
A Distributed Algorithm for Resource Deadlock Detection Using

Time Stamping

Himanshi Grover

Faculty of Engineering and technology

Manav Rachna International University

Faridabad, India

ABSTRACT

Deadlock is one of the most serious problems in

multitasking concurrent programming systems. The

deadlock problem becomes further complicated when the

underlying system is Distributed. Deadlock detection and

optimization is very difficult in distributed systems. The

deadlock problem is intrinsic to a distributed database

systems which employs locking at its concurrency control

algorithm. Till now various techniques have been

introduced to detect and prevent deadlocks

This paper presents a simple algorithm to detect resource

deadlocks in distributed databases. The proposed algorithm

is an improvement over the algorithm by B.M Jhonston. In

the original algorithm there were no priority criteria to

decide that which transaction needs to be aborted. But the

proposed algorithm makes this decision by using the

timestamps of transactions. Accordingly the youngest

transaction is aborted. The algorithm ensures that only one

process in the deadlock cycle will detect it, thus simplifying

the resolution problem. All true deadlocks are detected in

finite time and no false deadlocks are reported. An informal

proof of correctness of the algorithm and an example are

also presented.

Keywords

Deadlocks, Distributed database systems, Distributed

database management systems

1. INTRODUCTION

A deadlock occurs if each of two transactions (for example, A and

B) needs exclusive use of some resource (for example, a particular

record in a data set) that the other already holds. Thus a

Transaction A waits for the resource to become available to it

which is being withheld by B. However, if transaction B is not in

a position to release it because it, in turn, is waiting on some

resource held by A, both are therefore deadlocked and the only

way of breaking the deadlock is to cancel one of the transactions,

thus releasing its resources.

The deadlocks occur when several queries/transactions are being

attempted by same or different users by accessing the same data.

These have to be sequenced to prevent or resolve the deadlocks.

A distributed system can be visualized as a set of sites, each site

consisting of a number of independent transactions. A distributed

database is a database in which storage devices are not all

attached to a common CPU. It may be stored in

multiple computers located in the same physical location, or may

be dispersed over a network of interconnected computers.

Collections of data can be distributed across multiple physical

locations. A distributed database can reside on network servers on

the Internet, on corporate intranets or extranets, or on other

company networks.

4124

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

A distributed database management system ('DDBMS') is a

software system that permits the management of a distributed

database and makes the distribution transparent to the

users.DDBMS is software for managing databases stored on

multiple computers in a network.

No transaction knows the global state of the whole system. The

transactions communicate through messages. The communication

is asynchronous and a message may take an arbitrary but finite

time. Several deadlock detection algorithms have been published.

Messages sent from process A to process B are received by

process B in the same order as they were sent. To detect the

presence of deadlock in the proposed algorithm we do not use

probe messages. Instead we use a update message, one of its

function being to check for the occurrence of deadlock.

2. RELATED WORK

As mentioned earlier deadlock occurs whenever

transactions need access simultaneously to data that has

been by each other and none is able to complete the

transaction. In the literature various techniques have been

discussed both in stand alone systems as well as in

distributed systems. In fact, the distributed Computing

environment provides a tightly coupled facilities which are

targeted towards a common goal, whereas stands alone

system is more of an end-to-end architecture which also

facilitates enveloping a distributed computing environment.

We shall discuss about techniques which can detect local as

well as global deadlocks. Whenever a cycle is created i.e.

when the message initiated by the initiator again comes

back to the transaction initiating it and thus we conclude

that deadlock has occurred.

Chandy & Mishra [6] has presented an algorithm uses

transaction wait for graphs (TWFG) to represent the status

of transactions at the local sites and uses probes to detect

global deadlocks. The algorithm by which a transaction Ti

determines if it is deadlocked is called a probe computation.

The probes are meant only for deadlock detection and are

distinct from requests and replies. A transaction sends at

most one probe in any probe computation. If the initiator of

the probe computation gets back the probe, then it is

involved in a deadlock

G.S Ho and C. V. Ramamurthy [9] have presented a new

approach in which the transaction table at each site

maintains information regarding resources held and waited

on by local transactions. The resources table at each of the

sites maintains information regarding the transactions

holding and waiting for local resources. Periodically, a site

is chosen as a central controller responsible for performing

deadlock detection. The drawback of this scheme is that it

requires 4n messages, where n is the number of sites in

the system.

Chim-fu young[12] has proposed an algorithm which is an

improvement over Chandy , Mishra and Haas algorithm in

which Deadlock is found by passing special messages

called probe messages along the edges of a wait-for graph

.As compared to chandy’s algorithm :

 This algorithm is error free

 It suffers very little performance degradation

 as compared to the original one .

 Even for large values of multiprogramming

 Level, the probe based algorithm can

 Outperform time –out .

