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ABSTRACT 

Deadlock is one of the most serious problems in 

multitasking concurrent programming systems. The 

deadlock problem becomes further complicated when the 

underlying system is Distributed. Deadlock detection and 

optimization is very difficult in distributed systems. The 

deadlock problem is intrinsic to a distributed database 

systems which employs locking at its concurrency control 

algorithm. Till now various techniques have been 

introduced to detect and prevent deadlocks 

This paper presents a simple algorithm to detect resource 

deadlocks in distributed databases. The proposed algorithm 

is an improvement over the algorithm by B.M Jhonston. In 

the original algorithm there were no priority criteria to 

decide that which transaction needs to be aborted. But the 

proposed algorithm makes this decision by using the 

timestamps of transactions. Accordingly the youngest 

transaction is aborted. The algorithm ensures that only one 

process in the deadlock cycle will detect it, thus simplifying 

the resolution problem. All true deadlocks are detected in 

finite time and no false deadlocks are reported. An informal 

proof of correctness of the algorithm and an example are 

also presented. 
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1. INTRODUCTION 

A deadlock occurs if each of two transactions (for example, A and 

B) needs exclusive use of some resource (for example, a particular 

record in a data set) that the other already holds. Thus a 

Transaction A waits for the resource to become available to it 

which is being withheld by B. However, if transaction B is not in 

a position to release it because it, in turn, is waiting on some 

resource held by A, both are therefore deadlocked and the only 

way of breaking the deadlock is to cancel one of the transactions, 

thus releasing its resources. 

The deadlocks occur when several queries/transactions are being 

attempted by same or different users by accessing the same data. 

These have to be sequenced to prevent or resolve the deadlocks. 

A distributed system can be visualized as a set of sites, each site 

consisting of a number of independent transactions. A distributed 

database is a database in which storage devices are not all 

attached to a common CPU. It may be stored in 

multiple computers located in the same physical location, or may 

be dispersed over a network of interconnected computers. 

Collections of data can be distributed across multiple physical 

locations. A distributed database can reside on network servers on 

the Internet, on corporate intranets or extranets, or on other 

company networks. 
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A distributed database management system ('DDBMS') is a 

software system that permits the management of a distributed 

database and makes the distribution transparent to the 

users.DDBMS is software for managing databases stored on 

multiple computers in a network. 

No transaction knows the global state of the whole system. The 

transactions communicate through messages. The communication 

is asynchronous and a message may take an arbitrary but finite 

time. Several deadlock detection algorithms have been published. 

Messages sent from process A to process B are received by 

process B in the same order as they were sent. To detect the 

presence of deadlock in the proposed algorithm we do not use 

probe messages. Instead we use a update message, one of its 

function being to check for the occurrence of deadlock. 

 

2. RELATED WORK 

As mentioned earlier deadlock occurs whenever 

transactions need access simultaneously to data that has 

been by each other and none is able to complete the 

transaction. In the literature various techniques have been 

discussed both in stand alone systems as well as in 

distributed systems. In fact, the distributed Computing 

environment provides a tightly coupled facilities which are 

targeted towards a common goal, whereas stands alone 

system is more of an end-to-end architecture which also 

facilitates enveloping a distributed computing environment.   

We shall discuss about techniques which can detect local as 

well as global deadlocks. Whenever a cycle is created i.e. 

when the message initiated by the initiator again comes 

back to the transaction initiating it and thus we conclude 

that deadlock has occurred. 

Chandy & Mishra [6] has presented an algorithm uses 

transaction wait for graphs (TWFG) to represent the status 

of transactions at the local sites and uses probes to detect 

global deadlocks. The algorithm by which a transaction Ti 

determines if it is deadlocked is called a probe computation. 

The probes are meant only for deadlock detection and are 

distinct from requests and replies. A transaction sends at 

most one probe in any probe computation. If the initiator of 

the probe computation gets back the probe, then it is 

involved in a deadlock 

 

G.S Ho and C. V. Ramamurthy [9] have presented a new 

approach in which the transaction table at each site 

maintains information regarding resources held and waited 

on by local transactions. The resources table at each of the 

sites maintains information regarding the transactions 

holding and waiting for local resources. Periodically, a site 

is chosen as a central controller responsible for performing 

deadlock detection. The drawback of this scheme is that it 

requires    4n messages, where n is the number of sites in 

the system. 

