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Abstract 

In this paper, a discrete time inventory system with 

demands occurring according to a Bernoulli 

process. The inventory is replenished according to 

an (𝑠, 𝑆) policy and the lead times are assumed to 

follow a geometric distribution. The demands that 

occur during stock out period is permitted enter 

into the orbit of finite size. These orbiting demands 

retry to get their requirement after some random 

time and the time interval between two consecutive 

requests is distributed as geometric and the retrial 

policy is the multiplicative retrial policy. The joint 

probability distribution of the number of demands 

in the orbit and the inventory level is obtained in 

steady state case. Some system performance 

measures are derived and the results are illustrated 

numerically. 

 
Keywords- Discrete time inventory system, (𝑠, 𝑆) 

policy, Retrial demand, Multiplicative retrial policy 

 
1.  Introduction 
Inventory models have been considered under 

continuous review as well as periodic review. In 

the recent past discrete time models have started 

receiving attention of researchers in the areas of 

queuing and telecommunications [2, 3]. In discrete 

time setting, it is assumed that the time axis is 

calibrated into epochs by small units and that all 

the events are deemed to occur only at these 

epochs. With the advent of fast computing devices 

and efficient transaction reporting facilities, such 

epochs with small gaps can be conveniently 

assumed so that events can occur at these epochs. 

In the case of inventory modelling under 

discrete times, the first paper was by Bar-Lev and 

Perry [7], who assumed that demands are non-

negative integer value random variables and items 

have constant life times. Lian and Liu [10] 

developed a discrete time inventory model with 

geometrically distributed inter-demand times, bulk 

demands and constant life time for items. They 

assumed (0, S) ordering policy, with instantaneous 

supply which clears any backlog and restores the 

stock to the maximum capacity S. This assumption 

helped them to have fixed life time for all items. 

They derived the limiting distribution of inventory 

level through matrix-analytic method. 

Abboud [1] studied a discrete inventory 

model for production inventory systems with 

machine breakdowns. They assumed that the 

demand and production rates were constant and 

that the failure and repair times of each item were 

independently distributed as geometric. Lian et al. 

[11] developed a discrete time inventory system 

with discrete PH-renewal process for (batch) 

demand time points and assumed discrete- PH-

distribution for life time of items. They also 

assumed zero lead time and that unsatisfied 

demand were completely backlogged. 

I.Atentia and P.Moreno [6] developed a 

discrete time retrial queueing system with 

multiplicative repeated attempts. The authors used 

the retrial policy is the multiplicative one which 

analogous to the linear retrial policy in continuous-

time [4]. 

The rest of the paper is organized as 

follows. In Section 2, we describe the problem 

under consideration. The mathematical model of 

our problem is presented in section 3. The limiting 

probability vector of the chain is calculated in 

Section 4. In section 5 we derived some important 

system performance measures and in the final 

section the expression for total expected cost rate 

and we provide few numerical illustrations of the 

results. 

 
Notation: 

  A ij  : entry at (i, j) th position of A 

 0 : zero vector of appropriate dimension 

 I : identity matrix of appropriate 

dimension 

 e : a column vector of 1’s with appropriate 

dimension 

 δi,j: Kronecker delta function 

 
 

2. Problem formulation 
We consider a discrete time retrial inventory 

system where the time axis is divided into intervals 

of equal length, called slots (epochs). It is assumed 

that all system activities (arrivals, retrials and 

replenishment) occur at the slot boundaries, and 
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therefore they may occur at the same time. The 

maximum capacity of the inventory is S. 

 Demand arrive according to a Bernoulli 

process with probability a, thus a is the 

probability that a demand arrives at a slot 

and   a   (=  1 −  a), is the probability that 

an arrival does not take place in a slot. 

When the on-hand inventory level is more 

than one then the arriving demand is 

satisfied immediately. 

 We adopt (s, S) ordering policy, that is, 

when the number of available items 

reaches the value s, an order for Q(=  S −
 s >  s) items is placed which is delivered 

after a lead time of geometric distribution 

with parameter c >  0. The condition 

Q >  s is assumed so that when the supply 

of an order is received during the stock out 

period, the inventory level would be 

brought above the reorder level. 

 If the arrival finds the inventory level 

zero, he enters into the orbit of pending 

demands and he retry after a random 

amount of time. In order to overcome 

analytical difficulties, we assume the most 

natural approach of restricting the retrial 

group to be of finite size. The arrivals of 

demands at the time of empty stock with 

full retrial orbit are assumed to be lost. So, 

in what follows, M will denote the 

maximum number of simultaneous 

pending demand in which the probability 

for the demand to be lost is negligible. If 

more than one repeated demand retries at 

the same slot, any of them is randomly 

selected and the others must go back to the 

retrial group. The time between two 

successive repeated attempts is 

geometrically distributed with probability 

1 − r1

1−δ0,k r2
k(r1 , r2 ∈  [0, 1], r1r2 ≠ 1 

given that there are k demands in the orbit. 