 The rate of probe initiation is a dominant

 Factor in determining system’s performance

In this algorithm we focus on clearing the dependency table

regularly. If the dependency tables are cleared periodically

then the number of probe messages will be great as many

probes needed to be propagated. As the controller initiates

the probes periodically, the number of probe messages

could be used to estimate the total blocking time period of

a process.

4125

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

Brian M. Johnston[13] ,et al. has presented an algorithm

to detect the presence of deadlock in the proposed

algorithm we do not use probe messages. Instead we use a

update message The function of update message is two fold:

first to modify the Wait-for variables and second to check

the occurrence of deadlock. As compared to many recent

algorithms in this field, the proposed algorithm can detect

the most frequent deadlocks with minimum message

passing. With message complexity defined as the number of

messages transmitted between initiating a update message

and detecting the cycle. In the worst case, in a system of n

transactions, the overall message complexity of the

proposed algorithm is O (n)

3. THE PROPOSED ALGORITHM

Each site in the network carries a unique site identifier

called site_ID. Within the network a site maintains a certain

portion of the database. Each site owns some data objects

and maintains a few transactions. Each data object is

identified by a unique identifier denoted by Data-obj. Every

data object controlled by a site has a variable called

Locked-by. The variable Locked-by determines the current

state of the data object. If the data object is not locked by

any transaction, Locked-by will store nil, else, it stores the

identification of the locking transaction.

Each transaction has a unique site identifier denoted by T-

ID. Each transaction has a timestamp value (TS) associated

with it, which tells us when the transaction has entered into

the system. A transaction can use data objects within its

own site or make explicit requests for a data object in

another site. As each site has a unique Site_ID, and every

transaction within a site has a unique T_ID, the T-ID can be

considered to be unique throughout network.

Figure 1: Structure of each transaction

Each transaction Ti at site Si has the following data

structure: a variable called Wait-for (Ti), a variable called

Held-by (Ti), and a queue of requesting transactions

Request-Q (Ti). If the current transaction is not waiting for

any other transaction then Wait-for(Ti) is set to nil, else, it

denotes which transaction is at the head of the locked data

object. If Held_by (Ti) is set to nil if the current transaction

is executing, else it stores the transaction that is holding the

data object required by the current transaction. Request-Q

(Ti) contains all outstanding requests for data objects which

are being held by the transaction Ti. Each element in the

Request-Q(Ti) is a tuple (Tj,Di), where Tj is the requesting

transaction and Di is the particular data object held by Ti..

Suppose a transaction Ti makes a lock request for a data

object Dj. If Dj is free then Dj is granted to TI and

Locked_by (Dj) is set to Ti. If Dj is not free then Dj sends a

not granted message to TI along with the transaction

identifier locking Dj (henceforth, called Ti). Ti joins the

Request-Q(Tj) and sets its Wait-for equal to Wait-for(T,).

Now Ti initiates a update message to modify all the Wait-

for variables which are affected by the changes in

Locked_by variable of the data objects. Update message is

a recursive function call that will continue updating all

elements of every Request-Q in the chain. When a

transaction Tj receives the update message it checks if its

Wait-for value is the same as the new Wait-for value. If it is

not the same then the value is modified. Now, a check for

deadlock is performed.

If a deadlock is not detected then the update message is

forwarded, else deadlock is declared and deadlock

resolution is initiated.

4126

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

Our algorithm is divided into two phases .The first phase

deals with the detection of deadlocks and the second phase

deals with its resolution. The first phase is similar to the one

presented by B.M Jhonston [13] and is mentioned above

but the technique used for resolution in his algorithm does

not have any particular criteria for deciding the priority that

which transaction needs to be aborted and hence a new

resolution technique using time stamping has been

presented here.

The proposed resolution technique works as follows: The

timestamps of the transaction detecting the deadlock and

the transaction which is the result of intersection of wait_for

and request_Q of the detecting transactions are compared.

The younger transaction out of the two is aborted. This

chosen transaction sends a clear message to the transaction

holding its requested data object. It also allocates every

data object it held to the first requester in its Request-Q and

enqueue remaining requesters to the new transaction. The

transaction receiving the clear message purges the tuple in

its Request-Q having the aborting transaction as an element

DEADLOCK RESOLUTION

{initiate deadlock resolution as follows}

{Compare timestamps of transaction Ti and Tj}

If (TS (Ti) < TS (Tj))

Then abort Tj;

Else abort Ti;

[let the aborted transaction be Tx]

{The aborted transaction releases all the data objects it

holds}

Send clear (Tx, Held-by (Tx));

allocate each data object Di held by Tx to

the first requester T k in Request-Q (Tx);

for every transaction Ti in Request-Q (Tx)

requesting data object Di held by Tx

Enqueue (Tr, Request-Q (Tk));

end;

end;