 

Chim-fu young[12] has proposed an algorithm which is  an 

improvement over Chandy , Mishra and Haas algorithm in 

which  Deadlock is found by passing special messages 

called probe messages along the edges of a wait-for graph 

.As compared to chandy’s algorithm : 

 This algorithm is error free 

 It suffers very little performance degradation    

          as compared to the original one . 

 Even for large values of multiprogramming  

           Level, the probe based algorithm can        

                 Outperform time –out . 

 The rate of probe initiation is a dominant  

          Factor in determining system’s performance 

In this algorithm we focus on clearing the dependency table 

regularly. If the dependency tables are cleared periodically 

then the number of probe messages will be great as many 

probes needed to be propagated. As the controller initiates 

the probes periodically, the number of probe messages 

could be used to estimate the total  blocking time  period of 

a process. 
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Brian M. Johnston[13] ,et al. has presented an algorithm 

to detect the presence of deadlock in the proposed 

algorithm we do not use probe messages. Instead we use a 

update message The function of update message is two fold: 

first to modify the Wait-for variables and second to check 

the occurrence of deadlock. As compared to many recent 

algorithms in this field, the proposed algorithm can detect 

the most frequent deadlocks with minimum message 

passing. With message complexity defined as the number of 

messages transmitted between initiating a update message 

and detecting the cycle. In the worst case, in a system of    n 

transactions, the overall message complexity of the 

proposed algorithm is O (n) 

 

 

3. THE PROPOSED ALGORITHM 

Each site in the network carries a unique site identifier 

called site_ID. Within the network a site maintains a certain 

portion of the database. Each site owns some data objects 

and maintains a few transactions. Each data object is 

identified by a unique identifier denoted by Data-obj. Every 

data object controlled by a site has a variable called 

Locked-by. The variable Locked-by determines the current 

state of the data object. If the data object is not locked by 

any transaction, Locked-by will store nil, else, it stores the 

identification of the locking transaction. 

Each transaction has a unique site identifier denoted by T-

ID. Each transaction has a timestamp value (TS) associated 

with it, which tells us when the transaction has entered into 

the system. A transaction can use data objects within its 

own site or make explicit requests for a data object in 

another site. As each site has a unique Site_ID, and every 

transaction within a site has a unique T_ID, the T-ID can be 

considered to be unique throughout network. 

  

Figure 1: Structure of each transaction 

Each transaction Ti at site Si has the following data 

structure: a variable called Wait-for (Ti), a variable called 

Held-by (Ti), and a queue of requesting transactions 

Request-Q (Ti). If the current transaction is not waiting for 

any other transaction then Wait-for(Ti) is set to nil, else, it 

denotes which transaction is at the head of the locked data 

object.  If Held_by (Ti) is set to nil if the current transaction 

is executing, else it stores the transaction that is holding the 

data object required by the current transaction. Request-Q 

(Ti) contains all outstanding requests for data objects which 

are being held by the transaction Ti. Each element in the 

Request-Q(Ti) is a tuple (Tj,Di), where Tj is the requesting 

transaction and Di is the particular data object held by Ti.. 

Suppose a transaction Ti makes a lock request for a data 

object Dj. If Dj is free then Dj is granted to TI and 

Locked_by (Dj) is set to Ti. If Dj is not free then Dj sends a 

not granted message to TI along with the transaction 

identifier locking Dj (henceforth, called Ti). Ti joins the 

Request-Q(Tj) and sets its Wait-for equal to Wait-for(T,). 

Now Ti initiates a update message to modify all the Wait-

for variables which are affected by the changes in 

Locked_by variable of the data objects. Update message is 

a recursive function call that will continue updating all 

elements of every Request-Q in the chain. When a 

transaction Tj receives the update message it checks if its 

Wait-for value is the same as the new Wait-for value. If it is 

not the same then the value is modified. Now, a check for 

deadlock is performed. 

If a deadlock is not detected then the update message is 

forwarded, else deadlock is declared and deadlock 

resolution is initiated. 
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Our algorithm is divided into two phases .The first phase 

deals with the detection of deadlocks and the second phase 

deals with its resolution. The first phase is similar to the one 

presented by B.M Jhonston [13] and is mentioned above 

but the technique used for resolution in his algorithm does 

not have any particular criteria for deciding the priority that 

which transaction needs to be aborted and hence a new 

resolution technique using time stamping has been 

presented here. 