If r2 = 1, the retrial policy becomes the 

constant retrial policy, when r1 = 1, we 

get  the classical retrial policy. 

Unlike continuous review inventory systems, 

multiple events such as demand, supply and retrial 

from the orbit may occur between epochs n and 

n + 1, n =  0, 1, 2, . . .. Hence we adopt the 

following convention: If the events such as demand 

for an item, retrial from the orbit and supply of an 

order takes place at n (n =  1, 2, 3. . . . ), it is 

assumed that first supply is received then demand 

occurs and finally retrial from the orbit takes place. 

 

3. Model Descriptions 
Let Xn and Ln denote respectively the number of 

demands in the orbit and the inventory level at time 

n. From the assumptions made on the input and 

output processes, it can be shown that the 

stochastic process (X, L)  =  {(Xn , Ln), n ∈  N} is a 

Discrete Time Markov Chain with state space 

given by E =  {(i, j) ∶  i =  0, 1, . . . , M, j =
 0, 1, . . . , S}. 
The transition probability function is defined as,  

p((i, j), (k, l))  =  Pr[Xn+1  =  k, Ln+1   =  l|Xn  
=  i, Ln  =  j], (i, j), (k, l)  ∈  E, 

The transition probability matrix P of this 

process, P =  (( p((i, j), (k, l)) )), (i, j), (k, l)  ∈  E 

is given by, 

 P kl =  

A0 l = k + 1 k = 0,1, … , M − 1
Bk l = k         k = 0,1, … , M        
Ck l = k − 1 k = 1,2, … , M        

0 otherwise                                  
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Here the matrices A0, Bk  and Ck  are the square matrices of order (S + 1). 

 
4. Calculating limiting probabilities 
It can be seen from the structure of P, the 

homogeneous Markov chain {(Xn , Ln), n ∈  N} on 

the finite state space is irreducible. Hence the 

limiting probability distribution 

π(i,j) =  lim
n→∞

Pr[Xn = i, Ln = j|X0 = k, L0 = l] 

where π(i,j) is the steady state probability for the 

state (i, j) exists and is independent of the initial 

state (k, l). Let Π be the steady state limiting 

probability vector of P. That is, Π satisfies ΠP =
Π and Πe = 1. 

The vector Π can be represented by  Π =

(Π<0>, Π<1>, … , Π<M>)  and  

Π<𝑖>  =  (π i,0 , π i,1 , π i,2 … , π i,S ), for i =
 0, 1, 2, . . . , M. 
Now the structure of P shows, the model under 

study is a finite birth death model in the Markovian 

environment. Hence we use the algorithm 

discussed by Gaver et al. [9] for computing the 

limiting probability vector. For the sake of 

completeness we provide the algorithm here. 

 
Algorithm: 
1. Determine recursively the matrix Di , 0 ≤  i ≤
 M by using 

  D0  =  B0   and Di  =  Bi  +  Ci I –  Di −

1 
−1

A0, i =  1, 2, . . . , M. 

2. Solve the system Π<M>(I –  DM )  =  0 

3. Compute recursively the vector  Π<i>,  

    using  Π<i>  = Π<i+1>Ci + 1 I –  Di 
−1

, i =

 M −  1, M −  2, . . . , 0 
4. Normalize the vector Π, by using Πe =  1. 

 

 
5. System performance measures 
In this section, we numerically illustrate the main 

performance measures of the model. First we 

provide expression for few system performance 

measures. 

5.1. Mean inventory level 
Let Xi  denote the expected inventory level in the 

steady state. Since π<𝑖 ,𝑗> is the steady state 

probability vector when the number of demands in 

the orbit is i and the inventory level is j. Hence the 

expected inventory level is given by 

Xi =    jπ(i,j)

S

j=1

M

i=0

 

 

5.2. Expected reorder rate 
To compute the mean reorder rate Xr , we consider 

the event of triggering a reorder’ which occurs 

when the inventory level drops to s or less than 

that. Since a drop occurs from s + 1 with primary 

demand and/or the retrial demand and a drop from 

s + 2 with both primary demand and a retrial 

demand, we get 

Xr = aπ 0,s+1 +   ar1r2
k + 1 − r1r2

k π k,s+1 

M

k=1

+   a(1 − r1r2
k π(k,s+2)

M

k=1

 

 

5.3. Expected number of demands in the orbit 
Let Xo  denote the expected number of demands in 

the orbit in the steady state. Since Π<𝑖> is the 

steady state probability vector when the number of 

demands in the orbit is i, with each component 
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specifying a particular combination of the 

inventory level, Π<𝑖>𝐞 gives the probability that 

the number of demands in the orbit is i in the 

steady state. Hence the expected number of 

demands in the orbit is given by 

Xo =  Π<k>𝐞

M

k=0

 

