (T4) =nil
Request_Q (T5) =nil
Request_Q (T6) =nil
Request_ Q (T7) =nil

(T3)=3and TS (T4) =4

International Journal of Engineering Research & Technology (IJERT)

00 €

ISSN: 2278-0181
Vol. 2 Issue 11, November - 2013

Figure 4 : Deadlock free TWFG of figure 3

43 EXAMPLE 3

Site 1

T1 T2

&y G

Since TS (T3) < TS (T4) ,s0 we can say that transaction T4

is younger transaction . And hence we will abort T4 . So

that it releases all the resources held by it..

Figure 4 shows a deadlock free TWFG of figure 3

IJERTV21S111102

Cj;,P% ™)

T7 T&

Figure 5 : A distributed environment having 2 sites

Table 3: Transaction structure for site 1 in figure 5

www.ijert.org

4129

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

TID | TS Wait_for | Held Requst_Q Wait_for(T5) N Request Q (T5) = nil
o > Wait_for(T6) M Request_Q (T6) = nil
2 T2 T2,T3 | NIL Wait_for(T7) M Request_Q (T7) = nil
Wait_for(T8) M Request Q (T8 =T6
T2 1 T2 T3 T4 Since intersection values for transaction T8 is not nil. We
will compare timestamps of both T8 and T6 and we find
S Mt me e that the TS (T6) < TS (T8). So we will abort T8 as it is the
T4 4 T2 T2 NIL younger transaction.

Wait_fo Table 5: Transaction structure for site 1 and 2 in figure 5

r(T0) M Request_Q (TO) =nil
TID TS Wait_for Held_by Request_Q

Wait_for(T1) M Request Q (T1) =nil

Wait_for(T2) N Request Q (T2) = nil T 7 T2 12,73 NIL
Wait_for(T3) M Request_Q (T3) =nil ™ 1 T T3 1. T4
Since all the intersection values are nil So we conclude that T3 5 T2 T5 T1, T2
there exists no deadlock.

T4 2 T2 T2 T6
Table 4 : Transaction structure for site 2 in figure 5

TS5 6 T6 T6 T7

T6 3 T6 T8 T5
T_ID TS Wait_for Held_by Request_Q

T7 8 T6 T5 T8 NIL
T5 3 T6 T6 T7

T8 4 T6 T7 T6
T6 1 T6 T8 T5
T7 2 T6 T5 T8

Wait_for(T0) M Request_Q (TO) =nil
T8 4 T6 T8 T6

Wait_for(T1) M Request Q (T1) =nil
Wait_for(T2) M Request_Q (T2) =NIL
Wait_for(T3) M Request Q (T3) =T2
Wait_for(T5) M Request_Q (T5) =nil
Wait_for(T6) M Request Q (T6) =nil
Wait_for(T7) M Request_ Q (T7) =nil

Now we will compare timestamps of transactions T2 and
T3. TS(T2) < TS(T3) So we will abort transaction T3.

IJERTV2IS111102 www.ijertorg 4130

IJERTV21S111102

After aborting transaction T3, we will get a deadlock free
TWEFG in figure 6.

SITE 2

T1 T2
T4
'y

SITE 2

C)—C
)

Figure 6: Deadlock free TWFG for figure 5

CONCLUSION

A simple algorithm for deadlock detection in distributed
systems is presented. In the above proposed algorithm, we
do not use probe messages to detect deadlock. However, we
use the update message whose function is two fold: first to
modify the Wait-for variables and second to check the
occurrence of deadlock. Along with this update message we
make use of time stamping technique which is a better way
of deciding the priority of the transactions . And hence to

decide that which transaction needs to be aborted.

5. REFERENCES

[1] P. A. Bernstein and N. Goodman,
Control in Distributed Database Systems," ACM, vol.
13:2, pp. 186-221, 1981.

"Concurrency

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

[2] H. T. Kung and J. T. Robinson, "Optimistic Methods
for Concurrency Control,” ACM Transaction on
Database Systems, vol. 6, pp. 213-226, 1981.

[3] R. Obermarck,
Algorithm," ACM Transaction on Database Systems,
vol. 7:2, pp. 187-208, 1982.

[4] J. N. Gray, "A discussion on distributed systems,” IBM

"Distributed Deadlock Detection

Research Division, 1979.

[5] K. M. Chandy, J. Misra, and L. M. Hass, "Distributed
Deadlock Detection,” ACM Transaction on Computer
Systems, vol. 1:2, pp. 144-56, 1983

[6] X. M. Chandy and J. Misra, "A Distributed Algorithm
for Detecting Resource Deadlocks in Distributed
Systems " in First proceedings of ACM ,pp-157-164,
1982.

[71 D. A. Menasce and R. R. Muntz, "Locking and
Deadlock Detection in Distributed Data Bases" IEEE
Transaction on Software Engineering, vol. 5:3, pp.
195-202, 1979.

[8] M. K. Sinha and N. Natarjan, "A Priority Based
Distributed Deadlock Detection Algorithm” IEEE
Transaction on Software Engineering, vol. 11:1, pp.
67-80, 1985.

[9] G. S. Ho and C. V. Ramamurthy, “Protocols for
Deadlock Detection in Distributed Database Systems"
IEEE Transaction on Software Engineering, vol. 8:6,
pp. 554-557, 1982.

[10]S. Kawazu, S. Minami, K. Itoh, and K. Teranaka,
"Two-Phase Deadlock Detection Algorithm in
Distributed Databases " in 5th IEEE conference, 1979.

[11]H. Wu, W.-N. Chin, and J. Jaffar, "An Efficient
Distributed Deadlock Avoidance Algorithm for the
AND Model,"
Engineering, vol. 28:1, pp-18-29, 2002.

[12] Chim_fu Yeung, "A new distributed deadlock detection

IEEE Transactions on Software

algorithm for distributed databases systems", Department of
Computer science, pp-506 -510, 1983.

www.ijert.org

4131

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

[13] Brian M. Johnston, Ramesh Dutt Javagal: Ajoy Kumar Datta, Deadlock Detection”, Department of Computer Science ,
Sukumar ghosh, "A Distributed Algorithm for Resource IEEE Transactions,vol 11, pp-252 -256 ,1991

IJERTV2IS111102 www.ijert.org 4132