The proposed resolution technique works as follows: The 

timestamps of the transaction detecting the deadlock and 

the transaction which is the result of intersection of wait_for 

and request_Q of the detecting transactions are compared. 

The younger transaction out of the two is aborted. This 

chosen transaction sends a clear message to the transaction 

holding its requested data object. It also allocates every 

data object it held to the first requester in its Request-Q and 

enqueue remaining requesters to the new transaction. The 

transaction receiving the clear message purges the tuple in 

its Request-Q having the aborting transaction as an element  

 

DEADLOCK RESOLUTION 

{initiate deadlock resolution as follows} 

{Compare timestamps of transaction Ti and Tj} 

If (TS (Ti) < TS (Tj)) 

Then abort Tj; 

Else abort Ti; 

[let the aborted transaction be Tx] 

{The aborted transaction releases all the data objects it 

holds} 

Send clear (Tx, Held-by (Tx)); 

allocate each data object Di held by Tx to 

the first requester T k in Request-Q (Tx); 

for every transaction Ti in Request-Q (Tx) 

requesting data object Di held by Tx 

Enqueue (Tr, Request-Q (Tk)); 

end; 

end; 

{Transaction Tk receiving a clear(Tj, Tk) 

message} 

begin 

purge the tuple having Tj as the requesting 

transaction from Request-Q(Tk); 

end: 

 

4. LLUSTRATIVE EXAMPLE 

4.1 EXAMPLE 1 

Consider a distributed database with seven transactions as 

shown in Figure 2. The state of each transaction is also 

shown in the figure. However, it does not necessarily imply 

that each transaction resides in the same site. Figure 2 

shows the state of the system when the deadlock has 

occurred.  When Transaction To makes a request to 

Transaction T3, a cycle is created. Then as shown in Table 

1, T0 joins the Request-Q of T3. TO will update its Wait-

for to reflect the current state and will propagate the update 

message to all elements in its own Request-Q. This 

continues until T3 discovers that Wait-for (T3) intersected 

with Request-Q(T3) is not nil. Now, T3 declares deadlock 

and is chosen as the transaction to be aborted. T3 sends a 

clear message to T2 , so that T3 is purged from Request-

Q(T2). T3 also releases the data objects it held, thus 

making transactions T4  and T6 to start executing. 

 

Figure 2:  Single site with a number of transactions 
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We compare the timestamps of transactions T0 and T3 

 Table 1: Transaction structure for Figure 2 

T_ID TS Wait_for Held_b

y 

Request_Q 

T0 4 T0 T3 T1 

T1 7 T0 T0 T2 

T2 6 T0 T1 T3 

T3 1 T0 T2 T4,T6,T0 

T4 2 T0 T3 T5 

T5 3 T0 T4 NIL 

T6 5 T0 T3 NIL 

 

According to this table, the intersection values are as 

follows: 

Wait_for(T0)   Request_Q (T0)   = nil 

Wait_for(T1)   Request_Q (T1)   = nil 

Wait_for(T2)  Request_Q (T2)   = nil 

Wait_for(T3)   Request_Q (T3)   = T0 

Wait_for(T4)   Request_Q (T4)   = nil 

Wait_for(T5)   Request_Q (T5)   = nil 

Wait_for(T6)   Request_Q (T6)   = nil 

Timestamp of transaction T0 [TS (T0) = 4] is greater than 

timestamp of transaction T3 [TS (T3) = 1]. This means that 

transaction T0 is younger as compared to transaction T3. 

And hence we will abort transaction T0 and it would release 

all its resources. 

4.2 Example 2 

 

 

 

 

 

 

 

 

 

Figure 3: A site having a Eight transactions 

As per the directed edges shown in figure 3, we will fill up 

the corresponding variable values in Table 2. 