{Transaction Tk receiving a clear(Tj, Tk)

message}

begin

purge the tuple having Tj as the requesting

transaction from Request-Q(Tk);

end:

4. LLUSTRATIVE EXAMPLE

4.1 EXAMPLE 1

Consider a distributed database with seven transactions as

shown in Figure 2. The state of each transaction is also

shown in the figure. However, it does not necessarily imply

that each transaction resides in the same site. Figure 2

shows the state of the system when the deadlock has

occurred. When Transaction To makes a request to

Transaction T3, a cycle is created. Then as shown in Table

1, T0 joins the Request-Q of T3. TO will update its Wait-

for to reflect the current state and will propagate the update

message to all elements in its own Request-Q. This

continues until T3 discovers that Wait-for (T3) intersected

with Request-Q(T3) is not nil. Now, T3 declares deadlock

and is chosen as the transaction to be aborted. T3 sends a

clear message to T2 , so that T3 is purged from Request-

Q(T2). T3 also releases the data objects it held, thus

making transactions T4 and T6 to start executing.

Figure 2: Single site with a number of transactions

4127

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

We compare the timestamps of transactions T0 and T3

 Table 1: Transaction structure for Figure 2

T_ID TS Wait_for Held_b

y

Request_Q

T0 4 T0 T3 T1

T1 7 T0 T0 T2

T2 6 T0 T1 T3

T3 1 T0 T2 T4,T6,T0

T4 2 T0 T3 T5

T5 3 T0 T4 NIL

T6 5 T0 T3 NIL

According to this table, the intersection values are as

follows:

Wait_for(T0) Request_Q (T0) = nil

Wait_for(T1) Request_Q (T1) = nil

Wait_for(T2) Request_Q (T2) = nil

Wait_for(T3) Request_Q (T3) = T0

Wait_for(T4) Request_Q (T4) = nil

Wait_for(T5) Request_Q (T5) = nil

Wait_for(T6) Request_Q (T6) = nil

Timestamp of transaction T0 [TS (T0) = 4] is greater than

timestamp of transaction T3 [TS (T3) = 1]. This means that

transaction T0 is younger as compared to transaction T3.

And hence we will abort transaction T0 and it would release

all its resources.

4.2 Example 2

Figure 3: A site having a Eight transactions

As per the directed edges shown in figure 3, we will fill up

the corresponding variable values in Table 2.

Table 2: Transaction structure for Figure 3

 T_ID TS Wait_for Held_by Request_Q

T0 4 NIL NIL T1

T1 8 T0,T4 T0,T4 T2

T2 1 T0,T4 T1 T3

T3 3 T0,T4 T2 T4 , T5, T6

T4 2 T0,T4 T3 NIL

T0

T2

T4

 T1

T0

T1

T4

T0

T1

T4

T0

T1

T7

T3

T6

T5

T2

T4

T0

T1

4128

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

T5 5 T0,T4 T3 NIL

T6 7 T0,T4 T3 T7

T7 6 T0,T4 T6 NIL

According to the above table, the intersection values are as

follows:

Wait_for(T0) Request_Q (T0) = nil

Wait_for(T1) Request_Q (T1) = nil

Wait_for(T2) Request_Q (T2) = nil

Wait_for(T3) Request_Q (T3) = T4

Wait_for(T4) Request_Q (T4) = nil

Wait_for(T5) Request_Q (T5) = nil

Wait_for(T6) Request_Q (T6) = nil

Wait_for(T7) Request_Q (T7) = nil

From the above values of intersection we can see that the

intersection values of T3 is not nil rather it is T4 .And

hence we say that deadlock has been detected . Now we will

compare the timestamps of transactions T3 and T4 . TS

(T3) = 3 and TS (T4) =4

Since TS (T3) < TS (T4) ,so we can say that transaction T4

is younger transaction . And hence we will abort T4 . So

that it releases all the resources held by it..

Figure 4 shows a deadlock free TWFG of figure 3

Figure 4 : Deadlock free TWFG of figure 3

4.3 EXAMPLE 3

Figure 5 : A distributed environment having 2 sites

Table 3 : Transaction structure for site 1 in figure 5

4129

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

Wait_fo

r(T0) Request_Q (T0) = nil

Wait_for(T1) Request_Q (T1) = nil

Wait_for(T2) Request_Q (T2) = nil

Wait_for(T3) Request_Q (T3) = nil

Since all the intersection values are nil So we conclude that

there exists no deadlock.

Table 4 : Transaction structure for site 2 in figure 5

Wait_for(T5) Request_Q (T5) = nil

Wait_for(T6) Request_Q (T6) = nil

Wait_for(T7) Request_Q (T7) = nil

Wait_for(T8) Request_Q (T8 = T6

Since intersection values for transaction T8 is not nil. We

will compare timestamps of both T8 and T6 and we find

that the TS (T6) < TS (T8). So we will abort T8 as it is the

younger transaction.