5.4. Probability for the demand lost 
Let Xb  denote the probability for the demand lost. 

The demand occurs at the stock out period with full 

retrial orbit are considered to be lost. The 

probability for that event is defined as, 

Xb = aπ(M,0) 

5.5. Fraction of successful rate of retrial 
Let 𝑋𝐹𝑅  denote the fraction of successful rate of 

retrial and is defined as, 

XFR

=
   1 − r1r2

k S
j=2

M
i=1 π(i,j) +  a M

i=1  1 − r1r2
k π(i,1)

   1 − r1r2
k π(i,j)S

j=0
M
i=1

 

6. Numerical Illustration 
The long run total expected cost rate is defined as, 

TC S, s = chXi  +  csXr  +  cw Xo  +  clXb  

Here, cs , ch, cw  and cl  denote respectively, setup 

cost for the order, inventory carrying cost, waiting 

cost for the pending demand and cost for demand 

lost.  

 

Due to the complex form of the limiting 

distribution, it is difficult to discuss the properties 

of the cost function analytically. Although we have 

not established analytically, our experience with 

considerable numerical examples indicates the 

function, TC(S, s) to be convex.  

 
Figure 1:  A three dimensional plot of the cost function TC(S, s) 

A typical 3-dimensional plot of TC(S, s) is presented in Figure 1. Here we show multiplicative retrial policy is 

the effective one, when we compare with the other two retrial policies. 
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Figure 2:  2-dimensional plot for M versus Probability for demand lost 

In Figure 2, we present the 2-dimensional plot for Xb  versus M. Here we show the probability for the demand to 

be lost closer to zero when the orbit size becomes large. From Table 1 and 2 the total expected cost rate 

increases when cs , ch , cland cw  increase. From Table 3, the fraction of successful rate of retrial increases when 

the retrial probability decreases. 

 

Table 1: 𝒄𝒉 𝒗𝒔 𝒄𝒘 𝒐𝒏 𝑻𝑪(𝒔, 𝑺) 

 𝑐𝑤=2 𝑐𝑤=3 𝑐𝑤=4 𝑐𝑤=5 𝑐𝑤=6 

𝑐ℎ=0.1 11.496419 16.364520 21.232622 26.100723 30.968825 

𝑐ℎ=0.2 13.010480 17.878582 22.746683 27.614785 32.482886 

𝑐ℎ=0.3 14.524542 19.392643 24.260745 29.128846 33.996948 

𝑐ℎ=0.4 16.038603 20.906705 25.774807 30.642908 35.511010 

𝑐ℎ=0.5 17.552665 22.420767 27.288868 32.156970 37.025071 

 

 

Table 2: 𝒄𝒔 𝒗𝒔 𝒄𝒍 𝒐𝒏 𝑻𝑪(𝒔, 𝑺) 

 𝑐𝑙=1 𝑐𝑙=2 𝑐𝑙=3 𝑐𝑙=4 𝑐𝑙=5 

𝑐𝑠=5 19.197772 19.197772 19.197772 19.197772 19.197773 

𝑐𝑠=10 19.249054 19.249054 19.249054 19.249054 19.249055 

𝑐𝑠=15 19.300336 19.300336 19.300336 19.300336 19.300337 

𝑐𝑠=20 19.351618 19.351618 19.351618 19.351619 19.351619 

𝑐𝑠=25 19.402900 19.402900 19.402900 19.402901 19.402901 
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Table 3: Variation of 𝒓𝟏 & 𝒓𝟐 𝒐𝒏 𝑿𝑭𝑹 

 𝑟2=0.2 𝑟2=0.4 𝑟2=0.6 𝑟2=0.8 𝑟2=1.0 

𝑟1=0.2 0.277441 0.278487 0.280448 0.285471 0.326453 

𝑟1=0.4 0.278093 0.280199 0.284187 0.294627 0.395160 

𝑟1=0.6 0.278748 0.281928 0.288011 0.304287 0.496373 

𝑟1=0.8 0.279405 0.283676 0.291919 0.314472 0.659717 

𝑟1=1.0 0.280064 0.285440 0.295908 0.325145 - 

 

7. Conclusion 
In this paper we considered a discrete time 

inventory system with demands occurring 

according to a Bernoulli process. The inventory is 

replenished according to (s, S) ordering policy and 

we assume lead times are geometric distribution. 

The demands that occur during stock out period is 

permitted enter into the orbit of finite size. These 

orbiting demands retry to get their requirement 

after some random time and the time interval 

between two consecutive requests is distributed as 

geometric and the retrial policy is the multiplicative 

retrial policy. We assume the demands that occur 

during the stock-out period with full retrial orbit are 

considered to be lost. So we fix the maximum orbit 

size so that the probability for the demand last is 

negligible. We derived the joint probability 

distribution of the number of demands in the orbit 

and the inventory level is obtained in steady state 

case. We studied the effect of varying the cost and 

the other system parameters on the optimal values 

and the results agreed with what one would expect.  
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