 

 

 

Table 2: Transaction structure for Figure 3 

  T_ID TS Wait_for Held_by Request_Q 

T0 4 NIL NIL T1 

T1 8 T0,T4 T0,T4 T2 

T2 1 T0,T4 T1 T3 

T3 3 T0,T4 T2 T4 , T5, T6 

T4 2 T0,T4 T3 NIL 

T0 
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T4 
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T5 5 T0,T4 T3 NIL 

T6 7 T0,T4 T3 T7 

T7 6 T0,T4 T6 NIL 

According to the above table, the intersection values are as 

follows: 

Wait_for(T0)   Request_Q (T0)   = nil 

Wait_for(T1)   Request_Q (T1)   = nil 

Wait_for(T2)  Request_Q (T2)   = nil 

Wait_for(T3)   Request_Q (T3)   = T4 

Wait_for(T4)   Request_Q (T4)   = nil 

Wait_for(T5)   Request_Q (T5)   = nil 

Wait_for(T6)   Request_Q (T6)   = nil 

Wait_for(T7)   Request_Q (T7)   = nil 

 

From the above values of intersection we can see that the 

intersection values of T3 is not nil rather it is T4 .And 

hence we say that deadlock has been detected . Now we will 

compare the timestamps of transactions T3 and T4 . TS 

(T3) = 3 and TS (T4) =4 

Since TS (T3) < TS (T4 ) ,so we can say that transaction T4 

is younger transaction . And hence we will abort T4 . So 

that it releases all the resources held by it.. 

Figure 4 shows a deadlock free TWFG of figure 3 

 

Figure 4 : Deadlock free TWFG of figure 3 

4.3 EXAMPLE 3 

 

Figure 5 : A distributed environment having 2 sites 

 

Table  3 : Transaction structure for site 1 in  figure 5 
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Wait_fo

r(T0)   Request_Q (T0)   = nil 

Wait_for(T1)   Request_Q (T1)   = nil 

Wait_for(T2)   Request_Q (T2)   = nil 

Wait_for(T3)   Request_Q (T3)   = nil 

Since all the intersection values are nil So we conclude that 

there exists no deadlock. 

Table  4 : Transaction structure for site 2 in figure 5 

 

 

 

 

 

 

 

 

 

Wait_for(T5)   Request_Q (T5)   = nil 

Wait_for(T6)   Request_Q (T6)   = nil 

Wait_for(T7)   Request_Q (T7)   = nil 

Wait_for(T8)   Request_Q (T8    = T6 

Since intersection values for transaction T8 is not nil. We 

will compare timestamps of both T8 and T6 and we find 

that the TS ( T6) < TS (T8 ). So we will abort T8 as it is the 

younger transaction. 

Table  5 : Transaction structure for site 1  and 2 in  figure 5 

T_ID TS Wait_for Held_by Request_Q 

T1 7 T2 T2, T3 NIL 

T2 1 T2 T3 T1 , T4 

T3 5 T2 T5 T1 , T2 

T4 2 T2 T2 T6 

T5 6 T6 T6 T7 

T6 3 T6 T8 T5 

T7 8 T6 T5 T8  NIL 

T8 4 T6 T7 T6 

 

 

Wait_for(T0)   Request_Q (T0)   = nil 

Wait_for(T1)   Request_Q (T1)   = nil 

Wait_for(T2)   Request_Q (T2)   = NIL 

Wait_for(T3)   Request_Q (T3)   = T2 

Wait_for(T5)   Request_Q (T5)   = nil 

Wait_for(T6)   Request_Q (T6)   = nil 

Wait_for(T7)   Request_Q (T7)   = nil 

Now we will compare timestamps of transactions T2 and 

T3. TS(T2) < TS(T3) So we will abort transaction T3. 

T_ID TS Wait_for Held 

_by 

Requst_Q 

T1 

2 T2 T2 ,T3 NIL 

T2 1 T2 T3 T4 

T3 3 NIL NIL T1 , T2 

T4 4 T2 T2 NIL 

T_ID TS Wait_for Held_by Request_Q 

T5 3 T6 T6 T7 

T6 1 T6 T8 T5 

T7 2 T6 T5 T8 

T8 4 T6 T8 T6 
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 After aborting transaction T3, we will get a deadlock free 

TWFG in figure 6. 

 

Figure 6: Deadlock free TWFG for figure 5 

 

CONCLUSION 

A simple algorithm for deadlock detection in distributed 

systems is presented. In the above proposed algorithm, we 

do not use probe messages to detect deadlock. However, we 

use the update message whose function is two fold: first to 

modify the Wait-for variables and second to check the 

occurrence of deadlock. Along with this update message we 

make use of  time stamping technique which is a better way 

of deciding the priority of the transactions . And hence to 

decide that which transaction needs to be aborted. 
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