Table 5 : Transaction structure for site 1 and 2 in figure 5

T_ID TS Wait_for Held_by Request_Q

T1 7 T2 T2, T3 NIL

T2 1 T2 T3 T1 , T4

T3 5 T2 T5 T1 , T2

T4 2 T2 T2 T6

T5 6 T6 T6 T7

T6 3 T6 T8 T5

T7 8 T6 T5 T8 NIL

T8 4 T6 T7 T6

Wait_for(T0) Request_Q (T0) = nil

Wait_for(T1) Request_Q (T1) = nil

Wait_for(T2) Request_Q (T2) = NIL

Wait_for(T3) Request_Q (T3) = T2

Wait_for(T5) Request_Q (T5) = nil

Wait_for(T6) Request_Q (T6) = nil

Wait_for(T7) Request_Q (T7) = nil

Now we will compare timestamps of transactions T2 and

T3. TS(T2) < TS(T3) So we will abort transaction T3.

T_ID TS Wait_for Held

_by

Requst_Q

T1

2 T2 T2 ,T3 NIL

T2 1 T2 T3 T4

T3 3 NIL NIL T1 , T2

T4 4 T2 T2 NIL

T_ID TS Wait_for Held_by Request_Q

T5 3 T6 T6 T7

T6 1 T6 T8 T5

T7 2 T6 T5 T8

T8 4 T6 T8 T6

4130

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

 After aborting transaction T3, we will get a deadlock free

TWFG in figure 6.

Figure 6: Deadlock free TWFG for figure 5

CONCLUSION

A simple algorithm for deadlock detection in distributed

systems is presented. In the above proposed algorithm, we

do not use probe messages to detect deadlock. However, we

use the update message whose function is two fold: first to

modify the Wait-for variables and second to check the

occurrence of deadlock. Along with this update message we

make use of time stamping technique which is a better way

of deciding the priority of the transactions . And hence to

decide that which transaction needs to be aborted.

5. REFERENCES

[1] P. A. Bernstein and N. Goodman, "Concurrency

Control in Distributed Database Systems," ACM, vol.

13:2, pp. 186-221, 1981.

[2] H. T. Kung and J. T. Robinson, "Optimistic Methods

for Concurrency Control," ACM Transaction on

Database Systems, vol. 6, pp. 213-226, 1981.

[3] R. Obermarck, "Distributed Deadlock Detection

Algorithm," ACM Transaction on Database Systems,

vol. 7:2, pp. 187-208, 1982.

[4] J. N. Gray, "A discussion on distributed systems," IBM

Research Division, 1979.

[5] K. M. Chandy, J. Misra, and L. M. Hass, "Distributed

Deadlock Detection," ACM Transaction on Computer

Systems, vol. 1:2, pp. 144-56, 1983

[6] X. M. Chandy and J. Misra, "A Distributed Algorithm

for Detecting Resource Deadlocks in Distributed

Systems " in First proceedings of ACM ,pp-157-164,

1982.

[7] D. A. Menasce and R. R. Muntz, "Locking and

Deadlock Detection in Distributed Data Bases" IEEE

Transaction on Software Engineering, vol. 5:3, pp.

195-202, 1979.

[8] M. K. Sinha and N. Natarjan, "A Priority Based

Distributed Deadlock Detection Algorithm" IEEE

Transaction on Software Engineering, vol. 11:1, pp.

67-80, 1985.

[9] G. S. Ho and C. V. Ramamurthy, "Protocols for

Deadlock Detection in Distributed Database Systems"

IEEE Transaction on Software Engineering, vol. 8:6,

pp. 554-557, 1982.

[10] S. Kawazu, S. Minami, K. Itoh, and K. Teranaka,

"Two-Phase Deadlock Detection Algorithm in

Distributed Databases " in 5th IEEE conference, 1979.

[11] H. Wu, W.-N. Chin, and J. Jaffar, "An Efficient

Distributed Deadlock Avoidance Algorithm for the

AND Model," IEEE Transactions on Software

Engineering, vol. 28:1, pp-18-29, 2002.

[12] Chim_fu Yeung, "A new distributed deadlock detection

algorithm for distributed databases systems", Department of

Computer science, pp-506 -510, 1983.

4131

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

[13] Brian M. Johnston, Ramesh Dutt Javagal: Ajoy Kumar Datta,

Sukumar ghosh, "A Distributed Algorithm for Resource

Deadlock Detection”, Department of Computer Science ,

IEEE Transactions,vol 11, pp-252 -256 ,1991

4132

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111102

